root / pobysoPythonSage / src / pobyso.py @ 94
Historique | Voir | Annoter | Télécharger (44,01 ko)
1 |
"""
|
---|---|
2 |
Actual functions to use in Sage
|
3 |
ST 2012-11-13
|
4 |
|
5 |
Command line syntax:
|
6 |
use from Sage (via the "load" or the "attach" commands)
|
7 |
|
8 |
pobyso functions come in five flavors:
|
9 |
- the _so_so (arguments and returned objects are pointers to Sollya objects,
|
10 |
includes the void function and the no arguments function that return a
|
11 |
pointer to a Sollya object);
|
12 |
- the _so_sa (argument are pointers to Sollya objects, returned objects are
|
13 |
Sage/Python objects or, more generally, information is transfered from the
|
14 |
Sollya world to Sage/Python world; e.g. functions without arguments that
|
15 |
return a Sage/Python object);
|
16 |
- the _sa_so (arguments are Sage/Python objects, returned objects are
|
17 |
pointers to Sollya objects);
|
18 |
- the sa_sa (arguments and returned objects are all Sage/Python objects);
|
19 |
- a catch all flavor, without any suffix, (e. g. functions that have no argument
|
20 |
nor return value).
|
21 |
This classification is not always very strict. Conversion functions from Sollya
|
22 |
to Sage/Python are sometimes decorated with Sage/Python arguments to set
|
23 |
the precision. These functions remain in the so_sa category.
|
24 |
NOTES:
|
25 |
Reported errors in Eclipse come from the calls to
|
26 |
the Sollya library
|
27 |
|
28 |
ToDo (among other things):
|
29 |
-memory management.
|
30 |
"""
|
31 |
from ctypes import * |
32 |
import re |
33 |
from sage.symbolic.expression_conversions import polynomial |
34 |
from sage.symbolic.expression_conversions import PolynomialConverter |
35 |
"""
|
36 |
Create the equivalent to an enum for the Sollya function types.
|
37 |
"""
|
38 |
(SOLLYA_BASE_FUNC_ABS, |
39 |
SOLLYA_BASE_FUNC_ACOS, |
40 |
SOLLYA_BASE_FUNC_ACOSH, |
41 |
SOLLYA_BASE_FUNC_ADD, |
42 |
SOLLYA_BASE_FUNC_ASIN, |
43 |
SOLLYA_BASE_FUNC_ASINH, |
44 |
SOLLYA_BASE_FUNC_ATAN, |
45 |
SOLLYA_BASE_FUNC_ATANH, |
46 |
SOLLYA_BASE_FUNC_CEIL, |
47 |
SOLLYA_BASE_FUNC_CONSTANT, |
48 |
SOLLYA_BASE_FUNC_COS, |
49 |
SOLLYA_BASE_FUNC_COSH, |
50 |
SOLLYA_BASE_FUNC_DIV, |
51 |
SOLLYA_BASE_FUNC_DOUBLE, |
52 |
SOLLYA_BASE_FUNC_DOUBLEDOUBLE, |
53 |
SOLLYA_BASE_FUNC_DOUBLEEXTENDED, |
54 |
SOLLYA_BASE_FUNC_ERF, |
55 |
SOLLYA_BASE_FUNC_ERFC, |
56 |
SOLLYA_BASE_FUNC_EXP, |
57 |
SOLLYA_BASE_FUNC_EXP_M1, |
58 |
SOLLYA_BASE_FUNC_FLOOR, |
59 |
SOLLYA_BASE_FUNC_FREE_VARIABLE, |
60 |
SOLLYA_BASE_FUNC_HALFPRECISION, |
61 |
SOLLYA_BASE_FUNC_LIBRARYCONSTANT, |
62 |
SOLLYA_BASE_FUNC_LIBRARYFUNCTION, |
63 |
SOLLYA_BASE_FUNC_LOG, |
64 |
SOLLYA_BASE_FUNC_LOG_10, |
65 |
SOLLYA_BASE_FUNC_LOG_1P, |
66 |
SOLLYA_BASE_FUNC_LOG_2, |
67 |
SOLLYA_BASE_FUNC_MUL, |
68 |
SOLLYA_BASE_FUNC_NEARESTINT, |
69 |
SOLLYA_BASE_FUNC_NEG, |
70 |
SOLLYA_BASE_FUNC_PI, |
71 |
SOLLYA_BASE_FUNC_POW, |
72 |
SOLLYA_BASE_FUNC_PROCEDUREFUNCTION, |
73 |
SOLLYA_BASE_FUNC_QUAD, |
74 |
SOLLYA_BASE_FUNC_SIN, |
75 |
SOLLYA_BASE_FUNC_SINGLE, |
76 |
SOLLYA_BASE_FUNC_SINH, |
77 |
SOLLYA_BASE_FUNC_SQRT, |
78 |
SOLLYA_BASE_FUNC_SUB, |
79 |
SOLLYA_BASE_FUNC_TAN, |
80 |
SOLLYA_BASE_FUNC_TANH, |
81 |
SOLLYA_BASE_FUNC_TRIPLEDOUBLE) = map(int,xrange(44)) |
82 |
print "\nSuperficial pobyso check..." |
83 |
print "First constant - SOLLYA_BASE_FUNC_ABS: ", SOLLYA_BASE_FUNC_ABS |
84 |
print "Last constant - SOLLYA_BASE_FUNC_TRIPLEDOUBLE: ", SOLLYA_BASE_FUNC_TRIPLEDOUBLE |
85 |
|
86 |
pobyso_max_arity = 9
|
87 |
|
88 |
def pobyso_absolute_so_so(): |
89 |
return(sollya_lib_absolute(None)) |
90 |
|
91 |
def pobyso_autoprint(arg): |
92 |
sollya_lib_autoprint(arg,None)
|
93 |
|
94 |
def pobyso_autoprint_so_so(arg): |
95 |
sollya_lib_autoprint(arg,None)
|
96 |
|
97 |
def pobyso_bounds_to_range_sa_so(rnLowerBoundSa, rnUpperBoundSa, \ |
98 |
precisionSa=None):
|
99 |
"""
|
100 |
Return a Sollya range from to 2 RealField Sage elements.
|
101 |
The Sollya range element has a sufficient precision to hold all
|
102 |
the digits of the Sage bounds.
|
103 |
"""
|
104 |
# Sanity check.
|
105 |
if rnLowerBoundSa > rnUpperBoundSa:
|
106 |
return None |
107 |
if precisionSa is None: |
108 |
# Check for the largest precision.
|
109 |
lbPrecSa = rnLowerBoundSa.parent().precision() |
110 |
ubPrecSa = rnLowerBoundSa.parent().precision() |
111 |
maxPrecSa = max(lbPrecSa, ubPrecSa)
|
112 |
else:
|
113 |
maxPrecSa = precisionSa |
114 |
sollyaCurrentPrecSo = pobyso_get_prec_so() |
115 |
sollyaCurrentPrecSa = pobyso_constant_from_int_so_sa(sollyaCurrentPrecSo) |
116 |
# Change the current Sollya precision only if necessary.
|
117 |
if maxPrecSa > sollyaCurrentPrecSa:
|
118 |
pobyso_set_prec_sa_so(maxPrecSa) |
119 |
lowerBoundSo = sollya_lib_constant(get_rn_value(rnLowerBoundSa)) |
120 |
upperBoundSo = sollya_lib_constant(get_rn_value(rnUpperBoundSa)) |
121 |
rangeSo = sollya_lib_range(lowerBoundSo, upperBoundSo) |
122 |
# Back to original precision.
|
123 |
if maxPrecSa > sollyaCurrentPrecSa:
|
124 |
sollya_lib_set_prec(sollyaCurrentPrecSo) |
125 |
# Clean up
|
126 |
sollya_lib_clear_obj(sollyaCurrentPrecSo) |
127 |
sollya_lib_clear_obj(lowerBoundSo) |
128 |
sollya_lib_clear_obj(upperBoundSo) |
129 |
return(rangeSo)
|
130 |
# End pobyso_bounds_to_range_sa_so
|
131 |
|
132 |
def pobyso_build_function_sub_so_so(exp1So, exp2So): |
133 |
return(sollya_lib_build_function_sub(exp1So, exp2So))
|
134 |
|
135 |
def pobyso_change_var_in_function_so_so(funcSo, chvarExpSo): |
136 |
"""
|
137 |
Variable change in a function.
