root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 90
Historique | Voir | Annoter | Télécharger (19,33 ko)
1 |
""" |
---|---|
2 |
module: sageSLZ.sage |
3 |
|
4 |
Sage core function needed for the implementation of SLZ. |
5 |
|
6 |
Created on 2013-08 |
7 |
|
8 |
moduleauthor:: S.T. |
9 |
""" |
10 |
print "sageSLZ loading..." |
11 |
def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
12 |
upperBoundSa, approxPrecSa, |
13 |
sollyaPrecSa=None): |
14 |
""" |
15 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
16 |
a polynomial that approximates the function on a an interval starting |
17 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
18 |
approximates with the expected precision. |
19 |
The interval upper bound is lowered until the expected approximation |
20 |
precision is reached. |
21 |
The polynomial, the bounds, the center of the interval and the error |
22 |
are returned. |
23 |
""" |
24 |
RRR = lowerBoundSa.parent() |
25 |
intervalShrinkConstFactorSa = RRR('0.5') |
26 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
27 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
28 |
currentUpperBoundSa = upperBoundSa |
29 |
currentLowerBoundSa = lowerBoundSa |
30 |
# What we want here is the polynomial without the variable change, |
31 |
# since our actual variable will be x-intervalCenter defined over the |
32 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
33 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
34 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
35 |
currentRangeSo, |
36 |
absoluteErrorTypeSo) |
37 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
38 |
while maxErrorSa > approxPrecSa: |
39 |
sollya_lib_clear_obj(maxErrorSo) |
40 |
sollya_lib_clear_obj(polySo) |
41 |
sollya_lib_clear_obj(intervalCenterSo) |
42 |
shrinkFactorSa = RRR('5.0')/(maxErrorSa/approxPrecSa).log2().abs() |
43 |
#shrinkFactorSa = 1.5/(maxErrorSa/approxPrecSa) |
44 |
#errorRatioSa = approxPrecSa/maxErrorSa |
45 |
#print "Error ratio: ", errorRatioSa |
46 |
|
47 |
if shrinkFactorSa > intervalShrinkConstFactorSa: |
48 |
actualShrinkFactorSa = intervalShrinkConstFactorSa |
49 |
#print "Fixed" |
50 |
else: |
51 |
actualShrinkFactorSa = shrinkFactorSa |
52 |
#print "Computed",shrinkFactorSa,maxErrorSa |
53 |
#print shrinkFactorSa, maxErrorSa |
54 |
currentUpperBoundSa = currentLowerBoundSa + \ |
55 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
56 |
actualShrinkFactorSa |
57 |
#print "Current upper bound:", currentUpperBoundSa |
58 |
sollya_lib_clear_obj(currentRangeSo) |
59 |
sollya_lib_clear_obj(polySo) |
60 |
if currentUpperBoundSa <= currentLowerBoundSa: |
61 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
62 |
print "Can't find an interval." |
63 |
print "Use either or both a higher polynomial degree or a higher", |
64 |
print "internal precision." |
65 |
print "Aborting!" |
66 |
return (None, None, None, None) |
67 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
68 |
currentUpperBoundSa) |
69 |
# print "New interval:", |
70 |
# pobyso_autoprint(currentRangeSo) |
71 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
72 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
73 |
currentRangeSo, |
74 |
absoluteErrorTypeSo) |
75 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
76 |
#print "Max errorSo:", |
77 |
#pobyso_autoprint(maxErrorSo) |
78 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
79 |
#print "Max errorSa:", maxErrorSa |
80 |
#print "Sollya prec:", |
81 |
#pobyso_autoprint(sollya_lib_get_prec(None)) |
82 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
83 |
return((polySo, currentRangeSo, intervalCenterSo, maxErrorSo)) |
84 |
# End slz_compute_polynomial_and_interval |
85 |
|
86 |
def slz_compute_scaled_function(functionSa, \ |
87 |
lowerBoundSa, \ |
88 |
upperBoundSa, \ |
89 |
floatingPointPrecSa): |
90 |
""" |
91 |
From a function, compute the scaled function whose domain |
92 |
is included in [1, 2) and whose image is also included in [1,2). |
93 |
Return a tuple: |
94 |
[0]: the scaled function |
95 |
[1]: the scaled domain lower bound |
96 |
[2]: the scaled domain upper bound |
97 |
[3]: the scaled image lower bound |
98 |
[4]: the scaled image upper bound |
99 |
""" |
100 |
x = functionSa.variables()[0] |
101 |
# Reassert f as a function (an not a mere expression). |
102 |
|
103 |
# Scalling the domain -> [1,2[. |
104 |
boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
105 |
domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
106 |
(domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
107 |
slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
