root / pobysoPythonSage / src / pobyso.py @ 83
Historique | Voir | Annoter | Télécharger (39,01 ko)
1 |
"""
|
---|---|
2 |
Actual functions to use in Sage
|
3 |
ST 2012-11-13
|
4 |
|
5 |
Command line syntax:
|
6 |
use from Sage (via the "load" or the "attach" commands)
|
7 |
|
8 |
pobyso functions come in five flavors:
|
9 |
- the _so_so (arguments and returned objects are pointers to Sollya objects,
|
10 |
includes the void function and the no arguments function that return a
|
11 |
pointer to a Sollya object);
|
12 |
- the _so_sa (argument are pointers to Sollya objects, returned objects are
|
13 |
Sage/Python objects or, more generally, information is transfered from the
|
14 |
Sollya world to Sage/Python world; e.g. functions without arguments that
|
15 |
return a Sage/Python object);
|
16 |
- the _sa_so (arguments are Sage/Python objects, returned objects are
|
17 |
pointers to Sollya objects);
|
18 |
- the sa_sa (arguments and returned objects are all Sage/Python objects);
|
19 |
- a catch all flavor, without any suffix, (e. g. functions that have no argument
|
20 |
nor return value).
|
21 |
This classification is not always very strict. Conversion functions from Sollya
|
22 |
to Sage/Python are sometimes decorated with Sage/Python arguments to set
|
23 |
the precision. These functions remain in the so_sa category.
|
24 |
NOTES:
|
25 |
Reported errors in Eclipse come from the calls to
|
26 |
the Sollya library
|
27 |
|
28 |
ToDo (among other things):
|
29 |
-memory management.
|
30 |
"""
|
31 |
from ctypes import * |
32 |
import re |
33 |
from sage.symbolic.expression_conversions import polynomial |
34 |
from sage.symbolic.expression_conversions import PolynomialConverter |
35 |
"""
|
36 |
Create the equivalent to an enum for the Sollya function types.
|
37 |
"""
|
38 |
(SOLLYA_BASE_FUNC_ABS, |
39 |
SOLLYA_BASE_FUNC_ACOS, |
40 |
SOLLYA_BASE_FUNC_ACOSH, |
41 |
SOLLYA_BASE_FUNC_ADD, |
42 |
SOLLYA_BASE_FUNC_ASIN, |
43 |
SOLLYA_BASE_FUNC_ASINH, |
44 |
SOLLYA_BASE_FUNC_ATAN, |
45 |
SOLLYA_BASE_FUNC_ATANH, |
46 |
SOLLYA_BASE_FUNC_CEIL, |
47 |
SOLLYA_BASE_FUNC_CONSTANT, |
48 |
SOLLYA_BASE_FUNC_COS, |
49 |
SOLLYA_BASE_FUNC_COSH, |
50 |
SOLLYA_BASE_FUNC_DIV, |
51 |
SOLLYA_BASE_FUNC_DOUBLE, |
52 |
SOLLYA_BASE_FUNC_DOUBLEDOUBLE, |
53 |
SOLLYA_BASE_FUNC_DOUBLEEXTENDED, |
54 |
SOLLYA_BASE_FUNC_ERF, |
55 |
SOLLYA_BASE_FUNC_ERFC, |
56 |
SOLLYA_BASE_FUNC_EXP, |
57 |
SOLLYA_BASE_FUNC_EXP_M1, |
58 |
SOLLYA_BASE_FUNC_FLOOR, |
59 |
SOLLYA_BASE_FUNC_FREE_VARIABLE, |
60 |
SOLLYA_BASE_FUNC_HALFPRECISION, |
61 |
SOLLYA_BASE_FUNC_LIBRARYCONSTANT, |
62 |
SOLLYA_BASE_FUNC_LIBRARYFUNCTION, |
63 |
SOLLYA_BASE_FUNC_LOG, |
64 |
SOLLYA_BASE_FUNC_LOG_10, |
65 |
SOLLYA_BASE_FUNC_LOG_1P, |
66 |
SOLLYA_BASE_FUNC_LOG_2, |
67 |
SOLLYA_BASE_FUNC_MUL, |
68 |
SOLLYA_BASE_FUNC_NEARESTINT, |
69 |
SOLLYA_BASE_FUNC_NEG, |
70 |
SOLLYA_BASE_FUNC_PI, |
71 |
SOLLYA_BASE_FUNC_POW, |
72 |
SOLLYA_BASE_FUNC_PROCEDUREFUNCTION, |
73 |
SOLLYA_BASE_FUNC_QUAD, |
74 |
SOLLYA_BASE_FUNC_SIN, |
75 |
SOLLYA_BASE_FUNC_SINGLE, |
76 |
SOLLYA_BASE_FUNC_SINH, |
77 |
SOLLYA_BASE_FUNC_SQRT, |
78 |
SOLLYA_BASE_FUNC_SUB, |
79 |
SOLLYA_BASE_FUNC_TAN, |
80 |
SOLLYA_BASE_FUNC_TANH, |
81 |
SOLLYA_BASE_FUNC_TRIPLEDOUBLE) = map(int,xrange(44)) |
82 |
print "\nSuperficial pobyso check..." |
83 |
print "First constant - SOLLYA_BASE_FUNC_ABS: ", SOLLYA_BASE_FUNC_ABS |
84 |
print "Last constant - SOLLYA_BASE_FUNC_TRIPLEDOUBLE: ", SOLLYA_BASE_FUNC_TRIPLEDOUBLE |
85 |
|
86 |
pobyso_max_arity = 9
|
87 |
|
88 |
def pobyso_autoprint(arg): |
89 |
sollya_lib_autoprint(arg,None)
|
90 |
|
91 |
def pobyso_autoprint_so_so(arg): |
92 |
sollya_lib_autoprint(arg,None)
|
93 |
|
94 |
def pobyso_absolute_so_so(): |
95 |
return(sollya_lib_absolute(None)) |
96 |
|
97 |
def pobyso_build_function_sub_so_so(exp1So, exp2So): |
98 |
return(sollya_lib_build_function_sub(exp1So, exp2So))
|
99 |
|
100 |
def pobyso_cmp(rnArg, soCte): |
101 |
"""
|
102 |
Compare the MPFR value a RealNumber with that of a Sollya constant.
|
103 |
|
104 |
Get the value of the Sollya constant into a RealNumber and compare
|
105 |
using MPFR. Could be optimized by working directly with a mpfr_t
|
106 |
for the intermediate number.