|
138 |
"""
|
139 |
return(sollya_lib_evaluate(funcSo,chvarExpSo))
|
140 |
# End pobyso_change_var_in_function_so_so
|
141 |
|
142 |
def pobyso_chebyshevform_so_so(functionSo, degreeSo, intervalSo): |
143 |
resultSo = sollya_lib_chebyshevform(functionSo, degreeSo, intervalSo) |
144 |
return(resultSo)
|
145 |
# End pobyso_chebyshevform_so_so.
|
146 |
|
147 |
def pobyso_cmp(rnArgSa, cteSo): |
148 |
"""
|
149 |
Compare the MPFR value a RealNumber with that of a Sollya constant.
|
150 |
|
151 |
Get the value of the Sollya constant into a RealNumber and compare
|
152 |
using MPFR. Could be optimized by working directly with a mpfr_t
|
153 |
for the intermediate number.
|
154 |
"""
|
155 |
precisionOfCte = c_int(0)
|
156 |
# From the Sollya constant, create a local Sage RealNumber.
|
157 |
sollya_lib_get_prec_of_constant(precisionOfCte, cteSo) |
158 |
#print "Precision of constant: ", precisionOfCte
|
159 |
RRRR = RealField(precisionOfCte.value) |
160 |
rnLocalSa = RRRR(0)
|
161 |
sollya_lib_get_constant(get_rn_value(rnLocalSa), cteSo) |
162 |
# Compare the local Sage RealNumber with rnArg.
|
163 |
return(cmp_rn_value(rnArgSa, rnLocal))
|
164 |
# End pobyso_smp
|
165 |
|
166 |
def pobyso_compute_pos_function_abs_val_bounds_sa_sa(funcSa, lowerBoundSa, \ |
167 |
upperBoundSa): |
168 |
"""
|
169 |
TODO: completely rework and test.
|
170 |
"""
|
171 |
pobyso = pobyso_name_free_variable_sa_so(funcSa.variables()[0])
|
172 |
funcSo = pobyso_parse_string(funcSa._assume_str()) |
173 |
rangeSo = pobyso_range_sa_so(lowerBoundSa, upperBoundSa) |
174 |
infnormSo = pobyso_infnorm_so_so(funcSo,rangeSo) |
175 |
# Sollya return the infnorm as an interval.
|
176 |
fMaxSa = pobyso_get_interval_from_range_so_sa(infnormSo) |
177 |
# Get the top bound and compute the binade top limit.
|
178 |
fMaxUpperBoundSa = fMaxSa.upper() |
179 |
binadeTopLimitSa = 2**ceil(fMaxUpperBoundSa.log2())
|
180 |
# Put up together the function to use to compute the lower bound.
|
181 |
funcAuxSo = pobyso_parse_string(str(binadeTopLimitSa) + \
|
182 |
'-(' + f._assume_str() + ')') |
183 |
pobyso_autoprint(funcAuxSo) |
184 |
# Clear the Sollya range before a new call to infnorm and issue the call.
|
185 |
sollya_lib_clear_obj(infnormSo) |
186 |
infnormSo = pobyso_infnorm_so_so(funcAuxSo,rangeSo) |
187 |
fMinSa = pobyso_get_interval_from_range_so_sa(infnormSo) |
188 |
sollya_lib_clear_obj(infnormSo) |
189 |
fMinLowerBoundSa = binadeTopLimitSa - fMinSa.lower() |
190 |
# Compute the maximum of the precisions of the different bounds.
|
191 |
maxPrecSa = max([fMinLowerBoundSa.parent().precision(), \
|
192 |
fMaxUpperBoundSa.parent().precision()]) |
193 |
# Create a RealIntervalField and create an interval with the "good" bounds.
|
194 |
RRRI = RealIntervalField(maxPrecSa) |
195 |
imageIntervalSa = RRRI(fMinLowerBoundSa, fMaxUpperBoundSa) |
196 |
# Free the unneeded Sollya objects
|
197 |
sollya_lib_clear_obj(funcSo) |
198 |
sollya_lib_clear_obj(funcAuxSo) |
199 |
sollya_lib_clear_obj(rangeSo) |
200 |
return(imageIntervalSa)
|
201 |
# End pobyso_compute_pos_function_abs_val_bounds_sa_sa
|
202 |
|
203 |
def pobyso_constant(rnArg): |
204 |
""" Legacy function. See pobyso_constant_sa_so. """
|
205 |
return(pobyso_constant_sa_so(rnArg))
|
206 |
|
207 |
def pobyso_constant_sa_so(rnArgSa, precisionSa=None): |
208 |
"""
|
209 |
Create a Sollya constant from a RealNumber.
|
210 |
"""
|
211 |
# Precision stuff
|
212 |
if precisionSa is None: |
213 |
precisionSa = rnArgSa.parent().precision() |
214 |
currentSollyaPrecisionSo = sollya_lib_get_prec() |
215 |
currentSollyaPrecisionSa = \ |
216 |
pobyso_constant_from_int(currentSollyaPrecisionSo) |
217 |
if precisionSa > currentSollyaPrecisionSa:
|
218 |
pobyso_set_prec_sa_so(precisionSa) |
219 |
constantSo = sollya_lib_constant(get_rn_value(rnArgSa)) |
220 |
pobyso_set_prec_sa_so(currentSollyaPrecision) |
221 |
else:
|
222 |
constantSo = sollya_lib_constant(get_rn_value(rnArgSa)) |
223 |
sollya_lib_clear_obj(currentSollyaPrecisionSo) |
224 |
return(constantSo)
|
225 |
|
226 |
def pobyso_constant_0_sa_so(): |
227 |
return(pobyso_constant_from_int_sa_so(0)) |
228 |
|
229 |
def pobyso_constant_1(): |
230 |
""" Legacy function. See pobyso_constant_so_so. """
|
231 |
return(pobyso_constant_1_sa_so())
|
232 |
|
233 |
def pobyso_constant_1_sa_so(): |
234 |
return(pobyso_constant_from_int_sa_so(1)) |
235 |
|
236 |
def pobyso_constant_from_int(anInt): |
237 |
""" Legacy function. See pobyso_constant_from_int_sa_so. """
|
238 |
return(pobyso_constant_from_int_sa_so(anInt))
|
239 |
|
240 |
def pobyso_constant_from_int_sa_so(anInt): |
241 |
return(sollya_lib_constant_from_int(int(anInt))) |
242 |
|
243 |
def pobyso_constant_from_int_so_sa(constSo): |
244 |
"""
|
245 |
Get a Sollya constant as an int.
|
246 |
Use full for precision or powers in polynomials.
|
247 |
"""
|
248 |
constSa = c_int(0)
|
249 |
sollya_lib_get_constant_as_int(byref(constSa), constSo) |
250 |
return(constSa.value)
|
251 |
# End pobyso_constant_from_int_so_sa
|
252 |
|
253 |
def pobyso_function_type_as_string(funcType): |
254 |
""" Legacy function. See pobyso_function_type_as_string_so_sa. """
|
255 |
return(pobyso_function_type_as_string_so_sa(funcType))
|
256 |
|
257 |
def pobyso_function_type_as_string_so_sa(funcType): |
258 |
"""
|
259 |
Numeric Sollya function codes -> Sage mathematical function names.
|
260 |
Notice that pow -> ^ (a la Sage, not a la Python).
