root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 83
Historique | Voir | Annoter | Télécharger (17,16 ko)
1 |
def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
---|---|
2 |
upperBoundSa, approxPrecSa, |
3 |
sollyaPrecSa=None): |
4 |
""" |
5 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
6 |
a polynomial that approximates the function on a an interval starting |
7 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
8 |
approximates with the expected precision. |
9 |
The interval upper bound is lowered until the expected approximation |
10 |
precision is reached. |
11 |
The polynomial, the bounds, the center of the interval and the error |
12 |
are returned. |
13 |
""" |
14 |
RRR = lowerBoundSa.parent() |
15 |
intervalShrinkConstFactorSa = RRR('0.5') |
16 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
17 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
18 |
currentUpperBoundSa = upperBoundSa |
19 |
currentLowerBoundSa = lowerBoundSa |
20 |
# What we want here is the polynomial without the variable change, |
21 |
# since our actual variable will be x-intervalCenter defined over the |
22 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
23 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
24 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
25 |
currentRangeSo, |
26 |
absoluteErrorTypeSo) |
27 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
28 |
while maxErrorSa > approxPrecSa: |
29 |
sollya_lib_clear_obj(maxErrorSo) |
30 |
sollya_lib_clear_obj(polySo) |
31 |
sollya_lib_clear_obj(intervalCenterSo) |
32 |
shrinkFactorSa = RRR('5.0')/(maxErrorSa/approxPrecSa).log2().abs() |
33 |
#shrinkFactorSa = 1.5/(maxErrorSa/approxPrecSa) |
34 |
#errorRatioSa = approxPrecSa/maxErrorSa |
35 |
#print "Error ratio: ", errorRatioSa |
36 |
|
37 |
if shrinkFactorSa > intervalShrinkConstFactorSa: |
38 |
actualShrinkFactorSa = intervalShrinkConstFactorSa |
39 |
#print "Fixed" |
40 |
else: |
41 |
actualShrinkFactorSa = shrinkFactorSa |
42 |
#print "Computed",shrinkFactorSa,maxErrorSa |
43 |
#print shrinkFactorSa, maxErrorSa |
44 |
currentUpperBoundSa = currentLowerBoundSa + \ |
45 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
46 |
actualShrinkFactorSa |
47 |
#print "Current upper bound:", currentUpperBoundSa |
48 |
sollya_lib_clear_obj(currentRangeSo) |
49 |
sollya_lib_clear_obj(polySo) |
50 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
51 |
currentUpperBoundSa) |
52 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
53 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
54 |
currentRangeSo, |
55 |
absoluteErrorTypeSo) |
56 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
57 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
58 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
59 |
return((polySo, currentRangeSo, intervalCenterSo, maxErrorSo)) |
60 |
# End slz_compute_polynomial_and_interval |
61 |
|
62 |
def slz_compute_scaled_function(functionSa, \ |
63 |
lowerBoundSa, \ |
64 |
upperBoundSa, \ |
65 |
floatingPointPrecSa): |
66 |
""" |
67 |
From a function, compute the scaled function whose domain |
68 |
is included in [1, 2) and whose image is also included in [1,2). |
69 |
Return a tuple: |
70 |
[0]: the scaled function |
71 |
[1]: the scaled domain lower bound |
72 |
[2]: the scaled domain upper bound |
73 |
[3]: the scaled image lower bound |
74 |
[4]: the scaled image upper bound |
75 |
""" |
76 |
x = functionSa.variables()[0] |
77 |
# Reassert f as a function (an not a mere expression). |
78 |
|
79 |
# Scalling the domain -> [1,2[. |
80 |
boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
81 |
domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
82 |
(domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
83 |
slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
84 |
print "domainScalingExpression for argument :", domainScalingExpressionSa |
85 |
print "f: ", f |
86 |
ff = f.subs({x : domainScalingExpressionSa}) |
87 |
#ff = f.subs_expr(x==domainScalingExpressionSa) |
88 |
domainScalingFunction(x) = invDomainScalingExpressionSa |