|
107 |
"""
|
108 |
precisionOfCte = c_int(0)
|
109 |
# From the Sollya constant, create a local Sage RealNumber.
|
110 |
sollya_lib_get_prec_of_constant(precisionOfCte, soCte) |
111 |
#print "Precision of constant: ", precisionOfCte
|
112 |
RRRR = RealField(precisionOfCte.value) |
113 |
rnLocal = RRRR(0)
|
114 |
sollya_lib_get_constant(get_rn_value(rnLocal), soCte) |
115 |
#print "rnDummy: ", rnDummy
|
116 |
# Compare the local Sage RealNumber with rnArg.
|
117 |
return(cmp_rn_value(rnArg, rnLocal))
|
118 |
# End pobyso_smp
|
119 |
|
120 |
def pobyso_change_var_in_function_so_so(funcSo, chvarExpSo): |
121 |
"""
|
122 |
Variable change in a function.
|
123 |
"""
|
124 |
return(sollya_lib_evaluate(funcSo,chvarExpSo))
|
125 |
# End pobyso_change_var_in_function_so_so
|
126 |
|
127 |
def pobyso_chebyshevform_so_so(functionSo, degreeSo, intervalSo): |
128 |
resultSo = sollya_lib_chebyshevform(functionSo, degreeSo, intervalSo) |
129 |
return(resultSo)
|
130 |
# End pobyso_chebyshevform_so_so.
|
131 |
|
132 |
def pobyso_compute_pos_function_abs_val_bounds_sa_sa(funcSa, lowerBoundSa, \ |
133 |
upperBoundSa): |
134 |
"""
|
135 |
TODO: set the variable name in Sollya.
|
136 |
"""
|
137 |
funcSo = pobyso_parse_string(funcSa._assume_str()) |
138 |
rangeSo = pobyso_range_sa_so(lowerBoundSa, upperBoundSa) |
139 |
infnormSo = pobyso_infnorm_so_so(funcSo,rangeSo) |
140 |
# Sollya return the infnorm as an interval.
|
141 |
fMaxSa = pobyso_get_interval_from_range_so_sa(infnormSo) |
142 |
# Get the top bound and compute the binade top limit.
|
143 |
fMaxUpperBoundSa = fMaxSa.upper() |
144 |
binadeTopLimitSa = 2**ceil(fMaxUpperBoundSa.log2())
|
145 |
# Put up together the function to use to compute the lower bound.
|
146 |
funcAuxSo = pobyso_parse_string(str(binadeTopLimitSa) + \
|
147 |
'-(' + f._assume_str() + ')') |
148 |
pobyso_autoprint(funcAuxSo) |
149 |
# Clear the Sollya range before a new call to infnorm and issue the call.
|
150 |
sollya_lib_clear_obj(infnormSo) |
151 |
infnormSo = pobyso_infnorm_so_so(funcAuxSo,rangeSo) |
152 |
fMinSa = pobyso_get_interval_from_range_so_sa(infnormSo) |
153 |
sollya_lib_clear_obj(infnormSo) |
154 |
fMinLowerBoundSa = topBinadeLimit - fMinSa.lower() |
155 |
# Compute the maximum of the precisions of the different bounds.
|
156 |
maxPrecSa = max([fMinLowerBoundSa.parent().precision(), \
|
157 |
fMaxUpperBoundSa.parent().precision()]) |
158 |
# Create a RealIntervalField and create an interval with the "good" bounds.
|
159 |
RRRI = RealIntervalField(maxPrecSa) |
160 |
imageIntervalSa = RRRI(fMinLowerBoundSa, fMaxUpperBoundSa) |
161 |
# Free the unneeded Sollya objects
|
162 |
sollya_lib_clear_obj(funcSo) |
163 |
sollya_lib_clear_obj(funcAuxSo) |
164 |
sollya_lib_clear_obj(rangeSo) |
165 |
return(imageIntervalSa)
|
166 |
# End pobyso_compute_pos_function_abs_val_bounds_sa_sa
|
167 |
|
168 |
def pobyso_constant(rnArg): |
169 |
""" Legacy function. See pobyso_constant_sa_so. """
|
170 |
return(pobyso_constant_sa_so(rnArg))
|
171 |
|
172 |
def pobyso_constant_sa_so(rnArg): |
173 |
"""
|
174 |
Create a Sollya constant from a RealNumber.
|
175 |
"""
|
176 |
return(sollya_lib_constant(get_rn_value(rnArg)))
|
177 |
|
178 |
def pobyso_constant_0_sa_so(): |
179 |
return(pobyso_constant_from_int_sa_so(0)) |
180 |
|
181 |
def pobyso_constant_1(): |
182 |
""" Legacy function. See pobyso_constant_so_so. """
|
183 |
return(pobyso_constant_1_sa_so())
|
184 |
|
185 |
def pobyso_constant_1_sa_so(): |
186 |
return(pobyso_constant_from_int_sa_so(1)) |
187 |
|
188 |
def pobyso_constant_from_int(anInt): |
189 |
""" Legacy function. See pobyso_constant_from_int_sa_so. """
|
190 |
return(pobyso_constant_from_int_sa_so(anInt))
|
191 |
|
192 |
def pobyso_constant_from_int_sa_so(anInt): |
193 |
return(sollya_lib_constant_from_int(int(anInt))) |
194 |
|
195 |
def pobyso_function_type_as_string(funcType): |
196 |
""" Legacy function. See pobyso_function_type_as_string_so_sa. """
|
197 |
return(pobyso_function_type_as_string_so_sa(funcType))
|
198 |
|
199 |
def pobyso_function_type_as_string_so_sa(funcType): |
200 |
"""
|
201 |
Numeric Sollya function codes -> Sage mathematical function names.
|
202 |
Notice that pow -> ^ (a la Sage, not a la Python).
