root / pobysoPythonSage / src / sageSLZ / sagePolynomialOperations.sage @ 87
Historique | Voir | Annoter | Télécharger (20,31 ko)
1 | 74 | storres | load "/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageMatrixOperations.sage" |
---|---|---|---|
2 | 87 | storres | print "sagePolynomialOperations loading..." |
3 | 83 | storres | def spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
4 | 83 | storres | pCoefficients, |
5 | 83 | storres | knownMonomials, |
6 | 83 | storres | protoMatrixRows, |
7 | 83 | storres | columnsWidth=0): |
8 | 80 | storres | """ |
9 | 80 | storres | For a given polynomial (under the form of monomials and coefficents lists), |
10 | 80 | storres | add the coefficients of the protoMatrix (a list of proto matrix rows). |
11 | 80 | storres | Coefficients are added to the protoMatrix row in the order imposed by the |
12 | 80 | storres | monomials discovery list (the knownMonomials list) built as construction |
13 | 80 | storres | goes on. |
14 | 83 | storres | As a bonus, data can be printed out for a visual check. |
15 | 80 | storres | pMonomials : the list of the monomials coming form some polynomial; |
16 | 80 | storres | pCoefficients : the list of the corresponding coefficients to add to |
17 | 80 | storres | the protoMatrix in the exact same order as the monomials; |
18 | 80 | storres | knownMonomials : the list of the already knonw monomials; |
19 | 80 | storres | protoMatrixRows: a list of lists, each one holding the coefficients of the |
20 | 80 | storres | monomials |
21 | 80 | storres | columnWith : the width, in characters, of the displayed column ; if 0, |
22 | 80 | storres | do not display anything. |
23 | 80 | storres | """ |
24 | 80 | storres | # We have started with the smaller degrees in the first variable. |
25 | 80 | storres | pMonomials.reverse() |
26 | 80 | storres | pCoefficients.reverse() |
27 | 80 | storres | # New empty proto matrix row. |
28 | 80 | storres | protoMatrixRowCoefficients = [] |
29 | 80 | storres | # We work according to the order of the already known monomials |
30 | 80 | storres | # No known monomials yet: add the pMonomials to knownMonomials |
31 | 80 | storres | # and add the coefficients to the proto matrix row. |
32 | 80 | storres | if len(knownMonomials) == 0: |
33 | 80 | storres | for pmIdx in xrange(0, len(pMonomials)): |
34 | 80 | storres | knownMonomials.append(pMonomials[pmIdx]) |
35 | 80 | storres | protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
36 | 80 | storres | if columnsWidth != 0: |
37 | 80 | storres | monomialAsString = str(pCoefficients[pmIdx]) + " " + \ |
38 | 80 | storres | str(pMonomials[pmIdx]) |
39 | 80 | storres | print monomialAsString, " " * \ |
40 | 80 | storres | (columnsWidth - len(monomialAsString)), |
41 | 80 | storres | # There are some known monomials. We search for them in pMonomials and |
42 | 80 | storres | # add their coefficients to the proto matrix row. |
43 | 80 | storres | else: |
44 | 80 | storres | for knownMonomialIndex in xrange(0,len(knownMonomials)): |
45 | 80 | storres | # We lazily use an exception here since pMonomials.index() function |
46 | 80 | storres | # may fail throwing the ValueError exception. |
47 | 80 | storres | try: |
48 | 80 | storres | indexInPmonomials = \ |
49 | 80 | storres | pMonomials.index(knownMonomials[knownMonomialIndex]) |
50 | 80 | storres | if columnsWidth != 0: |
51 | 80 | storres | monomialAsString = str(pCoefficients[indexInPmonomials]) + \ |
52 | 80 | storres | " " + str(knownMonomials[knownMonomialIndex]) |
53 | 80 | storres | print monomialAsString, " " * \ |
54 | 80 | storres | (columnsWidth - len(monomialAsString)), |
55 | 80 | storres | # Add the coefficient to the proto matrix row and delete the \ |
56 | 80 | storres | # known monomial from the current pMonomial list |
57 | 80 | storres | #(and the corresponding coefficient as well). |
