root / pobysoPythonSage / src / sageSLZ / sagePolynomialOperations.sage @ 85
Historique | Voir | Annoter | Télécharger (19,58 ko)
1 | 74 | storres | load "/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageMatrixOperations.sage" |
---|---|---|---|
2 | 74 | storres | |
3 | 83 | storres | def spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
4 | 83 | storres | pCoefficients, |
5 | 83 | storres | knownMonomials, |
6 | 83 | storres | protoMatrixRows, |
7 | 83 | storres | columnsWidth=0): |
8 | 80 | storres | """ |
9 | 80 | storres | For a given polynomial (under the form of monomials and coefficents lists), |
10 | 80 | storres | add the coefficients of the protoMatrix (a list of proto matrix rows). |
11 | 80 | storres | Coefficients are added to the protoMatrix row in the order imposed by the |
12 | 80 | storres | monomials discovery list (the knownMonomials list) built as construction |
13 | 80 | storres | goes on. |
14 | 83 | storres | As a bonus, data can be printed out for a visual check. |
15 | 80 | storres | pMonomials : the list of the monomials coming form some polynomial; |
16 | 80 | storres | pCoefficients : the list of the corresponding coefficients to add to |
17 | 80 | storres | the protoMatrix in the exact same order as the monomials; |
18 | 80 | storres | knownMonomials : the list of the already knonw monomials; |
19 | 80 | storres | protoMatrixRows: a list of lists, each one holding the coefficients of the |
20 | 80 | storres | monomials |
21 | 80 | storres | columnWith : the width, in characters, of the displayed column ; if 0, |
22 | 80 | storres | do not display anything. |
23 | 80 | storres | """ |
24 | 80 | storres | # We have started with the smaller degrees in the first variable. |
25 | 80 | storres | pMonomials.reverse() |
26 | 80 | storres | pCoefficients.reverse() |
27 | 80 | storres | # New empty proto matrix row. |
28 | 80 | storres | protoMatrixRowCoefficients = [] |
29 | 80 | storres | # We work according to the order of the already known monomials |
30 | 80 | storres | # No known monomials yet: add the pMonomials to knownMonomials |
31 | 80 | storres | # and add the coefficients to the proto matrix row. |
32 | 80 | storres | if len(knownMonomials) == 0: |
33 | 80 | storres | for pmIdx in xrange(0, len(pMonomials)): |
34 | 80 | storres | knownMonomials.append(pMonomials[pmIdx]) |
35 | 80 | storres | protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
36 | 80 | storres | if columnsWidth != 0: |
37 | 80 | storres | monomialAsString = str(pCoefficients[pmIdx]) + " " + \ |
38 | 80 | storres | str(pMonomials[pmIdx]) |
39 | 80 | storres | print monomialAsString, " " * \ |
40 | 80 | storres | (columnsWidth - len(monomialAsString)), |
41 | 80 | storres | # There are some known monomials. We search for them in pMonomials and |
42 | 80 | storres | # add their coefficients to the proto matrix row. |
43 | 80 | storres | else: |
44 | 80 | storres | for knownMonomialIndex in xrange(0,len(knownMonomials)): |
45 | 80 | storres | # We lazily use an exception here since pMonomials.index() function |
46 | 80 | storres | # may fail throwing the ValueError exception. |
47 | 80 | storres | try: |
48 | 80 | storres | indexInPmonomials = \ |
49 | 80 | storres | pMonomials.index(knownMonomials[knownMonomialIndex]) |
50 | 80 | storres | if columnsWidth != 0: |
51 | 80 | storres | monomialAsString = str(pCoefficients[indexInPmonomials]) + \ |
52 | 80 | storres | " " + str(knownMonomials[knownMonomialIndex]) |
53 | 80 | storres | print monomialAsString, " " * \ |
54 | 80 | storres | (columnsWidth - len(monomialAsString)), |
55 | 80 | storres | # Add the coefficient to the proto matrix row and delete the \ |