|
203 |
"""
|
204 |
if funcType == SOLLYA_BASE_FUNC_ABS:
|
205 |
return "abs" |
206 |
elif funcType == SOLLYA_BASE_FUNC_ACOS:
|
207 |
return "arccos" |
208 |
elif funcType == SOLLYA_BASE_FUNC_ACOSH:
|
209 |
return "arccosh" |
210 |
elif funcType == SOLLYA_BASE_FUNC_ADD:
|
211 |
return "+" |
212 |
elif funcType == SOLLYA_BASE_FUNC_ASIN:
|
213 |
return "arcsin" |
214 |
elif funcType == SOLLYA_BASE_FUNC_ASINH:
|
215 |
return "arcsinh" |
216 |
elif funcType == SOLLYA_BASE_FUNC_ATAN:
|
217 |
return "arctan" |
218 |
elif funcType == SOLLYA_BASE_FUNC_ATANH:
|
219 |
return "arctanh" |
220 |
elif funcType == SOLLYA_BASE_FUNC_CEIL:
|
221 |
return "ceil" |
222 |
elif funcType == SOLLYA_BASE_FUNC_CONSTANT:
|
223 |
return "cte" |
224 |
elif funcType == SOLLYA_BASE_FUNC_COS:
|
225 |
return "cos" |
226 |
elif funcType == SOLLYA_BASE_FUNC_COSH:
|
227 |
return "cosh" |
228 |
elif funcType == SOLLYA_BASE_FUNC_DIV:
|
229 |
return "/" |
230 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLE:
|
231 |
return "double" |
232 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLEDOUBLE:
|
233 |
return "doubleDouble" |
234 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLEEXTENDED:
|
235 |
return "doubleDxtended" |
236 |
elif funcType == SOLLYA_BASE_FUNC_ERF:
|
237 |
return "erf" |
238 |
elif funcType == SOLLYA_BASE_FUNC_ERFC:
|
239 |
return "erfc" |
240 |
elif funcType == SOLLYA_BASE_FUNC_EXP:
|
241 |
return "exp" |
242 |
elif funcType == SOLLYA_BASE_FUNC_EXP_M1:
|
243 |
return "expm1" |
244 |
elif funcType == SOLLYA_BASE_FUNC_FLOOR:
|
245 |
return "floor" |
246 |
elif funcType == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
247 |
return "freeVariable" |
248 |
elif funcType == SOLLYA_BASE_FUNC_HALFPRECISION:
|
249 |
return "halfPrecision" |
250 |
elif funcType == SOLLYA_BASE_FUNC_LIBRARYCONSTANT:
|
251 |
return "libraryConstant" |
252 |
elif funcType == SOLLYA_BASE_FUNC_LIBRARYFUNCTION:
|
253 |
return "libraryFunction" |
254 |
elif funcType == SOLLYA_BASE_FUNC_LOG:
|
255 |
return "log" |
256 |
elif funcType == SOLLYA_BASE_FUNC_LOG_10:
|
257 |
return "log10" |
258 |
elif funcType == SOLLYA_BASE_FUNC_LOG_1P:
|
259 |
return "log1p" |
260 |
elif funcType == SOLLYA_BASE_FUNC_LOG_2:
|
261 |
return "log2" |
262 |
elif funcType == SOLLYA_BASE_FUNC_MUL:
|
263 |
return "*" |
264 |
elif funcType == SOLLYA_BASE_FUNC_NEARESTINT:
|
265 |
return "round" |
266 |
elif funcType == SOLLYA_BASE_FUNC_NEG:
|
267 |
return "__neg__" |
268 |
elif funcType == SOLLYA_BASE_FUNC_PI:
|
269 |
return "pi" |
270 |
elif funcType == SOLLYA_BASE_FUNC_POW:
|
271 |
return "^" |
272 |
elif funcType == SOLLYA_BASE_FUNC_PROCEDUREFUNCTION:
|
273 |
return "procedureFunction" |
274 |
elif funcType == SOLLYA_BASE_FUNC_QUAD:
|
275 |
return "quad" |
276 |
elif funcType == SOLLYA_BASE_FUNC_SIN:
|
277 |
return "sin" |
278 |
elif funcType == SOLLYA_BASE_FUNC_SINGLE:
|
279 |
return "single" |
280 |
elif funcType == SOLLYA_BASE_FUNC_SINH:
|
281 |
return "sinh" |
282 |
elif funcType == SOLLYA_BASE_FUNC_SQRT:
|
283 |
return "sqrt" |
284 |
elif funcType == SOLLYA_BASE_FUNC_SUB:
|
285 |
return "-" |
286 |
elif funcType == SOLLYA_BASE_FUNC_TAN:
|
287 |
return "tan" |
288 |
elif funcType == SOLLYA_BASE_FUNC_TANH:
|
289 |
return "tanh" |
290 |
elif funcType == SOLLYA_BASE_FUNC_TRIPLEDOUBLE:
|
291 |
return "tripleDouble" |
292 |
else:
|
293 |
return None |
294 |
|
295 |
def pobyso_get_constant(rnArg, soConst): |
296 |
""" Legacy function. See pobyso_get_constant_so_sa. """
|
297 |
return(pobyso_get_constant_so_sa(rnArg, soConst))
|
298 |
|
299 |
def pobyso_get_constant_so_sa(rnArg, soConst): |
300 |
"""
|
301 |
Set the value of rnArg to the value of soConst in MPFR_RNDN mode.
|
302 |
rnArg must already exist and belong to some RealField.
|
303 |
We assume that soConst points to a Sollya constant.
|
304 |
"""
|
305 |
return(sollya_lib_get_constant(get_rn_value(rnArg), soConst))
|
306 |
|
307 |
def pobyso_get_constant_as_rn(ctExpSo): |
308 |
"""
|
309 |
Legacy function. See pobyso_get_constant_as_rn_so_sa.
|
310 |
"""
|
311 |
return(pobyso_get_constant_as_rn_so_sa(ctExpSo))
|
312 |
|
313 |
def pobyso_get_constant_as_rn_so_sa(constExpSo): |
314 |
"""
|
315 |
Get a Sollya constant as a Sage "real number".
|
316 |
The precision of the floating-point number returned is that of the Sollya
|
317 |
constant.
|
318 |
"""
|
319 |
precisionSa = pobyso_get_prec_of_constant_so_sa(constExpSo) |
320 |
RRRR = RealField(precisionSa) |
321 |
rnSa = RRRR(0)
|
322 |
sollya_lib_get_constant(get_rn_value(rnSa), constExpSo) |
323 |
return(rnSa)
|
324 |
# End pobyso_get_constant_as_rn_so_sa
|
325 |
|
326 |
def pobyso_get_constant_as_rn_with_rf(ctExp, realField): |
327 |
"""
|
328 |
Legacy function. See pobyso_get_constant_as_rn_with_rf_so_sa.
|
329 |
"""
|
330 |
return(pobyso_get_constant_as_rn_with_rf_so_sa(ctExp, realField))
|
331 |
|
332 |
def pobyso_get_constant_as_rn_with_rf_so_sa(ctExpSo, realFieldSa = None): |
333 |
"""
|
334 |
Get a Sollya constant as a Sage "real number".
|
335 |
If no real field is specified, the precision of the floating-point number
|
336 |
returned is that of the Solly constant.
|
337 |
Otherwise is is that of the real field. Hence rounding may happen.
|
338 |
"""
|
339 |
if realFieldSa is None: |
340 |
sollyaPrecSa = pobyso_get_prec_so_sa() |
341 |
realFieldSa = RealField(sollyaPrecSa) |
342 |
rnSa = realFieldSa(0)
|
343 |
sollya_lib_get_constant(get_rn_value(rnSa), ctExpSo) |
344 |
return(rnSa)
|
345 |
# End pobyso_get_constant_as_rn_with_rf_so_sa
|
346 |
|
347 |
def pobyso_get_free_variable_name(): |
348 |
"""
|
349 |
Legacy function. See pobyso_get_free_variable_name_so_sa.
|
350 |
"""
|
351 |
return(pobyso_get_free_variable_name_so_sa())
|
352 |
|
353 |
def pobyso_get_free_variable_name_so_sa(): |
354 |
return(sollya_lib_get_free_variable_name())
|
355 |
|
356 |
def pobyso_get_function_arity(expressionSo): |
357 |
"""
|
358 |
Legacy function. See pobyso_get_function_arity_so_sa.