|
261 |
"""
|
262 |
if funcType == SOLLYA_BASE_FUNC_ABS:
|
263 |
return "abs" |
264 |
elif funcType == SOLLYA_BASE_FUNC_ACOS:
|
265 |
return "arccos" |
266 |
elif funcType == SOLLYA_BASE_FUNC_ACOSH:
|
267 |
return "arccosh" |
268 |
elif funcType == SOLLYA_BASE_FUNC_ADD:
|
269 |
return "+" |
270 |
elif funcType == SOLLYA_BASE_FUNC_ASIN:
|
271 |
return "arcsin" |
272 |
elif funcType == SOLLYA_BASE_FUNC_ASINH:
|
273 |
return "arcsinh" |
274 |
elif funcType == SOLLYA_BASE_FUNC_ATAN:
|
275 |
return "arctan" |
276 |
elif funcType == SOLLYA_BASE_FUNC_ATANH:
|
277 |
return "arctanh" |
278 |
elif funcType == SOLLYA_BASE_FUNC_CEIL:
|
279 |
return "ceil" |
280 |
elif funcType == SOLLYA_BASE_FUNC_CONSTANT:
|
281 |
return "cte" |
282 |
elif funcType == SOLLYA_BASE_FUNC_COS:
|
283 |
return "cos" |
284 |
elif funcType == SOLLYA_BASE_FUNC_COSH:
|
285 |
return "cosh" |
286 |
elif funcType == SOLLYA_BASE_FUNC_DIV:
|
287 |
return "/" |
288 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLE:
|
289 |
return "double" |
290 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLEDOUBLE:
|
291 |
return "doubleDouble" |
292 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLEEXTENDED:
|
293 |
return "doubleDxtended" |
294 |
elif funcType == SOLLYA_BASE_FUNC_ERF:
|
295 |
return "erf" |
296 |
elif funcType == SOLLYA_BASE_FUNC_ERFC:
|
297 |
return "erfc" |
298 |
elif funcType == SOLLYA_BASE_FUNC_EXP:
|
299 |
return "exp" |
300 |
elif funcType == SOLLYA_BASE_FUNC_EXP_M1:
|
301 |
return "expm1" |
302 |
elif funcType == SOLLYA_BASE_FUNC_FLOOR:
|
303 |
return "floor" |
304 |
elif funcType == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
305 |
return "freeVariable" |
306 |
elif funcType == SOLLYA_BASE_FUNC_HALFPRECISION:
|
307 |
return "halfPrecision" |
308 |
elif funcType == SOLLYA_BASE_FUNC_LIBRARYCONSTANT:
|
309 |
return "libraryConstant" |
310 |
elif funcType == SOLLYA_BASE_FUNC_LIBRARYFUNCTION:
|
311 |
return "libraryFunction" |
312 |
elif funcType == SOLLYA_BASE_FUNC_LOG:
|
313 |
return "log" |
314 |
elif funcType == SOLLYA_BASE_FUNC_LOG_10:
|
315 |
return "log10" |
316 |
elif funcType == SOLLYA_BASE_FUNC_LOG_1P:
|
317 |
return "log1p" |
318 |
elif funcType == SOLLYA_BASE_FUNC_LOG_2:
|
319 |
return "log2" |
320 |
elif funcType == SOLLYA_BASE_FUNC_MUL:
|
321 |
return "*" |
322 |
elif funcType == SOLLYA_BASE_FUNC_NEARESTINT:
|
323 |
return "round" |
324 |
elif funcType == SOLLYA_BASE_FUNC_NEG:
|
325 |
return "__neg__" |
326 |
elif funcType == SOLLYA_BASE_FUNC_PI:
|
327 |
return "pi" |
328 |
elif funcType == SOLLYA_BASE_FUNC_POW:
|
329 |
return "^" |
330 |
elif funcType == SOLLYA_BASE_FUNC_PROCEDUREFUNCTION:
|
331 |
return "procedureFunction" |
332 |
elif funcType == SOLLYA_BASE_FUNC_QUAD:
|
333 |
return "quad" |
334 |
elif funcType == SOLLYA_BASE_FUNC_SIN:
|
335 |
return "sin" |
336 |
elif funcType == SOLLYA_BASE_FUNC_SINGLE:
|
337 |
return "single" |
338 |
elif funcType == SOLLYA_BASE_FUNC_SINH:
|
339 |
return "sinh" |
340 |
elif funcType == SOLLYA_BASE_FUNC_SQRT:
|
341 |
return "sqrt" |
342 |
elif funcType == SOLLYA_BASE_FUNC_SUB:
|
343 |
return "-" |
344 |
elif funcType == SOLLYA_BASE_FUNC_TAN:
|
345 |
return "tan" |
346 |
elif funcType == SOLLYA_BASE_FUNC_TANH:
|
347 |
return "tanh" |
348 |
elif funcType == SOLLYA_BASE_FUNC_TRIPLEDOUBLE:
|
349 |
return "tripleDouble" |
350 |
else:
|
351 |
return None |
352 |
|
353 |
def pobyso_get_constant(rnArgSa, constSo): |
354 |
""" Legacy function. See pobyso_get_constant_so_sa. """
|
355 |
return(pobyso_get_constant_so_sa(rnArgSa, constSo))
|
356 |
|
357 |
def pobyso_get_constant_so_sa(rnArgSa, constSo): |
358 |
"""
|
359 |
Set the value of rnArgSo to the value of constSo in MPFR_RNDN mode.
|
360 |
rnArg must already exist and belong to some RealField.
|
361 |
We assume that constSo points to a Sollya constant.
|
362 |
"""
|
363 |
return(sollya_lib_get_constant(get_rn_value(rnArgSa), constSo))
|
364 |
|
365 |
def pobyso_get_constant_as_rn(ctExpSo): |
366 |
"""
|
367 |
Legacy function. See pobyso_get_constant_as_rn_so_sa.
|
368 |
"""
|
369 |
return(pobyso_get_constant_as_rn_so_sa(ctExpSo))
|
370 |
|
371 |
def pobyso_get_constant_as_rn_so_sa(constExpSo): |
372 |
"""
|
373 |
Get a Sollya constant as a Sage "real number".
|
374 |
The precision of the floating-point number returned is that of the Sollya
|
375 |
constant.
|
376 |
"""
|
377 |
precisionSa = pobyso_get_prec_of_constant_so_sa(constExpSo) |
378 |
RRRR = RealField(precisionSa) |
379 |
rnSa = RRRR(0)
|
380 |
sollya_lib_get_constant(get_rn_value(rnSa), constExpSo) |
381 |
return(rnSa)
|
382 |
# End pobyso_get_constant_as_rn_so_sa
|
383 |
|
384 |
def pobyso_get_constant_as_rn_with_rf(ctExp, realField): |
385 |
"""
|
386 |
Legacy function. See pobyso_get_constant_as_rn_with_rf_so_sa.
|
387 |
"""
|
388 |
return(pobyso_get_constant_as_rn_with_rf_so_sa(ctExp, realField))
|
389 |
|
390 |
def pobyso_get_constant_as_rn_with_rf_so_sa(ctExpSo, realFieldSa = None): |
391 |
"""
|
392 |
Get a Sollya constant as a Sage "real number".
|
393 |
If no real field is specified, the precision of the floating-point number
|
394 |
returned is that of the Sollya constant.
|
395 |
Otherwise is is that of the real field. Hence rounding may happen.
|
396 |
"""
|
397 |
if realFieldSa is None: |
398 |
sollyaPrecSa = pobyso_get_prec_of_constant_so_sa(ctExpSo) |
399 |
realFieldSa = RealField(sollyaPrecSa) |
400 |
rnSa = realFieldSa(0)
|
401 |
sollya_lib_get_constant(get_rn_value(rnSa), ctExpSo) |
402 |
return(rnSa)
|
403 |
# End pobyso_get_constant_as_rn_with_rf_so_sa
|
404 |
|
405 |
def pobyso_get_free_variable_name(): |
406 |
"""
|
407 |
Legacy function. See pobyso_get_free_variable_name_so_sa.
|
408 |
"""
|
409 |
return(pobyso_get_free_variable_name_so_sa())
|
410 |
|
411 |
def pobyso_get_free_variable_name_so_sa(): |
412 |
return(sollya_lib_get_free_variable_name())
|
413 |
|
414 |
def pobyso_get_function_arity(expressionSo): |
415 |
"""
|
416 |
Legacy function. See pobyso_get_function_arity_so_sa.