56 | 80 | storres | # known monomial from the current pMonomial list |
57 | 80 | storres | #(and the corresponding coefficient as well). |
58 | 80 | storres | protoMatrixRowCoefficients.append(pCoefficients[indexInPmonomials]) |
59 | 80 | storres | del pMonomials[indexInPmonomials] |
60 | 80 | storres | del pCoefficients[indexInPmonomials] |
61 | 80 | storres | # The knownMonomials element is not in pMonomials |
62 | 80 | storres | except ValueError: |
63 | 80 | storres | protoMatrixRowCoefficients.append(0) |
64 | 80 | storres | if columnsWidth != 0: |
65 | 80 | storres | monomialAsString = "0" + " "+ \ |
66 | 80 | storres | str(knownMonomials[knownMonomialIndex]) |
67 | 80 | storres | print monomialAsString, " " * \ |
68 | 80 | storres | (columnsWidth - len(monomialAsString)), |
69 | 80 | storres | # End for knownMonomialKey loop. |
70 | 80 | storres | # We now append the remaining monomials of pMonomials to knownMonomials |
71 | 80 | storres | # and the corresponding coefficients to proto matrix row. |
72 | 80 | storres | for pmIdx in xrange(0, len(pMonomials)): |
73 | 80 | storres | knownMonomials.append(pMonomials[pmIdx]) |
74 | 80 | storres | protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
75 | 80 | storres | if columnsWidth != 0: |
76 | 80 | storres | monomialAsString = str(pCoefficients[pmIdx]) + " " \ |
77 | 80 | storres | + str(pMonomials[pmIdx]) |
78 | 80 | storres | print monomialAsString, " " * \ |
79 | 80 | storres | (columnsWidth - len(monomialAsString)), |
80 | 80 | storres | # End for pmIdx loop. |
81 | 80 | storres | # Add the new list row elements to the proto matrix. |
82 | 80 | storres | protoMatrixRows.append(protoMatrixRowCoefficients) |
83 | 80 | storres | if columnsWidth != 0: |
84 | 80 | storres | |
85 | 83 | storres | # End spo_add_polynomial_coeffs_to_matrix_row |
86 | 80 | storres | |
87 | 80 | storres | def spo_expression_as_string(powI, powT, powP, alpha): |
88 | 80 | storres | """ |
89 | 80 | storres | Computes a string version of the i^k + t^l + p^m + N^n expression for |
90 | 80 | storres | output. |
91 | 80 | storres | """ |
92 | 80 | storres | expressionAsString ="" |
93 | 80 | storres | if powI != 0: |
94 | 80 | storres | expressionAsString += "i^" + str(powI) |
95 | 80 | storres | if powT != 0: |
96 | 80 | storres | if len(expressionAsString) != 0: |
97 | 80 | storres | expressionAsString += " * " |
98 | 80 | storres | expressionAsString += "t^" + str(powT) |
99 | 80 | storres | if powP != 0: |
100 | 80 | storres | if len(expressionAsString) != 0: |
101 | 80 | storres | expressionAsString += " * " |
102 | 80 | storres | expressionAsString += "p^" + str(powP) |
103 | 80 | storres | if (alpha - powP) != 0 : |
104 | 80 | storres | if len(expressionAsString) != 0: |
105 | 80 | storres | expressionAsString += " * " |
106 | 80 | storres | expressionAsString += "N^" + str(alpha - powP) |
107 | 80 | storres | return(expressionAsString) |
108 | 80 | storres | # End spo_expression_as_string. |
109 | 80 | storres | |
110 | 81 | storres | def spo_norm(poly, degree): |
111 | 81 | storres | """ |
112 | 81 | storres | Behaves more or less (no infinity defined) as the norm for the |
113 | 81 | storres | univariate polynomials. |
114 | 81 | storres | Quoting the Sage documentation: |
115 | 81 | storres | Definition: For integer p, the p-norm of a polynomial is the pth root of |
116 | 81 | storres | the sum of the pth powers of the absolute values of the coefficients of |
117 | 81 | storres | the polynomial. |
118 | 81 | storres | """ |
119 | 81 | storres | # TODO: check the arguments. |
120 | 81 | storres | norm = 0 |
121 | 81 | storres | for coefficient in poly.coefficients(): |
122 | 81 | storres | norm += (coefficient^degree).abs() |