|
359 |
"""
|
360 |
return(pobyso_get_function_arity_so_sa(expressionSo))
|
361 |
|
362 |
def pobyso_get_function_arity_so_sa(expressionSo): |
363 |
arity = c_int(0)
|
364 |
sollya_lib_get_function_arity(byref(arity),expressionSo) |
365 |
return(int(arity.value)) |
366 |
|
367 |
def pobyso_get_head_function(expressionSo): |
368 |
"""
|
369 |
Legacy function. See pobyso_get_head_function_so_sa.
|
370 |
"""
|
371 |
return(pobyso_get_head_function_so_sa(expressionSo))
|
372 |
|
373 |
def pobyso_get_head_function_so_sa(expressionSo): |
374 |
functionType = c_int(0)
|
375 |
sollya_lib_get_head_function(byref(functionType), expressionSo, None)
|
376 |
return(int(functionType.value)) |
377 |
|
378 |
def pobyso_get_interval_from_range_so_sa(soRange, realIntervalFieldSa = None ): |
379 |
"""
|
380 |
Return the Sage interval corresponding to the Sollya range argument.
|
381 |
If no reaIntervalField is passed as an argument, the interval bounds are not
|
382 |
rounded: they are elements of RealIntervalField of the "right" precision
|
383 |
to hold all the digits.
|
384 |
"""
|
385 |
prec = c_int(0)
|
386 |
if realIntervalFieldSa is None: |
387 |
retval = sollya_lib_get_prec_of_range(byref(prec), soRange, None)
|
388 |
if retval == 0: |
389 |
return(None) |
390 |
realIntervalFieldSa = RealIntervalField(prec.value) |
391 |
intervalSa = realIntervalFieldSa(0,0) |
392 |
retval = \ |
393 |
sollya_lib_get_interval_from_range(get_interval_value(intervalSa),\ |
394 |
soRange) |
395 |
if retval == 0: |
396 |
return(None) |
397 |
return(intervalSa)
|
398 |
# End pobyso_get_interval_from_range_so_sa
|
399 |
|
400 |
def pobyso_get_list_elements(soObj): |
401 |
""" Legacy function. See pobyso_get_list_elements_so_so. """
|
402 |
return(pobyso_get_list_elements_so_so(soObj))
|
403 |
|
404 |
def pobyso_get_list_elements_so_so(soObj): |
405 |
"""
|
406 |
Get the list elements as a Sage/Python array of Sollya objects.
|
407 |
The other data returned are also Sage/Python objects.
|
408 |
"""
|
409 |
listAddress = POINTER(c_longlong)() |
410 |
numElements = c_int(0)
|
411 |
isEndElliptic = c_int(0)
|
412 |
listAsList = [] |
413 |
result = sollya_lib_get_list_elements(byref(listAddress),\ |
414 |
byref(numElements),\ |
415 |
byref(isEndElliptic),\ |
416 |
soObj) |
417 |
if result == 0 : |
418 |
return None |
419 |
for i in xrange(0, numElements.value, 1): |
420 |
listAsList.append(listAddress[i]) |
421 |
return(listAsList, numElements.value, isEndElliptic.value)
|
422 |
|
423 |
def pobyso_get_max_prec_of_exp(soExp): |
424 |
""" Legacy function. See pobyso_get_max_prec_of_exp_so_sa. """
|
425 |
return(pobyso_get_max_prec_of_exp_so_sa(soExp))
|
426 |
|
427 |
def pobyso_get_max_prec_of_exp_so_sa(soExp): |
428 |
"""
|
429 |
Get the maximum precision used for the numbers in a Sollya expression.
|
430 |
|
431 |
Arguments:
|
432 |
soExp -- a Sollya expression pointer
|
433 |
Return value:
|
434 |
A Python integer
|
435 |
TODO:
|
436 |
- error management;
|
437 |
- correctly deal with numerical type such as DOUBLEEXTENDED.
|
438 |
"""
|
439 |
maxPrecision = 0
|
440 |
minConstPrec = 0
|
441 |
currentConstPrec = 0
|
442 |
operator = pobyso_get_head_function_so_sa(soExp) |
443 |
if (operator != SOLLYA_BASE_FUNC_CONSTANT) and \ |
444 |
(operator != SOLLYA_BASE_FUNC_FREE_VARIABLE): |
445 |
(arity, subexpressions) = pobyso_get_subfunctions_so_sa(soExp) |
446 |
for i in xrange(arity): |
447 |
maxPrecisionCandidate = \ |
448 |
pobyso_get_max_prec_of_exp_so_sa(subexpressions[i]) |
449 |
if maxPrecisionCandidate > maxPrecision:
|
450 |
maxPrecision = maxPrecisionCandidate |
451 |
return(maxPrecision)
|
452 |
elif operator == SOLLYA_BASE_FUNC_CONSTANT:
|
453 |
minConstPrec = pobyso_get_min_prec_of_constant_so_sa(soExp) |
454 |
#currentConstPrec = pobyso_get_min_prec_of_constant_so_sa(soExp)
|
455 |
#print minConstPrec, " - ", currentConstPrec
|
456 |
return(pobyso_get_min_prec_of_constant_so_sa(soExp))
|
457 |
|
458 |
elif operator == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
459 |
return(0) |
460 |
else:
|
461 |
print "pobyso_get_max_prec_of_exp_so_sa: unexepected operator." |
462 |
return(0) |
463 |
|
464 |
def pobyso_get_min_prec_of_constant_so_sa(soConstExp): |
465 |
"""
|
466 |
Get the minimum precision necessary to represent the value of a Sollya
|
467 |
constant.
|
468 |
MPFR_MIN_PREC and powers of 2 are taken into account.
|
469 |
We assume that soCteExp is a point
|
470 |
"""
|
471 |
constExpAsRn = pobyso_get_constant_as_rn_so_sa(soConstExp) |
472 |
return(min_mpfr_size(get_rn_value(constExpAsRn)))
|
473 |
|
474 |
def pobyso_get_sage_exp_from_sollya_exp(sollyaExp, realField = RR): |
475 |
""" Legacy function. See pobyso_get_sage_exp_from_sollya_exp_so_sa. """
|
476 |
return(pobyso_get_sage_exp_from_sollya_exp_so_sa(sollyaExp, realField = RR))
|
477 |
|
478 |
def pobyso_get_sage_exp_from_sollya_exp_so_sa(sollyaExp, realField = RR): |
479 |
"""
|
480 |
Get a Sage expression from a Sollya expression.
|
481 |
Currently only tested with polynomials with floating-point coefficients.
|
482 |
Notice that, in the returned polynomial, the exponents are RealNumbers.