58 | 80 | storres | protoMatrixRowCoefficients.append(pCoefficients[indexInPmonomials]) |
59 | 80 | storres | del pMonomials[indexInPmonomials] |
60 | 80 | storres | del pCoefficients[indexInPmonomials] |
61 | 80 | storres | # The knownMonomials element is not in pMonomials |
62 | 80 | storres | except ValueError: |
63 | 80 | storres | protoMatrixRowCoefficients.append(0) |
64 | 80 | storres | if columnsWidth != 0: |
65 | 80 | storres | monomialAsString = "0" + " "+ \ |
66 | 80 | storres | str(knownMonomials[knownMonomialIndex]) |
67 | 80 | storres | print monomialAsString, " " * \ |
68 | 80 | storres | (columnsWidth - len(monomialAsString)), |
69 | 80 | storres | # End for knownMonomialKey loop. |
70 | 80 | storres | # We now append the remaining monomials of pMonomials to knownMonomials |
71 | 80 | storres | # and the corresponding coefficients to proto matrix row. |
72 | 80 | storres | for pmIdx in xrange(0, len(pMonomials)): |
73 | 80 | storres | knownMonomials.append(pMonomials[pmIdx]) |
74 | 80 | storres | protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
75 | 80 | storres | if columnsWidth != 0: |
76 | 80 | storres | monomialAsString = str(pCoefficients[pmIdx]) + " " \ |
77 | 80 | storres | + str(pMonomials[pmIdx]) |
78 | 80 | storres | print monomialAsString, " " * \ |
79 | 80 | storres | (columnsWidth - len(monomialAsString)), |
80 | 80 | storres | # End for pmIdx loop. |
81 | 80 | storres | # Add the new list row elements to the proto matrix. |
82 | 80 | storres | protoMatrixRows.append(protoMatrixRowCoefficients) |
83 | 80 | storres | if columnsWidth != 0: |
84 | 80 | storres | |
85 | 83 | storres | # End spo_add_polynomial_coeffs_to_matrix_row |
86 | 80 | storres | |
87 | 80 | storres | def spo_expression_as_string(powI, powT, powP, alpha): |
88 | 80 | storres | """ |
89 | 80 | storres | Computes a string version of the i^k + t^l + p^m + N^n expression for |
90 | 80 | storres | output. |
91 | 80 | storres | """ |
92 | 80 | storres | expressionAsString ="" |
93 | 80 | storres | if powI != 0: |
94 | 80 | storres | expressionAsString += "i^" + str(powI) |
95 | 80 | storres | if powT != 0: |
96 | 80 | storres | if len(expressionAsString) != 0: |
97 | 80 | storres | expressionAsString += " * " |
98 | 80 | storres | expressionAsString += "t^" + str(powT) |
99 | 80 | storres | if powP != 0: |
100 | 80 | storres | if len(expressionAsString) != 0: |
101 | 80 | storres | expressionAsString += " * " |
102 | 80 | storres | expressionAsString += "p^" + str(powP) |
103 | 80 | storres | if (alpha - powP) != 0 : |
104 | 80 | storres | if len(expressionAsString) != 0: |
105 | 80 | storres | expressionAsString += " * " |
106 | 80 | storres | expressionAsString += "N^" + str(alpha - powP) |
107 | 80 | storres | return(expressionAsString) |
108 | 80 | storres | # End spo_expression_as_string. |
109 | 80 | storres | |
110 | 87 | storres | def spo_norm(poly, p=2): |
111 | 81 | storres | """ |
112 | 81 | storres | Behaves more or less (no infinity defined) as the norm for the |
113 | 81 | storres | univariate polynomials. |
114 | 81 | storres | Quoting the Sage documentation: |
115 | 81 | storres | Definition: For integer p, the p-norm of a polynomial is the pth root of |
116 | 81 | storres | the sum of the pth powers of the absolute values of the coefficients of |
117 | 81 | storres | the polynomial. |
118 | 87 | storres | |
119 | 81 | storres | """ |
120 | 87 | storres | # TODO: check the arguments (for p see below).. |
121 | 81 | storres | norm = 0 |
122 | 87 | storres | # For infinity norm. |
123 | 87 | storres | if p == Infinity: |
124 | 87 | storres | for coefficient in poly.coefficients(): |
125 | 87 | storres | coefficientAbs = coefficient.abs() |
126 | 87 | storres | if coefficientAbs > norm: |
127 | 87 | storres | norm = coefficientAbs |
128 | 87 | storres | return norm |