89 |
scaledLowerBoundSa = domainScalingFunction(lowerBoundSa).n() |
90 |
scaledUpperBoundSa = domainScalingFunction(upperBoundSa).n() |
91 |
print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
92 |
# |
93 |
# Scalling the image -> [1,2[. |
94 |
flbSa = f(lowerBoundSa).n() |
95 |
fubSa = f(upperBoundSa).n() |
96 |
if flbSa <= fubSa: # Increasing |
97 |
imageBinadeBottomSa = floor(flbSa.log2()) |
98 |
else: # Decreasing |
99 |
imageBinadeBottomSa = floor(fubSa.log2()) |
100 |
print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
101 |
imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
102 |
(imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
103 |
slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
104 |
iis = invImageScalingExpressionSa.function(x) |
105 |
fff = iis.subs({x:ff}) |
106 |
print "fff:", fff, |
107 |
print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
108 |
return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
109 |
fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
110 |
|
111 |
def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
112 |
# Create a polynomial over the rationals. |
113 |
polynomialRing = QQ[str(polyOfFloat.variables()[0])] |
114 |
return(polynomialRing(polyOfFloat)) |
115 |
# End slz_float_poly_of_float_to_rat_poly_of_rat |
116 |
|
117 |
def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
118 |
lowerBoundSa, |
119 |
upperBoundSa, floatingPointPrecSa, |
120 |
internalSollyaPrecSa, approxPrecSa): |
121 |
""" |
122 |
Under the assumption that: |
123 |
- functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
124 |
- lowerBound and upperBound belong to the same binade. |
125 |
from a: |
126 |
- function; |
127 |
- a degree |
128 |
- a pair of bounds; |
129 |
- the floating-point precision we work on; |
130 |
- the internal Sollya precision; |
131 |
- the requested approximation error |
132 |
The initial interval is, possibly, splitted into smaller intervals. |
133 |
It return a list of tuples, each made of: |
134 |
- a first polynomial (without the changed variable f(x) = p(x-x0)); |
135 |
- a second polynomial (with a changed variable f(x) = q(x)) |
136 |
- the approximation interval; |
137 |
- the center, x0, of the interval; |
138 |
- the corresponding approximation error. |
139 |
""" |
140 |
x = functionSa.variables()[0] # Actual variable name can be anything. |
141 |
(fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
142 |
scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
143 |
slz_compute_scaled_function(functionSa, \ |
144 |
lowerBoundSa, \ |
145 |
upperBoundSa, \ |
146 |
floatingPointPrecSa) |
147 |
# |
148 |
resultArray = [] |
149 |
# |
150 |
print "Approximation precision: ", RR(approxPrecSa) |
151 |
# Prepare the arguments for the Taylor expansion computation with Sollya. |
152 |
functionSo = pobyso_parse_string_sa_so(fff._assume_str()) |
153 |
degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
154 |
scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
155 |
scaledUpperBoundSa) |
156 |
# Compute the first Taylor expansion. |
157 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
158 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
159 |
scaledLowerBoundSa, scaledUpperBoundSa, |
160 |
approxPrecSa, internalSollyaPrecSa) |
161 |
# Change variable stuff |
162 |
changeVarExpressionSo = sollya_lib_build_function_sub( |
163 |
sollya_lib_build_function_free_variable(), |
164 |
sollya_lib_copy_obj(intervalCenterSo)) |
165 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
166 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, intervalCenterSo,\ |
167 |
maxErrorSo)) |
168 |
realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
169 |
upperBoundSa.parent().precision())) |
170 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
171 |
# Compute the next upper bound. |
172 |
# If the error of approximation is more than half of the target, |
173 |
# use the same interval. |
174 |
# If it is less, increase it a bit. |
175 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