|
483 |
"""
|
484 |
#pobyso_autoprint(sollyaExp)
|
485 |
operator = pobyso_get_head_function_so_sa(sollyaExp) |
486 |
sollyaLibFreeVariableName = sollya_lib_get_free_variable_name() |
487 |
# Constants and the free variable are special cases.
|
488 |
# All other operator are dealt with in the same way.
|
489 |
if (operator != SOLLYA_BASE_FUNC_CONSTANT) and \ |
490 |
(operator != SOLLYA_BASE_FUNC_FREE_VARIABLE): |
491 |
(arity, subexpressions) = pobyso_get_subfunctions_so_sa(sollyaExp) |
492 |
if arity == 1: |
493 |
sageExp = eval(pobyso_function_type_as_string_so_sa(operator) + \
|
494 |
"(" + pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressions[0], \ |
495 |
realField) + ")")
|
496 |
elif arity == 2: |
497 |
# We do not get through the preprocessor.
|
498 |
# The "^" operator is then a special case.
|
499 |
if operator == SOLLYA_BASE_FUNC_POW:
|
500 |
operatorAsString = "**"
|
501 |
else:
|
502 |
operatorAsString = \ |
503 |
pobyso_function_type_as_string_so_sa(operator) |
504 |
sageExp = \ |
505 |
eval("pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressions[0], realField)"\ |
506 |
+ " " + operatorAsString + " " + \ |
507 |
"pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressions[1], realField)")
|
508 |
# We do not know yet how to deal with arity >= 3
|
509 |
# (is there any in Sollya anyway?).
|
510 |
else:
|
511 |
sageExp = eval('None') |
512 |
return(sageExp)
|
513 |
elif operator == SOLLYA_BASE_FUNC_CONSTANT:
|
514 |
#print "This is a constant"
|
515 |
return pobyso_get_constant_as_rn_with_rf_so_sa(sollyaExp, realField)
|
516 |
elif operator == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
517 |
#print "This is free variable"
|
518 |
return(eval(sollyaLibFreeVariableName)) |
519 |
else:
|
520 |
print "Unexpected" |
521 |
return eval('None') |
522 |
# End pobyso_get_sage_poly_from_sollya_poly
|
523 |
|
524 |
def pobyso_get_poly_sa_so(polySo, realFieldSa=None): |
525 |
"""
|
526 |
Create a Sollya polynomial from a Sage polynomial.
|
527 |
"""
|
528 |
pass
|
529 |
# pobyso_get_poly_sa_so
|
530 |
|
531 |
def pobyso_get_poly_so_sa(polySo, realFieldSa=None): |
532 |
"""
|
533 |
Convert a Sollya polynomial into a Sage polynomial.
|
534 |
We assume that the polynomial is in canonical form.
|
535 |
If no realField is given, a RealField corresponding to the maximum precision
|
536 |
of the coefficients is internally computed.
|
537 |
It is not returned but can be easily retrieved from the polynomial itself.
|
538 |
Main steps:
|
539 |
- (optional) compute the RealField of the coefficients;
|
540 |
- convert the Sollya expression into a Sage expression;
|
541 |
- convert the Sage expression into a Sage polynomial
|
542 |
TODO: the canonical thing for the polynomial.
|
543 |
"""
|
544 |
if realFieldSa is None: |
545 |
expressionPrecSa = pobyso_get_max_prec_of_exp_so_sa(polySo) |
546 |
realFieldSa = RealField(expressionPrecSa) |
547 |
#print "Sollya expression before...",
|
548 |
#pobyso_autoprint(polySo)
|
549 |
|
550 |
expressionSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, \ |
551 |
realFieldSa) |
552 |
#print "...Sollya expression after.",
|
553 |
#pobyso_autoprint(polySo)
|
554 |
polyVariableSa = expressionSa.variables()[0]
|
555 |
polyRingSa = realFieldSa[str(polyVariableSa)]
|
556 |
#print polyRingSa
|
557 |
# Do not use the polynomial(expressionSa, ring=polyRingSa) form!
|
558 |
polynomialSa = polyRingSa(expressionSa) |
559 |
return(polynomialSa)
|
560 |
# End pobyso_get_sage_poly_from_sollya_poly
|
561 |
|
562 |
def pobyso_get_subfunctions(expressionSo): |
563 |
""" Legacy function. See pobyso_get_subfunctions_so_sa. """
|
564 |
return(pobyso_get_subfunctions_so_sa(expressionSo))
|
565 |
|
566 |
def pobyso_get_subfunctions_so_sa(expressionSo): |
567 |
"""
|
568 |
Get the subfunctions of an expression.
|
569 |
Return the number of subfunctions and the list of subfunctions addresses.
|
570 |
S.T.: Could not figure out another way than that ugly list of declarations
|
571 |
to recover the addresses of the subfunctions.
|
572 |
We limit ourselves to arity 8 functions.
|
573 |
"""
|
574 |
subf0 = c_int(0)
|
575 |
subf1 = c_int(0)
|
576 |
subf2 = c_int(0)
|
577 |
subf3 = c_int(0)
|
578 |
subf4 = c_int(0)
|
579 |
subf5 = c_int(0)
|
580 |
subf6 = c_int(0)
|
581 |
subf7 = c_int(0)
|
582 |
subf8 = c_int(0)
|
583 |
arity = c_int(0)
|
584 |
nullPtr = POINTER(c_int)() |
585 |
sollya_lib_get_subfunctions(expressionSo, byref(arity), \ |
586 |
byref(subf0), byref(subf1), byref(subf2), byref(subf3), \ |
587 |
byref(subf4), byref(subf5),\ |
588 |
byref(subf6), byref(subf7), byref(subf8), nullPtr, None)
|
589 |
# byref(cast(subfunctions[0], POINTER(c_int))), \
|
590 |
# byref(cast(subfunctions[0], POINTER(c_int))), \
|
591 |
# byref(cast(subfunctions[2], POINTER(c_int))), \
|
592 |
# byref(cast(subfunctions[3], POINTER(c_int))), \
|
593 |
# byref(cast(subfunctions[4], POINTER(c_int))), \
|
594 |
# byref(cast(subfunctions[5], POINTER(c_int))), \
|
595 |
# byref(cast(subfunctions[6], POINTER(c_int))), \
|
596 |
# byref(cast(subfunctions[7], POINTER(c_int))), \
|
597 |
# byref(cast(subfunctions[8], POINTER(c_int))), nullPtr)
|
598 |
subfunctions = [subf0, subf1, subf2, subf3, subf4, subf5, subf6, subf7, \ |
599 |
subf8] |
600 |
subs = [] |
601 |
if arity.value > pobyso_max_arity:
|
602 |
return(0,[]) |
603 |
for i in xrange(arity.value): |
604 |
subs.append(int(subfunctions[i].value))
|
605 |
#print subs[i]
|
606 |
return(int(arity.value), subs) |
607 |
|
608 |
def pobyso_get_prec(): |
609 |
""" Legacy function. See pobyso_get_prec_so_sa(). """
|
610 |
return(pobyso_get_prec_so_sa())
|
611 |
|
612 |
def pobyso_get_prec_so_sa(): |
613 |
"""
|
614 |
Get the current default precision in Sollya.