108 |
print "domainScalingExpression for argument :", domainScalingExpressionSa |
109 |
print "f: ", f |
110 |
ff = f.subs({x : domainScalingExpressionSa}) |
111 |
#ff = f.subs_expr(x==domainScalingExpressionSa) |
112 |
domainScalingFunction(x) = invDomainScalingExpressionSa |
113 |
scaledLowerBoundSa = domainScalingFunction(lowerBoundSa).n() |
114 |
scaledUpperBoundSa = domainScalingFunction(upperBoundSa).n() |
115 |
print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
116 |
# |
117 |
# Scalling the image -> [1,2[. |
118 |
flbSa = f(lowerBoundSa).n() |
119 |
fubSa = f(upperBoundSa).n() |
120 |
if flbSa <= fubSa: # Increasing |
121 |
imageBinadeBottomSa = floor(flbSa.log2()) |
122 |
else: # Decreasing |
123 |
imageBinadeBottomSa = floor(fubSa.log2()) |
124 |
print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
125 |
imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
126 |
(imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
127 |
slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
128 |
iis = invImageScalingExpressionSa.function(x) |
129 |
fff = iis.subs({x:ff}) |
130 |
print "fff:", fff, |
131 |
print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
132 |
return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
133 |
fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
134 |
|
135 |
def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
136 |
# Create a polynomial over the rationals. |
137 |
polynomialRing = QQ[str(polyOfFloat.variables()[0])] |
138 |
return(polynomialRing(polyOfFloat)) |
139 |
# End slz_float_poly_of_float_to_rat_poly_of_rat. |
140 |
|
141 |
def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
142 |
lowerBoundSa, |
143 |
upperBoundSa, floatingPointPrecSa, |
144 |
internalSollyaPrecSa, approxPrecSa): |
145 |
""" |
146 |
Under the assumption that: |
147 |
- functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
148 |
- lowerBound and upperBound belong to the same binade. |
149 |
from a: |
150 |
- function; |
151 |
- a degree |
152 |
- a pair of bounds; |
153 |
- the floating-point precision we work on; |
154 |
- the internal Sollya precision; |
155 |
- the requested approximation error |
156 |
The initial interval is, possibly, splitted into smaller intervals. |
157 |
It return a list of tuples, each made of: |
158 |
- a first polynomial (without the changed variable f(x) = p(x-x0)); |
159 |
- a second polynomial (with a changed variable f(x) = q(x)) |
160 |
- the approximation interval; |
161 |
- the center, x0, of the interval; |
162 |
- the corresponding approximation error. |
163 |
""" |
164 |
currentSollyaPrecSo = pobyso_get_prec_so() |
165 |
currentSollyaPrecSa = pobyso_constant_from_int_so_sa(currentSollyaPrecSo) |
166 |
if internalSollyaPrecSa > currentSollyaPrecSa: |
167 |
pobyso_set_prec_sa_so(internalSollyaPrecSa) |
168 |
x = functionSa.variables()[0] # Actual variable name can be anything. |
169 |
(fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
170 |
scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
171 |
slz_compute_scaled_function(functionSa, \ |
172 |
lowerBoundSa, \ |
173 |
upperBoundSa, \ |
174 |
floatingPointPrecSa) |
175 |
# |
176 |
resultArray = [] |
177 |
# |
178 |
print "Approximation precision: ", RR(approxPrecSa) |
179 |
# Prepare the arguments for the Taylor expansion computation with Sollya. |
180 |
functionSo = pobyso_parse_string_sa_so(fff._assume_str()) |
181 |
degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
182 |
scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
183 |
scaledUpperBoundSa) |
184 |
# Compute the first Taylor expansion. |
185 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
186 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
187 |
scaledLowerBoundSa, scaledUpperBoundSa, |
188 |
approxPrecSa, internalSollyaPrecSa) |
189 |
if polySo is None: |
190 |
print "Aborting" |
191 |
return None |
192 |
# Change variable stuff |
193 |
changeVarExpressionSo = sollya_lib_build_function_sub( |
194 |
sollya_lib_build_function_free_variable(), |
195 |
sollya_lib_copy_obj(intervalCenterSo)) |
196 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
197 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, intervalCenterSo,\ |
198 |
maxErrorSo)) |
199 |
realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
200 |
upperBoundSa.parent().precision())) |
201 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
202 |
# Compute the next upper bound. |
203 |
# If the error of approximation is more than half of the target, |
204 |
# use the same interval. |
205 |