176 |
currentErrorRatio = approxPrecSa / errorSa |
177 |
currentScaledUpperBoundSa = boundsSa.endpoints()[1] |
178 |
if currentErrorRatio < 2 : |
179 |
currentScaledUpperBoundSa += \ |
180 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) |
181 |
else: |
182 |
currentScaledUpperBoundSa += \ |
183 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) \ |
184 |
* currentErrorRatio.log2() * 2 |
185 |
if currentScaledUpperBoundSa > scaledUpperBoundSa: |
186 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
187 |
# Compute the other expansions. |
188 |
while boundsSa.endpoints()[1] < scaledUpperBoundSa: |
189 |
currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
190 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
191 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
192 |
currentScaledLowerBoundSa, |
193 |
currentScaledUpperBoundSa, |
194 |
approxPrecSa, |
195 |
internalSollyaPrecSa) |
196 |
# Change variable stuff |
197 |
changeVarExpressionSo = sollya_lib_build_function_sub( |
198 |
sollya_lib_build_function_free_variable(), |
199 |
sollya_lib_copy_obj(intervalCenterSo)) |
200 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
201 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
202 |
intervalCenterSo, maxErrorSo)) |
203 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
204 |
# Compute the next upper bound. |
205 |
# If the error of approximation is more than half of the target, |
206 |
# use the same interval. |
207 |
# If it is less, increase it a bit. |
208 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
209 |
currentErrorRatio = approxPrecSa / errorSa |
210 |
if currentErrorRatio < RR('1.5') : |
211 |
currentScaledUpperBoundSa = \ |
212 |
boundsSa.endpoints()[1] + \ |
213 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) |
214 |
elif currentErrorRatio < 2: |
215 |
currentScaledUpperBoundSa = \ |
216 |
boundsSa.endpoints()[1] + \ |
217 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) \ |
218 |
* currentErrorRatio.log2() |
219 |
else: |
220 |
currentScaledUpperBoundSa = \ |
221 |
boundsSa.endpoints()[1] + \ |
222 |
(boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) \ |
223 |
* currentErrorRatio.log2() * 2 |
224 |
if currentScaledUpperBoundSa > scaledUpperBoundSa: |
225 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
226 |
sollya_lib_clear_obj(functionSo) |
227 |
sollya_lib_clear_obj(degreeSo) |
228 |
sollya_lib_clear_obj(scaledBoundsSo) |
229 |
return(resultArray) |
230 |
# End slz_get_intervals_and_polynomials |
231 |
|
232 |
|
233 |
def slz_interval_scaling_expression(boundsInterval, expVar): |
234 |
""" |
235 |
Compute the scaling expression to map an interval that span only |
236 |
a binade to [1, 2) and the inverse expression as well. |
237 |
Not very sure that the transformation makes sense for negative numbers. |
238 |
""" |
239 |
# The scaling offset is only used for negative numbers. |
240 |
if abs(boundsInterval.endpoints()[0]) < 1: |
241 |
if boundsInterval.endpoints()[0] >= 0: |
242 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
243 |
invScalingCoeff = 1/scalingCoeff |
244 |
return((scalingCoeff * expVar, |
245 |
invScalingCoeff * expVar)) |
246 |
else: |
247 |
scalingCoeff = \ |
248 |
2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
249 |
scalingOffset = -3 * scalingCoeff |
250 |
return((scalingCoeff * expVar + scalingOffset, |
251 |
1/scalingCoeff * expVar + 3)) |
252 |
else: |
253 |
if boundsInterval.endpoints()[0] >= 0: |
254 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
255 |
scalingOffset = 0 |
256 |
return((scalingCoeff * expVar, |
257 |
1/scalingCoeff * expVar)) |
258 |
else: |
259 |
scalingCoeff = \ |
260 |
2^(floor((-boundsInterval.endpoints()[1]).log2())) |
261 |
scalingOffset = -3 * scalingCoeff |
262 |
#scalingOffset = 0 |
263 |
return((scalingCoeff * expVar + scalingOffset, |
264 |
1/scalingCoeff * expVar + 3)) |
265 |
|
266 |
|
267 |
def slz_interval_and_polynomial_to_sage(polyRangeCenterErrorSo): |
268 |
""" |
269 |