|
615 |
The return value is Sage/Python int.
|
616 |
"""
|
617 |
precSo = sollya_lib_get_prec(None)
|
618 |
precSa = c_int(0)
|
619 |
sollya_lib_get_constant_as_int(byref(precSa), precSo) |
620 |
sollya_lib_clear_obj(precSo) |
621 |
return(int(precSa.value)) |
622 |
# End pobyso_get_prec_so_sa.
|
623 |
|
624 |
def pobyso_get_prec_of_constant(ctExpSo): |
625 |
""" Legacy function. See pobyso_get_prec_of_constant_so_sa. """
|
626 |
return(pobyso_get_prec_of_constant_so_sa(ctExpSo))
|
627 |
|
628 |
def pobyso_get_prec_of_constant_so_sa(ctExpSo): |
629 |
prec = c_int(0)
|
630 |
retc = sollya_lib_get_prec_of_constant(byref(prec), ctExpSo, None)
|
631 |
if retc == 0: |
632 |
return(None) |
633 |
return(int(prec.value)) |
634 |
|
635 |
def pobyso_get_prec_of_range_so_sa(rangeSo): |
636 |
prec = c_int(0)
|
637 |
retc = sollya_lib_get_prec_of_range(byref(prec), rangeSo, None)
|
638 |
if retc == 0: |
639 |
return(None) |
640 |
return(int(prec.value)) |
641 |
|
642 |
def pobyso_infnorm_so_so(func, interval, file = None, intervalList = None): |
643 |
print "Do not use this function. User pobyso_supnorm_so_so instead." |
644 |
return(None) |
645 |
|
646 |
def pobyso_lib_init(): |
647 |
sollya_lib_init(None)
|
648 |
|
649 |
def pobyso_name_free_variable(freeVariableName): |
650 |
""" Legacy function. See pobyso_name_free_variable_sa_so. """
|
651 |
pobyso_name_free_variable_sa_so(freeVariableName) |
652 |
|
653 |
def pobyso_name_free_variable_sa_so(freeVariableName): |
654 |
"""
|
655 |
Set the free variable name in Sollya from a Sage string.
|
656 |
"""
|
657 |
sollya_lib_name_free_variable(freeVariableName) |
658 |
|
659 |
def pobyso_parse_string(string): |
660 |
""" Legacy function. See pobyso_parse_string_sa_so. """
|
661 |
return(pobyso_parse_string_sa_so(string))
|
662 |
|
663 |
def pobyso_parse_string_sa_so(string): |
664 |
"""
|
665 |
Get the Sollya expression computed from a Sage string.
|
666 |
"""
|
667 |
return(sollya_lib_parse_string(string))
|
668 |
|
669 |
def pobyso_range(rnLowerBound, rnUpperBound): |
670 |
""" Legacy function. See pobyso_range_sa_so. """
|
671 |
return(pobyso_range_sa_so(rnLowerBound, rnUpperBound))
|
672 |
|
673 |
def pobyso_bounds_to_range_sa_so(rnLowerBoundSa, rnUpperBoundSa): |
674 |
"""
|
675 |
Return a Sollya range from to 2 RealField Sage elements.
|
676 |
The Sollya range element has a sufficient precision to hold all
|
677 |
the digits of the Sage bounds.
|
678 |
"""
|
679 |
# Sanity check.
|
680 |
if rnLowerBoundSa > rnUpperBoundSa:
|
681 |
return None |
682 |
# Check for the largest precision.
|
683 |
lbPrec = rnLowerBoundSa.parent().precision() |
684 |
ubPrec = rnLowerBoundSa.parent().precision() |
685 |
currentSollyaPrecSa = pobyso_get_prec_so_sa() |
686 |
maxPrecSa = max(lbPrec, ubPrec, currentSollyaPrecSa)
|
687 |
# Change the current Sollya precision only if necessary.
|
688 |
if maxPrecSa > currentSollyaPrecSa:
|
689 |
currentPrecSo = sollya_lib_get_prec(None)
|
690 |
newPrecSo = solly_lib_constant_from_uint64(maxPrecSa) |
691 |
sollya_lib_set_prec(newPrecSo) |
692 |
lowerBoundSo = sollya_lib_constant(get_rn_value(rnLowerBoundSa)) |
693 |
upperBoundSo = sollya_lib_constant(get_rn_value(rnUpperBoundSa)) |
694 |
rangeSo = sollya_lib_range(lowerBoundSo, upperBoundSo) |
695 |
if maxPrecSa > currentSollyaPrecSa:
|
696 |
sollya_lib_set_prec(currentPrecSo) |
697 |
sollya_lib_clear_obj(currentPrecSo) |
698 |
sollya_lib_clear_obj(newPrecSo) |
699 |
sollya_lib_clear_obj(lowerBoundSo) |
700 |
sollya_lib_clear_obj(upperBoundSo) |
701 |
return(rangeSo)
|
702 |
|
703 |
def pobyso_range_to_interval_so_sa(rangeSo, realIntervalField = None): |
704 |
"""
|
705 |
Get a Sage interval from a Sollya range.
|
706 |
If no realIntervalField is given as a parameter, the Sage interval
|
707 |
precision is that of the Sollya range.
|
708 |
Otherwise, the precision is that of the realIntervalField. Rounding
|
709 |
may happen.
|
710 |
"""
|
711 |
if realIntervalField is None: |
712 |
precSa = pobyso_get_prec_of_range_so_sa(rangeSo) |
713 |
realIntervalField = RealIntervalField(precSa) |
714 |
intervalSa = \ |
715 |
pobyso_get_interval_from_range_so_sa(rangeSo, realIntervalField) |
716 |
return(intervalSa)
|
717 |
|
718 |
def pobyso_remez_canonical_sa_sa(func, \ |
719 |
degree, \ |
720 |
lowerBound, \ |
721 |
upperBound, \ |
722 |
weight = None, \
|
723 |
quality = None):
|
724 |
"""
|
725 |
All arguments are Sage/Python.
|
726 |
The functions (func and weight) must be passed as expressions or strings.
|
727 |
Otherwise the function fails.
|
728 |
The return value is a Sage polynomial.