123 | 81 | storres | return pow(norm, 1/degree) |
124 | 81 | storres | # end spo_norm |
125 | 81 | storres | |
126 | 83 | storres | def spo_polynomial_to_proto_matrix(p, pRing, alpha, N, columnsWidth=0): |
127 | 74 | storres | """ |
128 | 83 | storres | From a (bivariate) polynomial and some other parameters build a proto |
129 | 83 | storres | matrix (an array of rows) to be converted into a "true" matrix and |
130 | 83 | storres | eventually by reduced by fpLLL. |
131 | 80 | storres | The matrix is such as those found in Boneh-Durphee and Stehl?. |
132 | 74 | storres | |
133 | 83 | storres | Parameters |
134 | 83 | storres | ---------- |
135 | 74 | storres | p: the (bivariate) polynomial |
136 | 83 | storres | pRing: |
137 | 74 | storres | alpha: |
138 | 74 | storres | N: |
139 | 83 | storres | columsWidth: if == 0, no information is displayed, otherwise data is |
140 | 83 | storres | printed in colums of columnsWitdth width. |
141 | 74 | storres | """ |
142 | 77 | storres | knownMonomials = [] |
143 | 77 | storres | protoMatrixRows = [] |
144 | 74 | storres | pVariables = p.variables() |
145 | 74 | storres | iVariable = pVariables[0] |
146 | 76 | storres | tVariable = pVariables[1] |
147 | 74 | storres | polynomialAtPower = P(1) |
148 | 74 | storres | currentPolynomial = P(1) |
149 | 74 | storres | pIdegree = p.degree(pVariables[0]) |
150 | 74 | storres | pTdegree = p.degree(pVariables[1]) |
151 | 74 | storres | currentIdegree = currentPolynomial.degree(i) |
152 | 74 | storres | nAtPower = N^alpha |
153 | 74 | storres | # We work from p^0 * N^alpha to p^alpha * N^0 |
154 | 74 | storres | for pPower in xrange(0, alpha + 1): |
155 | 76 | storres | # pPower == 0 is a special case. We introduce all the monomials but one |
156 | 78 | storres | # in i and those in t necessary to be able to introduce |
157 | 76 | storres | # p. We arbitrary choose to introduce the highest degree monomial in i |
158 | 76 | storres | # with p. We also introduce all the mixed i^k * t^l monomials with |
159 | 77 | storres | # k < p.degree(i) and l <= p.degree(t). |
160 | 78 | storres | # Mixed terms introduction is necessary here before we start "i shifts" |
161 | 78 | storres | # in the next iteration. |
162 | 74 | storres | if pPower == 0: |
163 | 78 | storres | # Notice that i^pIdegree is excluded as the bound of the xrange is |
164 | 78 | storres | # pIdegree |
165 | 74 | storres | for iPower in xrange(0, pIdegree): |
166 | 74 | storres | for tPower in xrange(0, pTdegree + 1): |
167 | 77 | storres | if columnsWidth != 0: |
168 | 76 | storres | print "->", spo_expression_as_string(iPower, |
169 | 76 | storres | tPower, |
170 | 76 | storres | pPower, |
171 | 74 | storres | alpha) |
172 | 74 | storres | currentExpression = iVariable^iPower * \ |
173 | 74 | storres | tVariable^tPower * nAtPower |
174 | 78 | storres | # polynomialAtPower == 1 here. Next line should be commented |
175 | 78 | storres | # out but it does not work! Some conversion problem? |
176 | 74 | storres | currentPolynomial = pRing(currentExpression) * \ |
177 | 74 | storres | polynomialAtPower |
178 | 74 | storres | pMonomials = currentPolynomial.monomials() |
179 | 74 | storres | pCoefficients = currentPolynomial.coefficients() |
180 | 83 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
181 | 83 | storres | pCoefficients, |
182 | 83 | storres | knownMonomials, |
183 | 83 | storres | protoMatrixRows, |
184 | 83 | storres | columnsWidth) |
185 | 78 | storres | # End tPower. |
186 | 78 | storres | # End for iPower. |
187 | 77 | storres | else: # pPower > 0: (p^1..p^alpha) |
188 | 78 | storres | # This where we introduce the p^pPower * N^(alpha-pPower) |
189 | 77 | storres | # polynomial. |