# If it is less, increase it a bit. |
206 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
207 |
currentErrorRatio = approxPrecSa / errorSa |
208 |
currentScaledUpperBoundSa = boundsSa.endpoints()[1] |
209 |
if currentErrorRatio < 2 : |
210 |
currentScaledUpperBoundSa += \ |
211 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) |
212 |
else: |
213 |
currentScaledUpperBoundSa += \ |
214 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) \ |
215 |
* currentErrorRatio.log2() * 2 |
216 |
if currentScaledUpperBoundSa > scaledUpperBoundSa: |
217 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
218 |
# Compute the other expansions. |
219 |
while boundsSa.endpoints()[1] < scaledUpperBoundSa: |
220 |
currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
221 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
222 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
223 |
currentScaledLowerBoundSa, |
224 |
currentScaledUpperBoundSa, |
225 |
approxPrecSa, |
226 |
internalSollyaPrecSa) |
227 |
# Change variable stuff |
228 |
changeVarExpressionSo = sollya_lib_build_function_sub( |
229 |
sollya_lib_build_function_free_variable(), |
230 |
sollya_lib_copy_obj(intervalCenterSo)) |
231 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
232 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
233 |
intervalCenterSo, maxErrorSo)) |
234 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
235 |
# Compute the next upper bound. |
236 |
# If the error of approximation is more than half of the target, |
237 |
# use the same interval. |
238 |
# If it is less, increase it a bit. |
239 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
240 |
currentErrorRatio = approxPrecSa / errorSa |
241 |
if currentErrorRatio < RR('1.5') : |
242 |
currentScaledUpperBoundSa = \ |
243 |
boundsSa.endpoints()[1] + \ |
244 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) |
245 |
elif currentErrorRatio < 2: |
246 |
currentScaledUpperBoundSa = \ |
247 |
boundsSa.endpoints()[1] + \ |
248 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) \ |
249 |
* currentErrorRatio.log2() |
250 |
else: |
251 |
currentScaledUpperBoundSa = \ |
252 |
boundsSa.endpoints()[1] + \ |
253 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) \ |
254 |
* currentErrorRatio.log2() * 2 |
255 |
# Test for insufficient precision. |
256 |
if currentScaledUpperBoundSa == scaledLowerBoundSa: |
257 |
print "Can't shrink the interval anymore!" |
258 |
print "You should consider increasing the Sollya internal precision" |
259 |
print "or the polynomial degree." |
260 |
print "Giving up!" |
261 |
sollya_lib_clear_obj(functionSo) |
262 |
sollya_lib_clear_obj(degreeSo) |
263 |
sollya_lib_clear_obj(scaledBoundsSo) |
264 |
return None |
265 |
if currentScaledUpperBoundSa > scaledUpperBoundSa: |
266 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
267 |
sollya_lib_clear_obj(functionSo) |
268 |
sollya_lib_clear_obj(degreeSo) |
269 |
sollya_lib_clear_obj(scaledBoundsSo) |
270 |
if internalSollyaPrecSa > currentSollyaPrecSa: |
271 |
pobyso_set_prec_so_so(currentSollyaPrecSo) |
272 |
return(resultArray) |
273 |
# End slz_get_intervals_and_polynomials |
274 |
|
275 |
|
276 |
def slz_interval_scaling_expression(boundsInterval, expVar): |
277 |
""" |
278 |
Compute the scaling expression to map an interval that span only |
279 |
a binade to [1, 2) and the inverse expression as well. |
280 |
Not very sure that the transformation makes sense for negative numbers. |
281 |
""" |
282 |
# The scaling offset is only used for negative numbers. |
283 |
if abs(boundsInterval.endpoints()[0]) < 1: |
284 |
if boundsInterval.endpoints()[0] >= 0: |
285 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
286 |
invScalingCoeff = 1/scalingCoeff |
287 |
return((scalingCoeff * expVar, |
288 |
invScalingCoeff * expVar)) |
289 |
else: |
290 |
scalingCoeff = \ |
291 |
2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
292 |
scalingOffset = -3 * scalingCoeff |
293 |
return((scalingCoeff * expVar + scalingOffset, |
294 |
1/scalingCoeff * expVar + 3)) |
295 |
else: |
296 |
if boundsInterval.endpoints()[0] >= 0: |
297 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
298 |
scalingOffset = 0 |
299 |
return((scalingCoeff * expVar, |
300 |
1/scalingCoeff * expVar)) |
301 |
else: |
302 |
scalingCoeff = \ |
303 |
2^(floor((-boundsInterval.endpoints()[1]).log2())) |
304 |
scalingOffset = -3 * scalingCoeff |
305 |
#scalingOffset = 0 |
306 |
return((scalingCoeff * expVar + scalingOffset, |
307 |
1/scalingCoeff * expVar + 3)) |
308 |
|
309 |
|
310 |
def slz_interval_and_polynomial_to_sage(polyRangeCenterErrorSo): |
311 |
""" |
312 |