|
729 |
"""
|
730 |
var('zorglub') # Dummy variable name for type check only. Type of |
731 |
# zorglub is "symbolic expression".
|
732 |
polySo = pobyso_remez_canonical_sa_so(func, \ |
733 |
degree, \ |
734 |
lowerBound, \ |
735 |
upperBound, \ |
736 |
weight = None, \
|
737 |
quality = None)
|
738 |
# String test
|
739 |
if parent(func) == parent("string"): |
740 |
functionSa = eval(func)
|
741 |
# Expression test.
|
742 |
elif type(func) == type(zorglub): |
743 |
functionSa = func |
744 |
else:
|
745 |
return None |
746 |
#
|
747 |
maxPrecision = 0
|
748 |
if polySo is None: |
749 |
return(None) |
750 |
maxPrecision = pobyso_get_max_prec_of_exp_so_sa(polySo) |
751 |
RRRR = RealField(maxPrecision) |
752 |
polynomialRing = RRRR[functionSa.variables()[0]]
|
753 |
expSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, RRRR) |
754 |
polySa = polynomial(expSa, polynomialRing) |
755 |
sollya_lib_clear_obj(polySo) |
756 |
return(polySa)
|
757 |
|
758 |
def pobyso_remez_canonical(func, \ |
759 |
degree, \ |
760 |
lowerBound, \ |
761 |
upperBound, \ |
762 |
weight = "1", \
|
763 |
quality = None):
|
764 |
""" Legacy function. See pobyso_remez_canonical_sa_so. """
|
765 |
return(pobyso_remez_canonical_sa_so(func, \
|
766 |
degree, \ |
767 |
lowerBound, \ |
768 |
upperBound, \ |
769 |
weight, \ |
770 |
quality)) |
771 |
def pobyso_remez_canonical_sa_so(func, \ |
772 |
degree, \ |
773 |
lowerBound, \ |
774 |
upperBound, \ |
775 |
weight = None, \
|
776 |
quality = None):
|
777 |
"""
|
778 |
All arguments are Sage/Python.
|
779 |
The functions (func and weight) must be passed as expressions or strings.
|
780 |
Otherwise the function fails.
|
781 |
The return value is a pointer to a Sollya function.
|
782 |
"""
|
783 |
var('zorglub') # Dummy variable name for type check only. Type of |
784 |
# zorglub is "symbolic expression".
|
785 |
currentVariableName = None
|
786 |
# The func argument can be of different types (string,
|
787 |
# symbolic expression...)
|
788 |
if parent(func) == parent("string"): |
789 |
functionSo = sollya_lib_parse_string(func) |
790 |
# Expression test.
|
791 |
elif type(func) == type(zorglub): |
792 |
# Until we are able to translate Sage expressions into Sollya
|
793 |
# expressions : parse the string version.
|
794 |
currentVariableName = func.variables()[0]
|
795 |
sollya_lib_name_free_variable(str(currentVariableName))
|
796 |
functionSo = sollya_lib_parse_string(func._assume_str()) |
797 |
else:
|
798 |
return(None) |
799 |
if weight is None: |
800 |
weightSo = pobyso_constant_1_sa_so() |
801 |
elif parent(weight) == parent("string"): |
802 |
weightSo = sollya_lib_parse_string(func) |
803 |
elif type(weight) == type(zorglub): |
804 |
functionSo = sollya_lib_parse_string_sa_so(weight._assume_str()) |
805 |
else:
|
806 |
return(None) |
807 |
degreeSo = pobyso_constant_from_int(degree) |
808 |
rangeSo = pobyso_range_sa_so(lowerBound, upperBound) |
809 |
if not quality is None: |
810 |
qualitySo= pobyso_constant_sa_so(quality) |
811 |
else:
|
812 |
qualitySo = None
|
813 |
|
814 |
remezPolySo = sollya_lib_remez(functionSo, \ |
815 |
degreeSo, \ |
816 |
rangeSo, \ |
817 |
weightSo, \ |
818 |
qualitySo, \ |
819 |
None)
|
820 |
sollya_lib_clear_obj(functionSo) |
821 |
sollya_lib_clear_obj(degreeSo) |
822 |
sollya_lib_clear_obj(rangeSo) |
823 |
sollya_lib_clear_obj(weightSo) |
824 |
if not qualitySo is None: |
825 |
sollya_lib_clear_obj(qualtiySo) |
826 |
return(remezPolySo)
|
827 |
# End pobyso_remez_canonical_sa_so
|
828 |
|
829 |
def pobyso_remez_canonical_so_so(funcSo, \ |
830 |
degreeSo, \ |
831 |
rangeSo, \ |
832 |
weightSo = pobyso_constant_1_sa_so(),\ |
833 |
qualitySo = None):
|
834 |
"""
|
835 |
All arguments are pointers to Sollya objects.
|
836 |
The return value is a pointer to a Sollya function.
|
837 |
"""
|
838 |
if not sollya_lib_obj_is_function(funcSo): |
839 |
return(None) |
840 |
return(sollya_lib_remez(funcSo, degreeSo, rangeSo, weightSo, qualitySo, None)) |
841 |
|
842 |
def pobyso_set_canonical_off(): |
843 |
sollya_lib_set_canonical(sollya_lib_off()) |
844 |
|
845 |
def pobyso_set_canonical_on(): |
846 |
sollya_lib_set_canonical(sollya_lib_on()) |
847 |
|
848 |
def pobyso_set_prec(p): |
849 |
""" Legacy function. See pobyso_set_prec_sa_so. """
|
850 |
return( pobyso_set_prec_sa_so(p))
|
851 |
|
852 |
def pobyso_set_prec_sa_so(p): |
853 |
a = c_int(p) |
854 |
precSo = c_void_p(sollya_lib_constant_from_int(a)) |
855 |
sollya_lib_set_prec(precSo) |
856 |
|
857 |
def pobyso_supnorm_so_so(polySo, funcSo, intervalSo, errorTypeSo, accuracySo): |
858 |
return(sollya_lib_supnorm(polySo, funcSo, intervalSo, errorTypeSo, \
|
859 |
accuracySo)) |
860 |
|
861 |
def pobyso_taylor_expansion_with_change_var_so_so(functionSo, degreeSo, rangeSo, \ |
862 |
errorTypeSo, \ |
863 |
sollyaPrecSo=None):
|
864 |
"""
|
865 |
Compute the Taylor expansion with the variable change
|
866 |
x -> (x-intervalCenter) included.
|
867 |
"""
|
868 |
# No global change of the working precision.
|
869 |
if not sollyaPrecSo is None: |
870 |
initialPrecSo = sollya_lib_get_prec(None)
|
871 |
sollya_lib_set_prec(sollyaPrecSo) |
872 |
#
|
873 |
intervalCenterSo = sollya_lib_mid(rangeSo) |
874 |
taylorFormSo = sollya_lib_taylorform(functionSo, degreeSo, \ |
875 |
intervalCenterSo, \ |
876 |
rangeSo, errorTypeSo, None)
|
877 |
(taylorFormListSo, numElements, isEndElliptic) = \ |
878 |
pobyso_get_list_elements_so_so(taylorFormSo) |
879 |
polySo = taylorFormListSo[0]
|
880 |
errorRangeSo = taylorFormListSo[2]
|
881 |
maxErrorSo = sollya_lib_sup(errorRangeSo) |
882 |
changeVarExpSo = sollya_lib_build_function_sub(\ |
883 |
sollya_lib_build_function_free_variable(),\ |
884 |
sollya_lib_copy_obj(intervalCenterSo)) |
885 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpSo) |
886 |
# If changed, reset the Sollya working precision.
|
887 |
if not sollyaPrecSo is None: |
888 |
sollya_lib_set_prec(initialPrecSo) |
889 |
sollya_lib_clear_obj(initialPrecSo) |
890 |
return((polyVarChangedSo, intervalCenterSo, maxErrorSo))
|
891 |
# end pobyso_taylor_expansion_with_change_var_so_so
|
892 |
|
893 |
def pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, rangeSo, \ |
894 |
errorTypeSo, \ |
895 |
sollyaPrecSo=None):
|
896 |
"""
|
897 |
Compute the Taylor expansion without the variable change
|
898 |
x -> x-intervalCenter.