Compute the Sage version of the Taylor polynomial and it's |
270 |
companion data (interval, center...) |
271 |
The input parameter is a five elements tuple: |
272 |
- [0]: the polyomial (without variable change), as polynomial over a |
273 |
real ring; |
274 |
- [1]: the polyomial (with variable change done in Sollya), as polynomial |
275 |
over a real ring; |
276 |
- [2]: the interval (as Sollya range); |
277 |
- [3]: the interval center; |
278 |
- [4]: the approximation error. |
279 |
|
280 |
The function return a 5 elements tuple: formed with all the |
281 |
input elements converted into their Sollya counterpart. |
282 |
""" |
283 |
polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
284 |
polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
285 |
intervalSa = \ |
286 |
pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
287 |
centerSa = \ |
288 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
289 |
errorSa = \ |
290 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
291 |
return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
292 |
# End slz_interval_and_polynomial_to_sage |
293 |
|
294 |
def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
295 |
precision, |
296 |
targetHardnessToRound, |
297 |
variable1, |
298 |
variable2): |
299 |
""" |
300 |
Creates a new polynomial with integer coefficients for use with the |
301 |
Coppersmith method. |
302 |
A the same time it computes : |
303 |
- 2^K (N); |
304 |
- 2^k |
305 |
- lcm |
306 |
""" |
307 |
# Create a new integer polynomial ring. |
308 |
IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
309 |
# Coefficients are issued in the increasing power order. |
310 |
ratPolyCoefficients = ratPolyOfInt.coefficients() |
311 |
# Build the list of number we compute the lcmm of. |
312 |
coefficientDenominators = sro_denominators(ratPolyCoefficients) |
313 |
coefficientDenominators.append(2^precision) |
314 |
coefficientDenominators.append(2^(targetHardnessToRound + 1)) |
315 |
leastCommonMultiple = sro_lcmm(coefficientDenominators) |
316 |
# Compute the lcm |
317 |
leastCommonMultiple = sro_lcmm(coefficientDenominators) |
318 |
# Compute the expression corresponding to the new polynomial |
319 |
coefficientNumerators = sro_numerators(ratPolyCoefficients) |
320 |
print coefficientNumerators |
321 |
polynomialExpression = 0 |
322 |
power = 0 |
323 |
# Iterate over two lists at the same time, stop when the shorter is |
324 |
# exhausted. |
325 |
for numerator, denominator in \ |
326 |
zip(coefficientNumerators, coefficientDenominators): |
327 |
multiplicator = leastCommonMultiple / denominator |
328 |
newCoefficient = numerator * multiplicator |
329 |
polynomialExpression += newCoefficient * variable1^power |
330 |
power +=1 |
331 |
polynomialExpression += - variable2 |
332 |
return (IP(polynomialExpression), |
333 |
leastCommonMultiple / 2^precision, # 2^K or N. |
334 |
leastCommonMultiple / 2 ^(targetHardnessToRound + 1), # tBound |
335 |
leastCommonMultiple) |
336 |
|
337 |
# End slz_ratPoly_of_int_to_poly_for_coppersmith |
338 |
|
339 |
def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
340 |
precision): |
341 |
""" |
342 |
Makes a variable substitution into the input polynomial so that the output |
343 |
polynomial can take integer arguments. |
344 |
All variables of the input polynomial "have precision p". That is to say |
345 |
that they are rationals with denominator == 2^precision: x = y/2^precision |
346 |
We "incorporate" these denominators into the coefficients with, |
347 |
respectively, the "right" power. |
348 |
""" |
349 |
polynomialField = ratPolyOfRat.parent() |
350 |
polynomialVariable = rationalPolynomial.variables()[0] |
351 |
print "The polynomial field is:", polynomialField |
352 |
return \ |
353 |
polynomialField(rationalPolynomial.subs({polynomialVariable : \ |
354 |
polynomialVariable/2^(precision-1)})) |
355 |
|
356 |
# Return a tuple: |
357 |
# - the bivariate integer polynomial in (i,j); |
358 |
# - 2^K |
359 |
# End slz_rat_poly_of_rat_to_rat_poly_of_int |
360 |
|
361 |
print "sageSLZ loaded..." |