|
417 |
"""
|
418 |
return(pobyso_get_function_arity_so_sa(expressionSo))
|
419 |
|
420 |
def pobyso_get_function_arity_so_sa(expressionSo): |
421 |
arity = c_int(0)
|
422 |
sollya_lib_get_function_arity(byref(arity),expressionSo) |
423 |
return(int(arity.value)) |
424 |
|
425 |
def pobyso_get_head_function(expressionSo): |
426 |
"""
|
427 |
Legacy function. See pobyso_get_head_function_so_sa.
|
428 |
"""
|
429 |
return(pobyso_get_head_function_so_sa(expressionSo))
|
430 |
|
431 |
def pobyso_get_head_function_so_sa(expressionSo): |
432 |
functionType = c_int(0)
|
433 |
sollya_lib_get_head_function(byref(functionType), expressionSo, None)
|
434 |
return(int(functionType.value)) |
435 |
|
436 |
def pobyso_get_interval_from_range_so_sa(soRange, realIntervalFieldSa = None ): |
437 |
"""
|
438 |
Return the Sage interval corresponding to the Sollya range argument.
|
439 |
If no reaIntervalField is passed as an argument, the interval bounds are not
|
440 |
rounded: they are elements of RealIntervalField of the "right" precision
|
441 |
to hold all the digits.
|
442 |
"""
|
443 |
prec = c_int(0)
|
444 |
if realIntervalFieldSa is None: |
445 |
retval = sollya_lib_get_prec_of_range(byref(prec), soRange, None)
|
446 |
if retval == 0: |
447 |
return(None) |
448 |
realIntervalFieldSa = RealIntervalField(prec.value) |
449 |
intervalSa = realIntervalFieldSa(0,0) |
450 |
retval = \ |
451 |
sollya_lib_get_interval_from_range(get_interval_value(intervalSa),\ |
452 |
soRange) |
453 |
if retval == 0: |
454 |
return(None) |
455 |
return(intervalSa)
|
456 |
# End pobyso_get_interval_from_range_so_sa
|
457 |
|
458 |
def pobyso_get_list_elements(soObj): |
459 |
""" Legacy function. See pobyso_get_list_elements_so_so. """
|
460 |
return(pobyso_get_list_elements_so_so(soObj))
|
461 |
|
462 |
def pobyso_get_list_elements_so_so(objSo): |
463 |
"""
|
464 |
Get the list elements as a Sage/Python array of Sollya objects.
|
465 |
The other data returned are Sage/Python objects.
|
466 |
"""
|
467 |
listAddress = POINTER(c_longlong)() |
468 |
numElements = c_int(0)
|
469 |
isEndElliptic = c_int(0)
|
470 |
listAsList = [] |
471 |
result = sollya_lib_get_list_elements(byref(listAddress),\ |
472 |
byref(numElements),\ |
473 |
byref(isEndElliptic),\ |
474 |
objSo) |
475 |
if result == 0 : |
476 |
return None |
477 |
for i in xrange(0, numElements.value, 1): |
478 |
listAsList.append(sollya_lib_copy_obj(listAddress[i])) |
479 |
return(listAsList, numElements.value, isEndElliptic.value)
|
480 |
|
481 |
def pobyso_get_max_prec_of_exp(soExp): |
482 |
""" Legacy function. See pobyso_get_max_prec_of_exp_so_sa. """
|
483 |
return(pobyso_get_max_prec_of_exp_so_sa(soExp))
|
484 |
|
485 |
def pobyso_get_max_prec_of_exp_so_sa(expSo): |
486 |
"""
|
487 |
Get the maximum precision used for the numbers in a Sollya expression.
|
488 |
|
489 |
Arguments:
|
490 |
soExp -- a Sollya expression pointer
|
491 |
Return value:
|
492 |
A Python integer
|
493 |
TODO:
|
494 |
- error management;
|
495 |
- correctly deal with numerical type such as DOUBLEEXTENDED.
|
496 |
"""
|
497 |
maxPrecision = 0
|
498 |
minConstPrec = 0
|
499 |
currentConstPrec = 0
|
500 |
operator = pobyso_get_head_function_so_sa(expSo) |
501 |
if (operator != SOLLYA_BASE_FUNC_CONSTANT) and \ |
502 |
(operator != SOLLYA_BASE_FUNC_FREE_VARIABLE): |
503 |
(arity, subexpressions) = pobyso_get_subfunctions_so_sa(expSo) |
504 |
for i in xrange(arity): |
505 |
maxPrecisionCandidate = \ |
506 |
pobyso_get_max_prec_of_exp_so_sa(subexpressions[i]) |
507 |
if maxPrecisionCandidate > maxPrecision:
|
508 |
maxPrecision = maxPrecisionCandidate |
509 |
return(maxPrecision)
|
510 |
elif operator == SOLLYA_BASE_FUNC_CONSTANT:
|
511 |
#minConstPrec = pobyso_get_min_prec_of_constant_so_sa(expSo)
|
512 |
#currentConstPrec = pobyso_get_min_prec_of_constant_so_sa(soExp)
|
513 |
#print minConstPrec, " - ", currentConstPrec
|
514 |
return(pobyso_get_min_prec_of_constant_so_sa(expSo))
|
515 |
|
516 |
elif operator == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
517 |
return(0) |
518 |
else:
|
519 |
print "pobyso_get_max_prec_of_exp_so_sa: unexepected operator." |
520 |
return(0) |
521 |
|
522 |
def pobyso_get_min_prec_of_constant_so_sa(constExpSo): |
523 |
"""
|
524 |
Get the minimum precision necessary to represent the value of a Sollya
|
525 |
constant.
|
526 |
MPFR_MIN_PREC and powers of 2 are taken into account.
|
527 |
We assume that constExpSo is a point
|
528 |
"""
|
529 |
constExpAsRnSa = pobyso_get_constant_as_rn_so_sa(constExpSo) |
530 |
return(min_mpfr_size(get_rn_value(constExpAsRnSa)))
|
531 |
|
532 |
def pobyso_get_sage_exp_from_sollya_exp(sollyaExpSo, realField = RR): |
533 |
""" Legacy function. See pobyso_get_sage_exp_from_sollya_exp_so_sa. """
|
534 |
return(pobyso_get_sage_exp_from_sollya_exp_so_sa(sollyaExpSo, \
|
535 |
realField = RR)) |
536 |
|
537 |
def pobyso_get_sage_exp_from_sollya_exp_so_sa(sollyaExpSo, realFieldSa = RR): |
538 |
"""
|
539 |
Get a Sage expression from a Sollya expression.
|
540 |
Currently only tested with polynomials with floating-point coefficients.
|
541 |
Notice that, in the returned polynomial, the exponents are RealNumbers.