129 | 87 | storres | # TODO: check here the value of p |
130 | 87 | storres | # For 1 norm. |
131 | 87 | storres | if p == 1: |
132 | 87 | storres | for coefficient in poly.coefficients(): |
133 | 87 | storres | norm += coefficient.abs() |
134 | 87 | storres | return norm |
135 | 87 | storres | # For other norms |
136 | 81 | storres | for coefficient in poly.coefficients(): |
137 | 87 | storres | norm += (coefficient^p).abs() |
138 | 87 | storres | return pow(norm, 1/p) |
139 | 81 | storres | # end spo_norm |
140 | 81 | storres | |
141 | 83 | storres | def spo_polynomial_to_proto_matrix(p, pRing, alpha, N, columnsWidth=0): |
142 | 74 | storres | """ |
143 | 83 | storres | From a (bivariate) polynomial and some other parameters build a proto |
144 | 87 | storres | matrix (an array of "rows") to be converted into a "true" matrix and |
145 | 83 | storres | eventually by reduced by fpLLL. |
146 | 80 | storres | The matrix is such as those found in Boneh-Durphee and Stehl?. |
147 | 74 | storres | |
148 | 83 | storres | Parameters |
149 | 83 | storres | ---------- |
150 | 87 | storres | p: the (bivariate) polynomial; |
151 | 87 | storres | pRing: the ring over which p is defined; |
152 | 74 | storres | alpha: |
153 | 74 | storres | N: |
154 | 83 | storres | columsWidth: if == 0, no information is displayed, otherwise data is |
155 | 83 | storres | printed in colums of columnsWitdth width. |
156 | 74 | storres | """ |
157 | 77 | storres | knownMonomials = [] |
158 | 77 | storres | protoMatrixRows = [] |
159 | 74 | storres | pVariables = p.variables() |
160 | 74 | storres | iVariable = pVariables[0] |
161 | 76 | storres | tVariable = pVariables[1] |
162 | 87 | storres | polynomialAtPower = pRing(1) |
163 | 87 | storres | currentPolynomial = pRing(1) |
164 | 74 | storres | pIdegree = p.degree(pVariables[0]) |
165 | 74 | storres | pTdegree = p.degree(pVariables[1]) |
166 | 87 | storres | currentIdegree = currentPolynomial.degree(iVariable) |
167 | 74 | storres | nAtPower = N^alpha |
168 | 74 | storres | # We work from p^0 * N^alpha to p^alpha * N^0 |
169 | 74 | storres | for pPower in xrange(0, alpha + 1): |
170 | 76 | storres | # pPower == 0 is a special case. We introduce all the monomials but one |
171 | 78 | storres | # in i and those in t necessary to be able to introduce |
172 | 76 | storres | # p. We arbitrary choose to introduce the highest degree monomial in i |
173 | 76 | storres | # with p. We also introduce all the mixed i^k * t^l monomials with |
174 | 77 | storres | # k < p.degree(i) and l <= p.degree(t). |
175 | 78 | storres | # Mixed terms introduction is necessary here before we start "i shifts" |
176 | 78 | storres | # in the next iteration. |
177 | 74 | storres | if pPower == 0: |
178 | 78 | storres | # Notice that i^pIdegree is excluded as the bound of the xrange is |
179 | 78 | storres | # pIdegree |
180 | 74 | storres | for iPower in xrange(0, pIdegree): |
181 | 74 | storres | for tPower in xrange(0, pTdegree + 1): |
182 | 77 | storres | if columnsWidth != 0: |
183 | 76 | storres | print "->", spo_expression_as_string(iPower, |
184 | 76 | storres | tPower, |
185 | 76 | storres | pPower, |
186 | 74 | storres | alpha) |
187 | 74 | storres | currentExpression = iVariable^iPower * \ |
188 | 74 | storres | tVariable^tPower * nAtPower |
189 | 78 | storres | # polynomialAtPower == 1 here. Next line should be commented |
190 | 78 | storres | # out but it does not work! Some conversion problem? |
191 | 74 | storres | currentPolynomial = pRing(currentExpression) * \ |
192 | 74 | storres | polynomialAtPower |
193 | 74 | storres | pMonomials = currentPolynomial.monomials() |
194 | 74 | storres | pCoefficients = currentPolynomial.coefficients() |
195 | 83 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
196 | 83 | storres | pCoefficients, |
197 | 83 | storres | knownMonomials, |