190 | 77 | storres | # This step could technically be fused as the first iteration |
191 | 77 | storres | # of the next loop (with iPower starting at 0). |
192 | 77 | storres | # We set it apart for clarity. |
193 | 77 | storres | if columnsWidth != 0: |
194 | 77 | storres | print "->", spo_expression_as_string(0, 0, pPower, alpha) |
195 | 77 | storres | currentPolynomial = polynomialAtPower * nAtPower |
196 | 77 | storres | pMonomials = currentPolynomial.monomials() |
197 | 77 | storres | pCoefficients = currentPolynomial.coefficients() |
198 | 83 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
199 | 83 | storres | pCoefficients, |
200 | 83 | storres | knownMonomials, |
201 | 83 | storres | protoMatrixRows, |
202 | 83 | storres | columnsWidth) |
203 | 77 | storres | |
204 | 77 | storres | # The i^iPower * p^pPower polynomials: they add i^k monomials to |
205 | 77 | storres | # p^pPower up to k < pIdegree * pPower. This only introduces i^k |
206 | 77 | storres | # monomials since mixed terms (that were introduced at a previous |
207 | 77 | storres | # stage) are only shifted to already existing |
208 | 77 | storres | # ones. p^pPower is "shifted" to higher degrees in i as far as |
209 | 77 | storres | # possible, one step short of the degree in i of p^(pPower+1) . |
210 | 77 | storres | # These "pure" i^k monomials can only show up with i multiplications. |
211 | 77 | storres | for iPower in xrange(1, pIdegree): |
212 | 77 | storres | print "->", spo_expression_as_string(iPower, 0, pPower, alpha) |
213 | 77 | storres | currentExpression = i^iPower * nAtPower |
214 | 77 | storres | currentPolynomial = P(currentExpression) * polynomialAtPower |
215 | 77 | storres | pMonomials = currentPolynomial.monomials() |
216 | 77 | storres | pCoefficients = currentPolynomial.coefficients() |
217 | 83 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
218 | 83 | storres | pCoefficients, |
219 | 83 | storres | knownMonomials, |
220 | 83 | storres | protoMatrixRows, |
221 | 83 | storres | columnsWidth) |
222 | 77 | storres | # End for iPower |
223 | 77 | storres | # We want now to introduce a t * p^pPower polynomial. But before |
224 | 77 | storres | # that we must introduce some mixed monomials. |
225 | 77 | storres | # This loop is no triggered before pPower == 2. |
226 | 78 | storres | # It introduces a first set of high i degree mixed monomials. |
227 | 77 | storres | for iPower in xrange(1, pPower): |
228 | 77 | storres | tPower = pPower - iPower + 1 |
229 | 77 | storres | if columnsWidth != 0: |
230 | 77 | storres | print "->", spo_expression_as_string(iPower * pIdegree, |
231 | 77 | storres | tPower, |
232 | 77 | storres | 0, |
233 | 77 | storres | alpha) |
234 | 77 | storres | currentExpression = i^(iPower * pIdegree) * t^tPower * nAtPower |
235 | 77 | storres | currentPolynomial = P(currentExpression) |
236 | 77 | storres | pMonomials = currentPolynomial.monomials() |
237 | 77 | storres | pCoefficients = currentPolynomial.coefficients() |
238 | 83 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
239 | 83 | storres | pCoefficients, |
240 | 83 | storres | knownMonomials, |
241 | 83 | storres | protoMatrixRows, |
242 | 83 | storres | columnsWidth) |
243 | 77 | storres | # End for iPower |
244 | 78 | storres | # |
245 | 78 | storres | # This is the mixed monomials main loop. It introduces: |
246 | 77 | storres | # - the missing mixed monomials needed before the |
247 | 78 | storres | # t^l * p^pPower * N^(alpha-pPower) polynomial; |
248 | 78 | storres | # - the t^l * p^pPower * N^(alpha-pPower) itself; |
249 | 78 | storres | # - for each of i^k * t^l * p^pPower * N^(alpha-pPower) polynomials: |
250 | 78 | storres | # - the the missing mixed monomials needed polynomials, |