|
542 |
"""
|
543 |
#pobyso_autoprint(sollyaExp)
|
544 |
operatorSa = pobyso_get_head_function_so_sa(sollyaExpSo) |
545 |
sollyaLibFreeVariableName = sollya_lib_get_free_variable_name() |
546 |
# Constants and the free variable are special cases.
|
547 |
# All other operator are dealt with in the same way.
|
548 |
if (operatorSa != SOLLYA_BASE_FUNC_CONSTANT) and \ |
549 |
(operatorSa != SOLLYA_BASE_FUNC_FREE_VARIABLE): |
550 |
(aritySa, subexpressionsSa) = pobyso_get_subfunctions_so_sa(sollyaExpSo) |
551 |
if aritySa == 1: |
552 |
sageExpSa = eval(pobyso_function_type_as_string_so_sa(operatorSa) + \
|
553 |
"(" + pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressionsSa[0], \ |
554 |
realFieldSa) + ")")
|
555 |
elif aritySa == 2: |
556 |
# We do not get through the preprocessor.
|
557 |
# The "^" operator is then a special case.
|
558 |
if operatorSa == SOLLYA_BASE_FUNC_POW:
|
559 |
operatorAsStringSa = "**"
|
560 |
else:
|
561 |
operatorAsStringSa = \ |
562 |
pobyso_function_type_as_string_so_sa(operatorSa) |
563 |
sageExpSa = \ |
564 |
eval("pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressionsSa[0], realFieldSa)"\ |
565 |
+ " " + operatorAsStringSa + " " + \ |
566 |
"pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressionsSa[1], realFieldSa)")
|
567 |
# We do not know yet how to deal with arity >= 3
|
568 |
# (is there any in Sollya anyway?).
|
569 |
else:
|
570 |
sageExpSa = eval('None') |
571 |
return(sageExpSa)
|
572 |
elif operatorSa == SOLLYA_BASE_FUNC_CONSTANT:
|
573 |
#print "This is a constant"
|
574 |
return pobyso_get_constant_as_rn_with_rf_so_sa(sollyaExpSo, realFieldSa)
|
575 |
elif operatorSa == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
576 |
#print "This is free variable"
|
577 |
return(eval(sollyaLibFreeVariableName)) |
578 |
else:
|
579 |
print "Unexpected" |
580 |
return eval('None') |
581 |
# End pobyso_get_sage_poly_from_sollya_poly
|
582 |
|
583 |
def pobyso_get_poly_sa_so(polySo, realFieldSa=None): |
584 |
"""
|
585 |
Create a Sollya polynomial from a Sage polynomial.
|
586 |
"""
|
587 |
pass
|
588 |
# pobyso_get_poly_sa_so
|
589 |
|
590 |
def pobyso_get_poly_so_sa(polySo, realFieldSa=None): |
591 |
"""
|
592 |
Convert a Sollya polynomial into a Sage polynomial.
|
593 |
We assume that the polynomial is in canonical form.
|
594 |
If no realField is given, a RealField corresponding to the maximum precision
|
595 |
of the coefficients is internally computed.
|
596 |
It is not returned but can be easily retrieved from the polynomial itself.
|
597 |
Main steps:
|
598 |
- (optional) compute the RealField of the coefficients;
|
599 |
- convert the Sollya expression into a Sage expression;
|
600 |
- convert the Sage expression into a Sage polynomial
|
601 |
TODO: the canonical thing for the polynomial.
|
602 |
"""
|
603 |
if realFieldSa is None: |
604 |
expressionPrecSa = pobyso_get_max_prec_of_exp_so_sa(polySo) |
605 |
realFieldSa = RealField(expressionPrecSa) |
606 |
#print "Sollya expression before...",
|
607 |
#pobyso_autoprint(polySo)
|
608 |
|
609 |
expressionSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, \ |
610 |
realFieldSa) |
611 |
#print "...Sollya expression after.",
|
612 |
#pobyso_autoprint(polySo)
|
613 |
polyVariableSa = expressionSa.variables()[0]
|
614 |
polyRingSa = realFieldSa[str(polyVariableSa)]
|
615 |
#print polyRingSa
|
616 |
# Do not use the polynomial(expressionSa, ring=polyRingSa) form!
|
617 |
polynomialSa = polyRingSa(expressionSa) |
618 |
return(polynomialSa)
|
619 |
# End pobyso_get_sage_poly_from_sollya_poly
|
620 |
|
621 |
def pobyso_get_subfunctions(expressionSo): |
622 |
""" Legacy function. See pobyso_get_subfunctions_so_sa. """
|
623 |
return(pobyso_get_subfunctions_so_sa(expressionSo))
|
624 |
|
625 |
def pobyso_get_subfunctions_so_sa(expressionSo): |
626 |
"""
|
627 |
Get the subfunctions of an expression.
|
628 |
Return the number of subfunctions and the list of subfunctions addresses.
|
629 |
S.T.: Could not figure out another way than that ugly list of declarations
|
630 |
to recover the addresses of the subfunctions.
|
631 |
We limit ourselves to arity 8 functions.
|
632 |
"""
|
633 |
subf0 = c_int(0)
|
634 |
subf1 = c_int(0)
|
635 |
subf2 = c_int(0)
|
636 |
subf3 = c_int(0)
|
637 |
subf4 = c_int(0)
|
638 |
subf5 = c_int(0)
|
639 |
subf6 = c_int(0)
|
640 |
subf7 = c_int(0)
|
641 |
subf8 = c_int(0)
|
642 |
arity = c_int(0)
|
643 |
nullPtr = POINTER(c_int)() |
644 |
sollya_lib_get_subfunctions(expressionSo, byref(arity), \ |
645 |
byref(subf0), byref(subf1), byref(subf2), byref(subf3), \ |
646 |
byref(subf4), byref(subf5),\ |
647 |
byref(subf6), byref(subf7), byref(subf8), nullPtr, None)
|
648 |
# byref(cast(subfunctions[0], POINTER(c_int))), \
|
649 |
# byref(cast(subfunctions[0], POINTER(c_int))), \
|
650 |
# byref(cast(subfunctions[2], POINTER(c_int))), \
|
651 |
# byref(cast(subfunctions[3], POINTER(c_int))), \
|
652 |
# byref(cast(subfunctions[4], POINTER(c_int))), \
|
653 |
# byref(cast(subfunctions[5], POINTER(c_int))), \
|
654 |
# byref(cast(subfunctions[6], POINTER(c_int))), \
|
655 |
# byref(cast(subfunctions[7], POINTER(c_int))), \
|
656 |
# byref(cast(subfunctions[8], POINTER(c_int))), nullPtr)
|
657 |
subfunctions = [subf0, subf1, subf2, subf3, subf4, subf5, subf6, subf7, \ |
658 |
subf8] |
659 |
subs = [] |
660 |
if arity.value > pobyso_max_arity:
|
661 |
return(0,[]) |
662 |
for i in xrange(arity.value): |
663 |
subs.append(int(subfunctions[i].value))
|
664 |
#print subs[i]
|
665 |
return(int(arity.value), subs) |
666 |
|
667 |
def pobyso_get_prec(): |
668 |
""" Legacy function. See pobyso_get_prec_so_sa(). """
|
669 |
return(pobyso_get_prec_so_sa())
|
670 |
|
671 |
def pobyso_get_prec_so(): |
672 |
"""
|
673 |
Get the current default precision in Sollya.
|
674 |
The return value is a Sollya object.
|
675 |
Usefull when modifying the precision back and forth by avoiding
|
676 |
extra conversions.
|
677 |
"""
|
678 |
return(sollya_lib_get_prec(None)) |
679 |
|
680 |
def pobyso_get_prec_so_sa(): |
681 |
"""
|
682 |
Get the current default precision in Sollya.
|
683 |
The return value is Sage/Python int.
|
684 |
"""
|
685 |
precSo = sollya_lib_get_prec(None)
|
686 |
precSa = c_int(0)
|
687 |
sollya_lib_get_constant_as_int(byref(precSa), precSo) |
688 |
sollya_lib_clear_obj(precSo) |
689 |
return(int(precSa.value)) |
690 |
# End pobyso_get_prec_so_sa.
|
691 |
|
692 |
def pobyso_get_prec_of_constant(ctExpSo): |
693 |
""" Legacy function. See pobyso_get_prec_of_constant_so_sa. """
|
694 |
return(pobyso_get_prec_of_constant_so_sa(ctExpSo))
|
695 |
|
696 |
def pobyso_get_prec_of_constant_so_sa(ctExpSo): |
697 |
prec = c_int(0)
|
698 |
retc = sollya_lib_get_prec_of_constant(byref(prec), ctExpSo, None)
|
699 |
if retc == 0: |
700 |
return(None) |
701 |
return(int(prec.value)) |
702 |
|
703 |
def pobyso_get_prec_of_range_so_sa(rangeSo): |
704 |
prec = c_int(0)
|
705 |
retc = sollya_lib_get_prec_of_range(byref(prec), rangeSo, None)
|
706 |
if retc == 0: |
707 |
return(None) |
708 |
return(int(prec.value)) |
709 |
|
710 |
def pobyso_infnorm_so_so(func, interval, file = None, intervalList = None): |
711 |
print "Do not use this function. User pobyso_supnorm_so_so instead." |
712 |
return(None) |
713 |
|
714 |
def pobyso_interval_to_range_sa_so(intervalSa, precisionSa=None): |
715 |
if precisionSa is None: |
716 |
precisionSa = intervalSa.parent().precision() |
717 |
intervalSo = pobyso_bounds_to_range_sa_so(intervalSa.lower(),\ |
718 |
intervalSa.upper(),\ |
719 |
precisionSa) |
720 |
return(intervalSo)
|
721 |
# End pobyso_interval_to_range_sa_so
|
722 |
|
723 |
def pobyso_lib_init(): |
724 |
sollya_lib_init(None)
|
725 |
|
726 |
def pobyso_name_free_variable(freeVariableNameSa): |
727 |
""" Legacy function. See pobyso_name_free_variable_sa_so. """
|
728 |
pobyso_name_free_variable_sa_so(freeVariableNameSa) |
729 |
|
730 |
def pobyso_name_free_variable_sa_so(freeVariableNameSa): |
731 |
"""
|
732 |
Set the free variable name in Sollya from a Sage string.