198 | 83 | storres | protoMatrixRows, |
199 | 83 | storres | columnsWidth) |
200 | 78 | storres | # End tPower. |
201 | 78 | storres | # End for iPower. |
202 | 77 | storres | else: # pPower > 0: (p^1..p^alpha) |
203 | 78 | storres | # This where we introduce the p^pPower * N^(alpha-pPower) |
204 | 77 | storres | # polynomial. |
205 | 77 | storres | # This step could technically be fused as the first iteration |
206 | 77 | storres | # of the next loop (with iPower starting at 0). |
207 | 77 | storres | # We set it apart for clarity. |
208 | 77 | storres | if columnsWidth != 0: |
209 | 77 | storres | print "->", spo_expression_as_string(0, 0, pPower, alpha) |
210 | 77 | storres | currentPolynomial = polynomialAtPower * nAtPower |
211 | 77 | storres | pMonomials = currentPolynomial.monomials() |
212 | 77 | storres | pCoefficients = currentPolynomial.coefficients() |
213 | 83 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
214 | 83 | storres | pCoefficients, |
215 | 83 | storres | knownMonomials, |
216 | 83 | storres | protoMatrixRows, |
217 | 83 | storres | columnsWidth) |
218 | 77 | storres | |
219 | 77 | storres | # The i^iPower * p^pPower polynomials: they add i^k monomials to |
220 | 77 | storres | # p^pPower up to k < pIdegree * pPower. This only introduces i^k |
221 | 77 | storres | # monomials since mixed terms (that were introduced at a previous |
222 | 77 | storres | # stage) are only shifted to already existing |
223 | 77 | storres | # ones. p^pPower is "shifted" to higher degrees in i as far as |
224 | 77 | storres | # possible, one step short of the degree in i of p^(pPower+1) . |
225 | 77 | storres | # These "pure" i^k monomials can only show up with i multiplications. |
226 | 77 | storres | for iPower in xrange(1, pIdegree): |
227 | 87 | storres | if columnsWidth != 0: |
228 | 87 | storres | print "->", spo_expression_as_string(iPower, \ |
229 | 87 | storres | 0, \ |
230 | 87 | storres | pPower, \ |
231 | 87 | storres | alpha) |
232 | 77 | storres | currentExpression = i^iPower * nAtPower |
233 | 87 | storres | currentPolynomial = pRing(currentExpression) * polynomialAtPower |
234 | 77 | storres | pMonomials = currentPolynomial.monomials() |
235 | 77 | storres | pCoefficients = currentPolynomial.coefficients() |
236 | 87 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, \ |
237 | 87 | storres | pCoefficients, \ |
238 | 87 | storres | knownMonomials, \ |
239 | 87 | storres | protoMatrixRows, \ |
240 | 83 | storres | columnsWidth) |
241 | 77 | storres | # End for iPower |
242 | 77 | storres | # We want now to introduce a t * p^pPower polynomial. But before |
243 | 77 | storres | # that we must introduce some mixed monomials. |
244 | 77 | storres | # This loop is no triggered before pPower == 2. |
245 | 78 | storres | # It introduces a first set of high i degree mixed monomials. |
246 | 77 | storres | for iPower in xrange(1, pPower): |
247 | 77 | storres | tPower = pPower - iPower + 1 |
248 | 77 | storres | if columnsWidth != 0: |
249 | 77 | storres | print "->", spo_expression_as_string(iPower * pIdegree, |
250 | 77 | storres | tPower, |
251 | 77 | storres | 0, |
252 | 77 | storres | alpha) |
253 | 77 | storres | currentExpression = i^(iPower * pIdegree) * t^tPower * nAtPower |
254 | 87 | storres | currentPolynomial = pRing(currentExpression) |
255 | 77 | storres | pMonomials = currentPolynomial.monomials() |
256 | 77 | storres | pCoefficients = currentPolynomial.coefficients() |
257 | 83 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
258 | 83 | storres | pCoefficients, |
259 | 83 | storres | knownMonomials, |
260 | 83 | storres | protoMatrixRows, |
261 | 83 | storres | columnsWidth) |
262 | 77 | storres | # End for iPower |
263 | 78 | storres | # |
264 | 78 | storres | # This is the mixed monomials main loop. It introduces: |