251 | 78 | storres | # - the i^k * t^l * p^pPower * N^(alpha-pPower) itself. |
252 | 78 | storres | # The t^l * p^pPower * N^(alpha-pPower) is introduced when |
253 | 78 | storres | # |
254 | 77 | storres | for iShift in xrange(0, pIdegree): |
255 | 77 | storres | # When pTdegree == 1, the following loop only introduces |
256 | 77 | storres | # a single new monomial. |
257 | 77 | storres | #print "++++++++++" |
258 | 77 | storres | for outerTpower in xrange(1, pTdegree + 1): |
259 | 77 | storres | # First one high i degree mixed monomial. |
260 | 77 | storres | iPower = iShift + pPower * pIdegree |
261 | 77 | storres | if columnsWidth != 0: |
262 | 77 | storres | print "->", spo_expression_as_string(iPower, |
263 | 77 | storres | outerTpower, |
264 | 77 | storres | 0, |
265 | 77 | storres | alpha) |
266 | 77 | storres | currentExpression = i^iPower * t^outerTpower * nAtPower |
267 | 77 | storres | currentPolynomial = P(currentExpression) |
268 | 77 | storres | pMonomials = currentPolynomial.monomials() |
269 | 77 | storres | pCoefficients = currentPolynomial.coefficients() |
270 | 83 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
271 | 83 | storres | pCoefficients, |
272 | 83 | storres | knownMonomials, |
273 | 83 | storres | protoMatrixRows, |
274 | 83 | storres | columnsWidth) |
275 | 77 | storres | #print "+++++" |
276 | 78 | storres | # At iShift == 0, the following innerTpower loop adds |
277 | 78 | storres | # duplicate monomials, since no extra i^l * t^k is needed |
278 | 78 | storres | # before introducing the |
279 | 77 | storres | # i^iShift * t^outerPpower * p^pPower * N^(alpha-pPower) |
280 | 77 | storres | # polynomial. |
281 | 77 | storres | # It introduces smaller i degree monomials than the |
282 | 77 | storres | # one(s) added previously (no pPower multiplication). |
283 | 77 | storres | # Here the exponent of t decreases as that of i increases. |
284 | 78 | storres | # This conditional is not entered before pPower == 1. |
285 | 78 | storres | # The innerTpower loop does not produce anything before |
286 | 78 | storres | # pPower == 2. We keep it anyway for other configuration of |
287 | 78 | storres | # p. |
288 | 77 | storres | if iShift > 0: |
289 | 77 | storres | iPower = pIdegree + iShift |
290 | 77 | storres | for innerTpower in xrange(pPower, 1, -1): |
291 | 77 | storres | if columnsWidth != 0: |
292 | 77 | storres | print "->", spo_expression_as_string(iPower, |
293 | 77 | storres | innerTpower, |
294 | 77 | storres | 0, |
295 | 77 | storres | alpha) |
296 | 77 | storres | currentExpression = \ |
297 | 77 | storres | i^(iPower) * t^(innerTpower) * nAtPower |
298 | 77 | storres | currentPolynomial = P(currentExpression) |
299 | 77 | storres | pMonomials = currentPolynomial.monomials() |
300 | 77 | storres | pCoefficients = currentPolynomial.coefficients() |
301 | 83 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
302 | 77 | storres | pCoefficients, |
303 | 77 | storres | knownMonomials, |
304 | 77 | storres | protoMatrixRows, |
305 | 77 | storres | columnsWidth) |
306 | 77 | storres | iPower += pIdegree |
307 | 77 | storres | # End for innerTpower |
308 | 77 | storres | # End of if iShift > 0 |
309 | 78 | storres | # When iShift == 0, just after each of the |
310 | 78 | storres | # p^pPower * N^(alpha-pPower) polynomials has |
311 | 78 | storres | # been introduced (followed by a string of |
312 | 78 | storres | # i^k * p^pPower * N^(alpha-pPower) polynomials) a |
313 | 78 | storres | # t^l * p^pPower * N^(alpha-pPower) is introduced here. |
314 | 78 | storres | # |
315 | 77 | storres | # Eventually, the following section introduces the |
316 | 77 | storres | # i^iShift * t^outerTpower * p^iPower * N^(alpha-iPower) |