|
733 |
"""
|
734 |
sollya_lib_name_free_variable(freeVariableNameSa) |
735 |
|
736 |
def pobyso_parse_string(string): |
737 |
""" Legacy function. See pobyso_parse_string_sa_so. """
|
738 |
return(pobyso_parse_string_sa_so(string))
|
739 |
|
740 |
def pobyso_parse_string_sa_so(string): |
741 |
"""
|
742 |
Get the Sollya expression computed from a Sage string.
|
743 |
"""
|
744 |
return(sollya_lib_parse_string(string))
|
745 |
|
746 |
def pobyso_range(rnLowerBound, rnUpperBound): |
747 |
""" Legacy function. See pobyso_range_sa_so. """
|
748 |
return(pobyso_range_sa_so(rnLowerBound, rnUpperBound))
|
749 |
|
750 |
|
751 |
def pobyso_range_to_interval_so_sa(rangeSo, realIntervalFieldSa = None): |
752 |
"""
|
753 |
Get a Sage interval from a Sollya range.
|
754 |
If no realIntervalField is given as a parameter, the Sage interval
|
755 |
precision is that of the Sollya range.
|
756 |
Otherwise, the precision is that of the realIntervalField. In this case
|
757 |
rounding may happen.
|
758 |
"""
|
759 |
if realIntervalFieldSa is None: |
760 |
precSa = pobyso_get_prec_of_range_so_sa(rangeSo) |
761 |
realIntervalFieldSa = RealIntervalField(precSa) |
762 |
intervalSa = \ |
763 |
pobyso_get_interval_from_range_so_sa(rangeSo, realIntervalFieldSa) |
764 |
return(intervalSa)
|
765 |
|
766 |
def pobyso_remez_canonical_sa_sa(func, \ |
767 |
degree, \ |
768 |
lowerBound, \ |
769 |
upperBound, \ |
770 |
weight = None, \
|
771 |
quality = None):
|
772 |
"""
|
773 |
All arguments are Sage/Python.
|
774 |
The functions (func and weight) must be passed as expressions or strings.
|
775 |
Otherwise the function fails.
|
776 |
The return value is a Sage polynomial.
|
777 |
"""
|
778 |
var('zorglub') # Dummy variable name for type check only. Type of |
779 |
# zorglub is "symbolic expression".
|
780 |
polySo = pobyso_remez_canonical_sa_so(func, \ |
781 |
degree, \ |
782 |
lowerBound, \ |
783 |
upperBound, \ |
784 |
weight, \ |
785 |
quality) |
786 |
# String test
|
787 |
if parent(func) == parent("string"): |
788 |
functionSa = eval(func)
|
789 |
# Expression test.
|
790 |
elif type(func) == type(zorglub): |
791 |
functionSa = func |
792 |
else:
|
793 |
return None |
794 |
#
|
795 |
maxPrecision = 0
|
796 |
if polySo is None: |
797 |
return(None) |
798 |
maxPrecision = pobyso_get_max_prec_of_exp_so_sa(polySo) |
799 |
RRRRSa = RealField(maxPrecision) |
800 |
polynomialRingSa = RRRRSa[functionSa.variables()[0]]
|
801 |
expSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, RRRRSa) |
802 |
polySa = polynomial(expSa, polynomialRingSa) |
803 |
sollya_lib_clear_obj(polySo) |
804 |
return(polySa)
|
805 |
# End pobyso_remez_canonical_sa_sa
|
806 |
|
807 |
def pobyso_remez_canonical(func, \ |
808 |
degree, \ |
809 |
lowerBound, \ |
810 |
upperBound, \ |
811 |
weight = "1", \
|
812 |
quality = None):
|
813 |
""" Legacy function. See pobyso_remez_canonical_sa_so. """
|
814 |
return(pobyso_remez_canonical_sa_so(func, \
|
815 |
degree, \ |
816 |
lowerBound, \ |
817 |
upperBound, \ |
818 |
weight, \ |
819 |
quality)) |
820 |
def pobyso_remez_canonical_sa_so(func, \ |
821 |
degree, \ |
822 |
lowerBound, \ |
823 |
upperBound, \ |
824 |
weight = None, \
|
825 |
quality = None):
|
826 |
"""
|
827 |
All arguments are Sage/Python.
|
828 |
The functions (func and weight) must be passed as expressions or strings.
|
829 |
Otherwise the function fails.
|
830 |
The return value is a pointer to a Sollya function.
|
831 |
"""
|
832 |
var('zorglub') # Dummy variable name for type check only. Type of |
833 |
# zorglub is "symbolic expression".
|
834 |
currentVariableNameSa = None
|
835 |
# The func argument can be of different types (string,
|
836 |
# symbolic expression...)
|
837 |
if parent(func) == parent("string"): |
838 |
localFuncSa = eval(func)
|
839 |
if len(localFuncSa.variables()) > 0: |
840 |
currentVariableNameSa = localFuncSa.variables()[0]
|
841 |
sollya_lib_name_free_variable(str(currentVariableNameSa))
|
842 |
functionSo = sollya_lib_parse_string(localFuncSa._assume_str()) |
843 |
# Expression test.
|
844 |
elif type(func) == type(zorglub): |
845 |
# Until we are able to translate Sage expressions into Sollya
|
846 |
# expressions : parse the string version.
|
847 |
if len(func.variables()) > 0: |
848 |
currentVariableNameSa = func.variables()[0]
|
849 |
sollya_lib_name_free_variable(str(currentVariableNameSa))
|
850 |
functionSo = sollya_lib_parse_string(func._assume_str()) |
851 |
else:
|
852 |
return(None) |
853 |
if weight is None: # No weight given -> 1. |
854 |
weightSo = pobyso_constant_1_sa_so() |
855 |
elif parent(weight) == parent("string"): # Weight given as string: parse it. |
856 |
weightSo = sollya_lib_parse_string(func) |
857 |
elif type(weight) == type(zorglub): # Weight given as symbolice expression. |
858 |
functionSo = sollya_lib_parse_string_sa_so(weight._assume_str()) |
859 |
else:
|
860 |
return(None) |
861 |
degreeSo = pobyso_constant_from_int(degree) |
862 |
rangeSo = pobyso_bounds_to_range_sa_so(lowerBound, upperBound) |
863 |
if not quality is None: |
864 |
qualitySo= pobyso_constant_sa_so(quality) |
865 |
else:
|
866 |
qualitySo = None
|
867 |
|
868 |
remezPolySo = sollya_lib_remez(functionSo, \ |
869 |
degreeSo, \ |
870 |
rangeSo, \ |
871 |
weightSo, \ |
872 |
qualitySo, \ |
873 |
None)
|
874 |
sollya_lib_clear_obj(functionSo) |
875 |
sollya_lib_clear_obj(degreeSo) |
876 |
sollya_lib_clear_obj(rangeSo) |
877 |
sollya_lib_clear_obj(weightSo) |
878 |
if not qualitySo is None: |
879 |
sollya_lib_clear_obj(qualitySo) |
880 |
return(remezPolySo)
|
881 |
# End pobyso_remez_canonical_sa_so
|
882 |
|
883 |
def pobyso_remez_canonical_so_so(funcSo, \ |
884 |
degreeSo, \ |
885 |
rangeSo, \ |
886 |
weightSo = pobyso_constant_1_sa_so(),\ |
887 |
qualitySo = None):
|
888 |
"""
|
889 |
All arguments are pointers to Sollya objects.