265 | 77 | storres | # - the missing mixed monomials needed before the |
266 | 78 | storres | # t^l * p^pPower * N^(alpha-pPower) polynomial; |
267 | 78 | storres | # - the t^l * p^pPower * N^(alpha-pPower) itself; |
268 | 78 | storres | # - for each of i^k * t^l * p^pPower * N^(alpha-pPower) polynomials: |
269 | 78 | storres | # - the the missing mixed monomials needed polynomials, |
270 | 78 | storres | # - the i^k * t^l * p^pPower * N^(alpha-pPower) itself. |
271 | 78 | storres | # The t^l * p^pPower * N^(alpha-pPower) is introduced when |
272 | 78 | storres | # |
273 | 77 | storres | for iShift in xrange(0, pIdegree): |
274 | 77 | storres | # When pTdegree == 1, the following loop only introduces |
275 | 77 | storres | # a single new monomial. |
276 | 77 | storres | #print "++++++++++" |
277 | 77 | storres | for outerTpower in xrange(1, pTdegree + 1): |
278 | 77 | storres | # First one high i degree mixed monomial. |
279 | 77 | storres | iPower = iShift + pPower * pIdegree |
280 | 77 | storres | if columnsWidth != 0: |
281 | 77 | storres | print "->", spo_expression_as_string(iPower, |
282 | 77 | storres | outerTpower, |
283 | 77 | storres | 0, |
284 | 77 | storres | alpha) |
285 | 77 | storres | currentExpression = i^iPower * t^outerTpower * nAtPower |
286 | 87 | storres | currentPolynomial = pRing(currentExpression) |
287 | 77 | storres | pMonomials = currentPolynomial.monomials() |
288 | 77 | storres | pCoefficients = currentPolynomial.coefficients() |
289 | 83 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
290 | 83 | storres | pCoefficients, |
291 | 83 | storres | knownMonomials, |
292 | 83 | storres | protoMatrixRows, |
293 | 83 | storres | columnsWidth) |
294 | 77 | storres | #print "+++++" |
295 | 78 | storres | # At iShift == 0, the following innerTpower loop adds |
296 | 78 | storres | # duplicate monomials, since no extra i^l * t^k is needed |
297 | 78 | storres | # before introducing the |
298 | 77 | storres | # i^iShift * t^outerPpower * p^pPower * N^(alpha-pPower) |
299 | 77 | storres | # polynomial. |
300 | 77 | storres | # It introduces smaller i degree monomials than the |
301 | 77 | storres | # one(s) added previously (no pPower multiplication). |
302 | 77 | storres | # Here the exponent of t decreases as that of i increases. |
303 | 78 | storres | # This conditional is not entered before pPower == 1. |
304 | 78 | storres | # The innerTpower loop does not produce anything before |
305 | 78 | storres | # pPower == 2. We keep it anyway for other configuration of |
306 | 78 | storres | # p. |
307 | 77 | storres | if iShift > 0: |
308 | 77 | storres | iPower = pIdegree + iShift |
309 | 77 | storres | for innerTpower in xrange(pPower, 1, -1): |
310 | 77 | storres | if columnsWidth != 0: |
311 | 77 | storres | print "->", spo_expression_as_string(iPower, |
312 | 77 | storres | innerTpower, |
313 | 77 | storres | 0, |
314 | 77 | storres | alpha) |
315 | 77 | storres | currentExpression = \ |
316 | 77 | storres | i^(iPower) * t^(innerTpower) * nAtPower |
317 | 87 | storres | currentPolynomial = pRing(currentExpression) |
318 | 77 | storres | pMonomials = currentPolynomial.monomials() |
319 | 77 | storres | pCoefficients = currentPolynomial.coefficients() |
320 | 83 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
321 | 77 | storres | pCoefficients, |
322 | 77 | storres | knownMonomials, |
323 | 77 | storres | protoMatrixRows, |
324 | 77 | storres | columnsWidth) |
325 | 77 | storres | iPower += pIdegree |
326 | 77 | storres | # End for innerTpower |
327 | 77 | storres | # End of if iShift > 0 |
328 | 78 | storres | # When iShift == 0, just after each of the |
329 | 78 | storres | # p^pPower * N^(alpha-pPower) polynomials has |
330 | 78 | storres | # been introduced (followed by a string of |
331 | 78 | storres | # i^k * p^pPower * N^(alpha-pPower) polynomials) a |