317 | 77 | storres | # polynomials. |
318 | 77 | storres | if columnsWidth != 0: |
319 | 77 | storres | print "->", spo_expression_as_string(iShift, |
320 | 77 | storres | outerTpower, |
321 | 77 | storres | pPower, |
322 | 77 | storres | alpha) |
323 | 77 | storres | currentExpression = i^iShift * t^outerTpower * nAtPower |
324 | 77 | storres | currentPolynomial = P(currentExpression) * polynomialAtPower |
325 | 77 | storres | pMonomials = currentPolynomial.monomials() |
326 | 77 | storres | pCoefficients = currentPolynomial.coefficients() |
327 | 83 | storres | spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
328 | 83 | storres | pCoefficients, |
329 | 83 | storres | knownMonomials, |
330 | 83 | storres | protoMatrixRows, |
331 | 83 | storres | columnsWidth) |
332 | 77 | storres | # End for outerTpower |
333 | 77 | storres | #print "++++++++++" |
334 | 77 | storres | # End for iShift |
335 | 77 | storres | polynomialAtPower *= p |
336 | 77 | storres | nAtPower /= N |
337 | 77 | storres | # End for pPower loop |
338 | 77 | storres | return protoMatrixRows |
339 | 83 | storres | # End spo_polynomial_to_proto_matrix |
340 | 81 | storres | |
341 | 83 | storres | def spo_proto_to_column_matrix(protoMatrixRows): |
342 | 83 | storres | """ |
343 | 83 | storres | Create a row (each column holds the coefficients of one polynomial) matrix. |
344 | 83 | storres | protoMatrixRows. |
345 | 83 | storres | |
346 | 83 | storres | Parameters |
347 | 83 | storres | ---------- |
348 | 83 | storres | protoMatrixRows: a list of coefficient lists. |
349 | 83 | storres | """ |
350 | 83 | storres | numRows = len(protoMatrixRows) |
351 | 83 | storres | if numRows == 0: |
352 | 83 | storres | return None |
353 | 83 | storres | numColumns = len(protoMatrixRows[numRows-1]) |
354 | 83 | storres | if numColumns == 0: |
355 | 83 | storres | return None |
356 | 83 | storres | baseMatrix = matrix(ZZ, numRows, numColumns) |
357 | 83 | storres | for rowIndex in xrange(0, numRows): |
358 | 83 | storres | if monomialLengthChars != 0: |
359 | 83 | storres | print protoMatrixRows[rowIndex] |
360 | 83 | storres | for colIndex in xrange(0, len(protoMatrixRows[rowIndex])): |
361 | 83 | storres | baseMatrix[colIndex, rowIndex] = protoMatrixRows[rowIndex][colIndex] |
362 | 83 | storres | return baseMatrix |
363 | 83 | storres | # End spo_proto_to_column_matrix. |
364 | 83 | storres | # |
365 | 83 | storres | def spo_proto_to_row_matrix(protoMatrixRows): |
366 | 83 | storres | """ |
367 | 83 | storres | Create a row (each row holds the coefficients of one polynomial) matrix. |
368 | 83 | storres | protoMatrixRows. |
369 | 83 | storres | |
370 | 83 | storres | Parameters |
371 | 83 | storres | ---------- |
372 | 83 | storres | protoMatrixRows: a list of coefficient lists. |
373 | 83 | storres | """ |
374 | 83 | storres | numRows = len(protoMatrixRows) |
375 | 83 | storres | if numRows == 0: |
376 | 83 | storres | return None |
377 | 83 | storres | numColumns = len(protoMatrixRows[numRows-1]) |
378 | 83 | storres | if numColumns == 0: |
379 | 83 | storres | return None |
380 | 83 | storres | baseMatrix = matrix(ZZ, numRows, numColumns) |
381 | 83 | storres | for rowIndex in xrange(0, numRows): |
382 | 83 | storres | if monomialLengthChars != 0: |
383 | 83 | storres | print protoMatrixRows[rowIndex] |
384 | 83 | storres | for colIndex in xrange(0, len(protoMatrixRows[rowIndex])): |
385 | 83 | storres | baseMatrix[rowIndex, colIndex] = protoMatrixRows[rowIndex][colIndex] |
386 | 83 | storres | return baseMatrix |
387 | 83 | storres | # End spo_proto_to_row_matrix. |
388 | 83 | storres | # |
389 | 81 | storres | print "sagePolynomialOperations loaded..." |