|
890 |
The return value is a pointer to a Sollya function.
|
891 |
"""
|
892 |
if not sollya_lib_obj_is_function(funcSo): |
893 |
return(None) |
894 |
return(sollya_lib_remez(funcSo, degreeSo, rangeSo, weightSo, qualitySo, None)) |
895 |
|
896 |
def pobyso_set_canonical_off(): |
897 |
sollya_lib_set_canonical(sollya_lib_off()) |
898 |
|
899 |
def pobyso_set_canonical_on(): |
900 |
sollya_lib_set_canonical(sollya_lib_on()) |
901 |
|
902 |
def pobyso_set_prec(p): |
903 |
""" Legacy function. See pobyso_set_prec_sa_so. """
|
904 |
pobyso_set_prec_sa_so(p) |
905 |
|
906 |
def pobyso_set_prec_sa_so(p): |
907 |
a = c_int(p) |
908 |
precSo = c_void_p(sollya_lib_constant_from_int(a)) |
909 |
sollya_lib_set_prec(precSo, None)
|
910 |
|
911 |
def pobyso_set_prec_so_so(newPrecSo): |
912 |
sollya_lib_set_prec(newPrecSo, None)
|
913 |
|
914 |
def pobyso_supnorm_so_so(polySo, funcSo, intervalSo, errorTypeSo = None,\ |
915 |
accuracySo = None):
|
916 |
"""
|
917 |
Computes the supnorm of the approximation error between the given
|
918 |
polynomial and function.
|
919 |
errorTypeSo defaults to "absolute".
|
920 |
accuracySo defaults to 2^(-40).
|
921 |
"""
|
922 |
if errorTypeSo is None: |
923 |
errorTypeSo = sollya_lib_absolute(None)
|
924 |
errorTypeIsNone = True
|
925 |
else:
|
926 |
errorTypeIsNone = False
|
927 |
#
|
928 |
if accuracySo is None: |
929 |
# Notice the **!
|
930 |
accuracySo = pobyso_constant_sa_so(RR(2**(-40))) |
931 |
accuracyIsNone = True
|
932 |
else:
|
933 |
accuracyIsNone = False
|
934 |
pobyso_autoprint(accuracySo) |
935 |
resultSo = \ |
936 |
sollya_lib_supnorm(polySo, funcSo, intervalSo, errorTypeSo, \ |
937 |
accuracySo) |
938 |
if errorTypeIsNone:
|
939 |
sollya_lib_clear_obj(errorTypeSo) |
940 |
if accuracyIsNone:
|
941 |
sollya_lib_clear_obj(accuracySo) |
942 |
return resultSo
|
943 |
# End pobyso_supnorm_so_so
|
944 |
|
945 |
def pobyso_taylor_expansion_with_change_var_so_so(functionSo, degreeSo, \ |
946 |
rangeSo, \ |
947 |
errorTypeSo=None, \
|
948 |
sollyaPrecSo=None):
|
949 |
"""
|
950 |
Compute the Taylor expansion with the variable change
|
951 |
x -> (x-intervalCenter) included.
|
952 |
"""
|
953 |
# No global change of the working precision.
|
954 |
if not sollyaPrecSo is None: |
955 |
initialPrecSo = sollya_lib_get_prec(None)
|
956 |
sollya_lib_set_prec(sollyaPrecSo) |
957 |
#
|
958 |
# Error type stuff: default to absolute.
|
959 |
if errorTypeSo is None: |
960 |
errorTypeIsNone = True
|
961 |
errorTypeSo = sollya_lib_absolute(None)
|
962 |
else:
|
963 |
errorTypeIsNone = False
|
964 |
intervalCenterSo = sollya_lib_mid(rangeSo) |
965 |
taylorFormSo = sollya_lib_taylorform(functionSo, degreeSo, \ |
966 |
intervalCenterSo, \ |
967 |
rangeSo, errorTypeSo, None)
|
968 |
(taylorFormListSo, numElements, isEndElliptic) = \ |
969 |
pobyso_get_list_elements_so_so(taylorFormSo) |
970 |
polySo = taylorFormListSo[0]
|
971 |
errorRangeSo = taylorFormListSo[2]
|
972 |
maxErrorSo = sollya_lib_sup(errorRangeSo) |
973 |
changeVarExpSo = sollya_lib_build_function_sub(\ |
974 |
sollya_lib_build_function_free_variable(),\ |
975 |
sollya_lib_copy_obj(intervalCenterSo)) |
976 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpSo) |
977 |
# If changed, reset the Sollya working precision.
|
978 |
if not sollyaPrecSo is None: |
979 |
sollya_lib_set_prec(initialPrecSo) |
980 |
sollya_lib_clear_obj(initialPrecSo) |
981 |
if errorTypeIsNone:
|
982 |
sollya_lib_clear_obj(errorTypeSo) |
983 |
sollya_lib_clear_obj(taylorFormSo) |
984 |
# Do not clear maxErrorSo.
|
985 |
return((polyVarChangedSo, intervalCenterSo, maxErrorSo))
|
986 |
# end pobyso_taylor_expansion_with_change_var_so_so
|
987 |
|
988 |
def pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, rangeSo, \ |
989 |
errorTypeSo=None, \
|
990 |
sollyaPrecSo=None):
|
991 |
"""
|
992 |
Compute the Taylor expansion without the variable change
|
993 |
x -> x-intervalCenter.
|
994 |
"""
|
995 |
# No global change of the working precision.
|
996 |
if not sollyaPrecSo is None: |
997 |
initialPrecSo = sollya_lib_get_prec(None)
|
998 |
sollya_lib_set_prec(sollyaPrecSo) |
999 |
# Error type stuff: default to absolute.
|
1000 |
if errorTypeSo is None: |
1001 |
errorTypeIsNone = True
|
1002 |
errorTypeSo = sollya_lib_absolute(None)
|
1003 |
else:
|
1004 |
errorTypeIsNone = False
|
1005 |
intervalCenterSo = sollya_lib_mid(rangeSo) |
1006 |
taylorFormSo = sollya_lib_taylorform(functionSo, degreeSo, \ |
1007 |
intervalCenterSo, \ |
1008 |
rangeSo, errorTypeSo, None)
|
1009 |
(taylorFormListSo, numElementsSo, isEndEllipticSo) = \ |
1010 |
pobyso_get_list_elements_so_so(taylorFormSo) |
1011 |
polySo = sollya_lib_copy_obj(taylorFormListSo[0])
|
1012 |
errorRangeSo = taylorFormListSo[2]
|
1013 |
maxErrorSo = sollya_lib_sup(errorRangeSo) |
1014 |
# If changed, reset the Sollya working precision.
|
1015 |
if not sollyaPrecSo is None: |
1016 |
sollya_lib_set_prec(initialPrecSo) |
1017 |
sollya_lib_clear_obj(initialPrecSo) |
1018 |
if errorTypeIsNone:
|
1019 |
sollya_lib_clear_obj(errorTypeSo) |
1020 |
sollya_lib_clear_obj(taylorFormSo) |
1021 |
# Do not clear maxErrorSo.
|
1022 |
return((polySo, intervalCenterSo, maxErrorSo))
|
1023 |
# end pobyso_taylor_expansion_no_change_var_so_so
|
1024 |
|
1025 |
def pobyso_taylor(function, degree, point): |
1026 |
""" Legacy function. See pobysoTaylor_so_so. """
|
1027 |
return(pobyso_taylor_so_so(function, degree, point))
|
1028 |
|
1029 |
def pobyso_taylor_so_so(functionSo, degreeSo, pointSo): |
1030 |
return(sollya_lib_taylor(functionSo, degreeSo, pointSo))
|
1031 |
|
1032 |
def pobyso_taylorform(function, degree, point = None, |
1033 |
interval = None, errorType=None): |
1034 |
""" Legacy function. See pobyso_taylorform_sa_sa;"""
|
1035 |
|
1036 |
def pobyso_taylorform_sa_sa(functionSa, \ |
1037 |
degreeSa, \ |
1038 |
pointSa, \ |
1039 |
intervalSa=None, \
|
1040 |
errorTypeSa=None, \
|
1041 |
precisionSa=None):
|
1042 |
"""
|
1043 |
Compute the Taylor form of 'degreeSa' for 'functionSa' at 'pointSa'
|
1044 |
for 'intervalSa' with 'errorTypeSa' (a string) using 'precisionSa'.