Compute the Sage version of the Taylor polynomial and it's |
313 |
companion data (interval, center...) |
314 |
The input parameter is a five elements tuple: |
315 |
- [0]: the polyomial (without variable change), as polynomial over a |
316 |
real ring; |
317 |
- [1]: the polyomial (with variable change done in Sollya), as polynomial |
318 |
over a real ring; |
319 |
- [2]: the interval (as Sollya range); |
320 |
- [3]: the interval center; |
321 |
- [4]: the approximation error. |
322 |
|
323 |
The function return a 5 elements tuple: formed with all the |
324 |
input elements converted into their Sollya counterpart. |
325 |
""" |
326 |
polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
327 |
polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
328 |
intervalSa = \ |
329 |
pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
330 |
centerSa = \ |
331 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
332 |
errorSa = \ |
333 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
334 |
return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
335 |
# End slz_interval_and_polynomial_to_sage |
336 |
|
337 |
def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
338 |
precision, |
339 |
targetHardnessToRound, |
340 |
variable1, |
341 |
variable2): |
342 |
""" |
343 |
Creates a new multivariate polynomial with integer coefficients for use |
344 |
with the Coppersmith method. |
345 |
A the same time it computes : |
346 |
- 2^K (N); |
347 |
- 2^k (bound on the second variable) |
348 |
- lcm |
349 |
|
350 |
:param ratPolyOfInt: a polynomial with rational coefficients and integer |
351 |
variables. |
352 |
:param precision: the precision of the floating-point coefficients. |
353 |
:param targetHardnessToRound: the hardness to round we want to check. |
354 |
:param variable1: the first variable of the polynomial (an expression). |
355 |
:param variable2: the second variable of the polynomial (an expression). |
356 |
|
357 |
:returns: a 4 elements tuple: |
358 |
- the polynomial; |
359 |
- the module (N); |
360 |
- the lcm used to compute the integral coefficients and the |
361 |
module. |
362 |
""" |
363 |
# Create a new integer polynomial ring. |
364 |
IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
365 |
# Coefficients are issued in the increasing power order. |
366 |
ratPolyCoefficients = ratPolyOfInt.coefficients() |
367 |
# Build the list of number we compute the lcmm of. |
368 |
coefficientDenominators = sro_denominators(ratPolyCoefficients) |
369 |
coefficientDenominators.append(2^precision) |
370 |
coefficientDenominators.append(2^(targetHardnessToRound + 1)) |
371 |
leastCommonMultiple = lcm(coefficientDenominators) |
372 |
# Compute the expression corresponding to the new polynomial |
373 |
coefficientNumerators = sro_numerators(ratPolyCoefficients) |
374 |
print coefficientNumerators |
375 |
polynomialExpression = 0 |
376 |
power = 0 |
377 |
# Iterate over two lists at the same time, stop when the shorter is |
378 |
# exhausted. |
379 |
for numerator, denominator in \ |
380 |
zip(coefficientNumerators, coefficientDenominators): |
381 |
multiplicator = leastCommonMultiple / denominator |
382 |
newCoefficient = numerator * multiplicator |
383 |
polynomialExpression += newCoefficient * variable1^power |
384 |
power +=1 |
385 |
polynomialExpression += - variable2 |
386 |
return (IP(polynomialExpression), |
387 |
leastCommonMultiple / 2^precision, # 2^K or N. |
388 |
leastCommonMultiple / 2 ^(targetHardnessToRound + 1), # tBound |
389 |
leastCommonMultiple) |
390 |
|
391 |
# End slz_ratPoly_of_int_to_poly_for_coppersmith |
392 |
|
393 |
def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
394 |
precision): |
395 |
""" |
396 |
Makes a variable substitution into the input polynomial so that the output |
397 |
polynomial can take integer arguments. |
398 |
All variables of the input polynomial "have precision p". That is to say |
399 |
that they are rationals with denominator == 2^precision: x = y/2^precision |
400 |
We "incorporate" these denominators into the coefficients with, |
401 |
respectively, the "right" power. |
402 |
""" |
403 |
polynomialField = ratPolyOfRat.parent() |
404 |
polynomialVariable = rationalPolynomial.variables()[0] |
405 |
print "The polynomial field is:", polynomialField |
406 |
return \ |
407 |
polynomialField(rationalPolynomial.subs({polynomialVariable : \ |
408 |
polynomialVariable/2^(precision-1)})) |
409 |
|
410 |
# Return a tuple: |
411 |
# - the bivariate integer polynomial in (i,j); |
412 |
# - 2^K |
413 |
# End slz_rat_poly_of_rat_to_rat_poly_of_int |
414 |
|
415 |
print "\t...sageSLZ loaded" |