332 | 78 | storres | # t^l * p^pPower * N^(alpha-pPower) is introduced here. |
333 | 78 | storres | # |
334 | 77 | storres | # Eventually, the following section introduces the |
335 | 77 | storres | # i^iShift * t^outerTpower * p^iPower * N^(alpha-iPower) |
336 | 77 | storres | # polynomials. |
337 | 77 | storres | if columnsWidth != 0: |
338 | 77 | storres | print "->", spo_expression_as_string(iShift, |
339 | 77 | storres | outerTpower, |
340 | 77 | storres | pPower, |
341 | 77 | storres | alpha) |
342 | 77 | storres | currentExpression = i^iShift * t^outerTpower * nAtPower |
343 | 87 | storres | currentPolynomial = pRing(currentExpression) * polynomialAtPower |
344 | 77 | storres | pMonomials = currentPolynomial.monomials() |
345 | 77 | storres | pCoefficients = currentPolynomial.coefficients() |
346 | 83 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
347 | 83 | storres | pCoefficients, |
348 | 83 | storres | knownMonomials, |
349 | 83 | storres | protoMatrixRows, |
350 | 83 | storres | columnsWidth) |
351 | 77 | storres | # End for outerTpower |
352 | 77 | storres | #print "++++++++++" |
353 | 77 | storres | # End for iShift |
354 | 77 | storres | polynomialAtPower *= p |
355 | 77 | storres | nAtPower /= N |
356 | 77 | storres | # End for pPower loop |
357 | 87 | storres | return ((protoMatrixRows, knownMonomials)) |
358 | 83 | storres | # End spo_polynomial_to_proto_matrix |
359 | 81 | storres | |
360 | 87 | storres | def spo_proto_to_column_matrix(protoMatrixColumns): |
361 | 83 | storres | """ |
362 | 87 | storres | Create a column (each row holds the coefficients of one monomial) matrix. |
363 | 83 | storres | protoMatrixRows. |
364 | 83 | storres | |
365 | 83 | storres | Parameters |
366 | 83 | storres | ---------- |
367 | 87 | storres | protoMatrixColumns: a list of coefficient lists. |
368 | 83 | storres | """ |
369 | 87 | storres | numColumns = len(protoMatrixColumns) |
370 | 87 | storres | if numColumns == 0: |
371 | 83 | storres | return None |
372 | 87 | storres | # The last column holds has the maximum length. |
373 | 87 | storres | numRows = len(protoMatrixColumns[numColumns-1]) |
374 | 83 | storres | if numColumns == 0: |
375 | 83 | storres | return None |
376 | 83 | storres | baseMatrix = matrix(ZZ, numRows, numColumns) |
377 | 87 | storres | for colIndex in xrange(0, numColumns): |
378 | 87 | storres | for rowIndex in xrange(0, len(protoMatrixColumns[colIndex])): |
379 | 87 | storres | baseMatrix[rowIndex, colIndex] = \ |
380 | 87 | storres | protoMatrixColumns[colIndex][rowIndex] |
381 | 83 | storres | return baseMatrix |
382 | 83 | storres | # End spo_proto_to_column_matrix. |
383 | 83 | storres | # |
384 | 83 | storres | def spo_proto_to_row_matrix(protoMatrixRows): |
385 | 83 | storres | """ |
386 | 87 | storres | Create a row (each column holds the coefficients of one monomial) matrix. |
387 | 83 | storres | protoMatrixRows. |
388 | 83 | storres | |
389 | 83 | storres | Parameters |
390 | 83 | storres | ---------- |
391 | 83 | storres | protoMatrixRows: a list of coefficient lists. |
392 | 83 | storres | """ |
393 | 83 | storres | numRows = len(protoMatrixRows) |
394 | 83 | storres | if numRows == 0: |
395 | 83 | storres | return None |
396 | 83 | storres | numColumns = len(protoMatrixRows[numRows-1]) |
397 | 83 | storres | if numColumns == 0: |
398 | 83 | storres | return None |
399 | 83 | storres | baseMatrix = matrix(ZZ, numRows, numColumns) |
400 | 83 | storres | for rowIndex in xrange(0, numRows): |
401 | 83 | storres | for colIndex in xrange(0, len(protoMatrixRows[rowIndex])): |
402 | 83 | storres | baseMatrix[rowIndex, colIndex] = protoMatrixRows[rowIndex][colIndex] |
403 | 83 | storres | return baseMatrix |
404 | 83 | storres | # End spo_proto_to_row_matrix. |
405 | 83 | storres | # |
406 | 87 | storres | print "\t...sagePolynomialOperations loaded" |