|
1045 |
point: must be a Real or a Real interval.
|
1046 |
return the Taylor form as an array
|
1047 |
TODO: take care of the interval and of the point when it is an interval;
|
1048 |
when errorType is not None;
|
1049 |
take care of the other elements of the Taylor form (coefficients
|
1050 |
errors and delta.
|
1051 |
"""
|
1052 |
# Absolute as the default error.
|
1053 |
if errorTypeSa is None: |
1054 |
errorTypeSo = sollya_lib_absolute() |
1055 |
elif errorTypeSa == "relative": |
1056 |
errorTypeSo = sollya_lib_relative() |
1057 |
elif errortypeSa == "absolute": |
1058 |
errorTypeSo = sollya_lib_absolute() |
1059 |
else:
|
1060 |
# No clean up needed.
|
1061 |
return None |
1062 |
# Global precision stuff
|
1063 |
precisionChangedSa = False
|
1064 |
currentSollyaPrecSo = pobyso_get_prec_so() |
1065 |
currentSollyaPrecSa = pobyso_constant_from_int_so_sa(currentSollyaPrecSo) |
1066 |
if not precisionSa is None: |
1067 |
if precisionSa > currentSollyaPrecSa:
|
1068 |
pobyso_set_prec_sa_so(precisionSa) |
1069 |
precisionChangedSa = True
|
1070 |
|
1071 |
if len(functionSa.variables()) > 0: |
1072 |
varSa = functionSa.variables()[0]
|
1073 |
pobyso_name_free_variable_sa_so(str(varSa))
|
1074 |
# In any case (point or interval) the parent of pointSa has a precision
|
1075 |
# method.
|
1076 |
pointPrecSa = pointSa.parent().precision() |
1077 |
if precisionSa > pointPrecSa:
|
1078 |
pointPrecSa = precisionSa |
1079 |
# In any case (point or interval) pointSa has a base_ring() method.
|
1080 |
pointBaseRingString = str(pointSa.base_ring())
|
1081 |
if re.search('Interval', pointBaseRingString) is None: # Point |
1082 |
pointSo = pobyso_constant_sa_so(pointSa, pointPrecSa) |
1083 |
else: # Interval. |
1084 |
pointSo = pobyso_interval_to_range_sa_so(pointSa, pointPrecSa) |
1085 |
# Sollyafy the function.
|
1086 |
functionSo = pobyso_parse_string_sa_so(functionSa._assume_str()) |
1087 |
if sollya_lib_obj_is_error(functionSo):
|
1088 |
print "pobyso_tailorform: function string can't be parsed!" |
1089 |
return None |
1090 |
# Sollyafy the degree
|
1091 |
degreeSo = sollya_lib_constant_from_int(int(degreeSa))
|
1092 |
# Sollyafy the point
|
1093 |
# Call Sollya
|
1094 |
taylorFormSo = \ |
1095 |
sollya_lib_taylorform(functionSo, degreeSo, pointSo, errorTypeSo,\ |
1096 |
None)
|
1097 |
sollya_lib_clear_obj(functionSo) |
1098 |
sollya_lib_clear_obj(degreeSo) |
1099 |
sollya_lib_clear_obj(pointSo) |
1100 |
sollya_lib_clear_obj(errorTypeSo) |
1101 |
(tfsAsList, numElements, isEndElliptic) = \ |
1102 |
pobyso_get_list_elements_so_so(taylorFormSo) |
1103 |
polySo = tfsAsList[0]
|
1104 |
maxPrecision = pobyso_get_max_prec_of_exp_so_sa(polySo) |
1105 |
polyRealField = RealField(maxPrecision) |
1106 |
expSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, polyRealField) |
1107 |
if precisionChangedSa:
|
1108 |
sollya_lib_set_prec(currentSollyaPrecSo) |
1109 |
sollya_lib_clear_obj(currentSollyaPrecSo) |
1110 |
polynomialRing = polyRealField[str(varSa)]
|
1111 |
polySa = polynomial(expSa, polynomialRing) |
1112 |
taylorFormSa = [polySa] |
1113 |
# Final clean-up.
|
1114 |
sollya_lib_clear_obj(taylorFormSo) |
1115 |
return(taylorFormSa)
|
1116 |
# End pobyso_taylor_form_sa_sa
|
1117 |
|
1118 |
def pobyso_taylorform_so_so(functionSo, degreeSo, pointSo, intervalSo=None, \ |
1119 |
errorTypeSo=None):
|
1120 |
createdErrorType = False
|
1121 |
if errorTypeSo is None: |
1122 |
errorTypeSo = sollya_lib_absolute() |
1123 |
createdErrorType = True
|
1124 |
else:
|
1125 |
#TODO: deal with the other case.
|
1126 |
pass
|
1127 |
if intervalSo is None: |
1128 |
resultSo = sollya_lib_taylorform(functionSo, degreeSo, pointSo, \ |
1129 |
errorTypeSo, None)
|
1130 |
else:
|
1131 |
resultSo = sollya_lib_taylorform(functionSo, degreeSo, pointSo, \ |
1132 |
intervalSo, errorTypeSo, None)
|
1133 |
if createdErrorType:
|
1134 |
sollya_lib_clear_obj(errorTypeSo) |
1135 |
return(resultSo)
|
1136 |
|
1137 |
|
1138 |
def pobyso_univar_polynomial_print_reverse(polySa): |
1139 |
""" Legacy function. See pobyso_univar_polynomial_print_reverse_sa_sa. """
|
1140 |
return(pobyso_univar_polynomial_print_reverse_sa_sa(polySa))
|
1141 |
|
1142 |
def pobyso_univar_polynomial_print_reverse_sa_sa(polySa): |
1143 |
"""
|
1144 |
Return the string representation of a univariate polynomial with
|
1145 |
monomials ordered in the x^0..x^n order of the monomials.
|
1146 |
Remember: Sage
|
1147 |
"""
|
1148 |
polynomialRing = polySa.base_ring() |
1149 |
# A very expensive solution:
|
1150 |
# -create a fake multivariate polynomial field with only one variable,
|
1151 |
# specifying a negative lexicographical order;
|
1152 |
mpolynomialRing = PolynomialRing(polynomialRing.base(), \ |
1153 |
polynomialRing.variable_name(), \ |
1154 |
1, order='neglex') |
1155 |
# - convert the univariate argument polynomial into a multivariate
|
1156 |
# version;
|
1157 |
p = mpolynomialRing(polySa) |
1158 |
# - return the string representation of the converted form.
|
1159 |
# There is no simple str() method defined for p's class.
|
1160 |
return(p.__str__())
|
1161 |
#
|
1162 |
print pobyso_get_prec()
|
1163 |
pobyso_set_prec(165)
|
1164 |
print pobyso_get_prec()
|
1165 |
a=100
|
1166 |
print type(a) |
1167 |
id(a)
|
1168 |
print "Max arity: ", pobyso_max_arity |
1169 |
print "Function tripleDouble (43) as a string: ", pobyso_function_type_as_string(43) |
1170 |
print "Function None (44) as a string: ", pobyso_function_type_as_string(44) |
1171 |
print "...Pobyso check done" |