|
899 |
"""
|
900 |
# No global change of the working precision.
|
901 |
if not sollyaPrecSo is None: |
902 |
initialPrecSo = sollya_lib_get_prec(None)
|
903 |
sollya_lib_set_prec(sollyaPrecSo) |
904 |
#
|
905 |
intervalCenterSo = sollya_lib_mid(rangeSo) |
906 |
taylorFormSo = sollya_lib_taylorform(functionSo, degreeSo, \ |
907 |
intervalCenterSo, \ |
908 |
rangeSo, errorTypeSo, None)
|
909 |
(taylorFormListSo, numElements, isEndElliptic) = \ |
910 |
pobyso_get_list_elements_so_so(taylorFormSo) |
911 |
polySo = taylorFormListSo[0]
|
912 |
errorRangeSo = taylorFormListSo[2]
|
913 |
maxErrorSo = sollya_lib_sup(errorRangeSo) |
914 |
# If changed, reset the Sollya working precision.
|
915 |
if not sollyaPrecSo is None: |
916 |
sollya_lib_set_prec(initialPrecSo) |
917 |
sollya_lib_clear_obj(initialPrecSo) |
918 |
return((polySo, intervalCenterSo, maxErrorSo))
|
919 |
# end pobyso_taylor_expansion_no_change_var_so_so
|
920 |
|
921 |
def pobyso_taylor(function, degree, point): |
922 |
""" Legacy function. See pobysoTaylor_so_so. """
|
923 |
return(pobyso_taylor_so_so(function, degree, point))
|
924 |
|
925 |
def pobyso_taylor_so_so(functionSo, degreeSo, pointSo): |
926 |
return(sollya_lib_taylor(functionSo, degreeSo, pointSo))
|
927 |
|
928 |
def pobyso_taylorform(function, degree, point = None, interval = None, errorType=None): |
929 |
""" Legacy function. See ;"""
|
930 |
|
931 |
def pobyso_taylorform_sa_sa(functionSa, \ |
932 |
degree, \ |
933 |
point, \ |
934 |
precision, \ |
935 |
interval=None, \
|
936 |
errorType=None):
|
937 |
"""
|
938 |
Compute the Taylor form of 'degree' for 'functionSa' at 'point'
|
939 |
for 'interval' with 'errorType'.
|
940 |
point: must be a Real or a Real interval.
|
941 |
return the Taylor form as an array
|
942 |
TODO: take care of the interval and of the point when it is an interval;
|
943 |
when errorType is not None;
|
944 |
take care of the other elements of the Taylor form (coefficients
|
945 |
errors and delta.
|
946 |
"""
|
947 |
# Absolute as the default error.
|
948 |
if errorType is None: |
949 |
errorTypeSo = sollya_lib_absolute() |
950 |
else:
|
951 |
#TODO: deal with the other case.
|
952 |
pass
|
953 |
varSa = functionSa.variables()[0]
|
954 |
pointBaseRingString = str(point.base_ring())
|
955 |
if not re.search('Real', pointBaseRingString): |
956 |
return None |
957 |
# Call Sollya but first "sollyafy" the arguments.
|
958 |
pobyso_name_free_variable_sa_so(str(varSa))
|
959 |
#pobyso_set_prec_sa_so(300)
|
960 |
# Sollyafy the function.
|
961 |
functionSo = pobyso_parse_string_sa_so(functionSa._assume_str()) |
962 |
if sollya_lib_obj_is_error(functionSo):
|
963 |
print "pobyso_tailorform: function string can't be parsed!" |
964 |
return None |
965 |
# Sollyafy the degree
|
966 |
degreeSo = sollya_lib_constant_from_int(int(degree))
|
967 |
# Sollyafy the point
|
968 |
if not re.search('Interval', pointBaseRingString): |
969 |
pointSo = pobyso_constant_sa_so(point) |
970 |
else:
|
971 |
# TODO: deal with the interval case.
|
972 |
pass
|
973 |
# Call Sollya
|
974 |
taylorFormSo = \ |
975 |
sollya_lib_taylorform(functionSo, degreeSo, pointSo, errorTypeSo,\ |
976 |
None)
|
977 |
(tfsAsList, numElements, isEndElliptic) = \ |
978 |
pobyso_get_list_elements_so_so(taylorFormSo) |
979 |
polySo = tfsAsList[0]
|
980 |
maxPrecision = pobyso_get_max_prec_of_exp_so_sa(polySo) |
981 |
polyRealField = RealField(maxPrecision) |
982 |
expSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, polyRealField) |
983 |
sollya_lib_close() |
984 |
polynomialRing = polyRealField[str(varSa)]
|
985 |
polySa = polynomial(expSa, polynomialRing) |
986 |
taylorFormSa = [polySa] |
987 |
return(taylorFormSa)
|
988 |
# End pobyso_taylor_form_sa_sa
|
989 |
|
990 |
def pobyso_taylorform_so_so(functionSo, degreeSo, pointSo, intervalSo=None, \ |
991 |
errorTypeSo=None):
|
992 |
createdErrorType = False
|
993 |
if errorTypeSo is None: |
994 |
errorTypeSo = sollya_lib_absolute() |
995 |
createdErrorType = True
|
996 |
else:
|
997 |
#TODO: deal with the other case.
|
998 |
pass
|
999 |
if intervalSo is None: |
1000 |
resultSo = sollya_lib_taylorform(functionSo, degreeSo, pointSo, \ |
1001 |
errorTypeSo, None)
|
1002 |
else:
|
1003 |
resultSo = sollya_lib_taylorform(functionSo, degreeSo, pointSo, \ |
1004 |
intervalSo, errorTypeSo, None)
|
1005 |
if createdErrorType:
|
1006 |
sollya_lib_clear_obj(errorTypeSo) |
1007 |
return(resultSo)
|
1008 |
|
1009 |
|
1010 |
def pobyso_univar_polynomial_print_reverse(polySa): |
1011 |
""" Legacy function. See pobyso_univar_polynomial_print_reverse_sa_sa. """
|
1012 |
return(pobyso_univar_polynomial_print_reverse_sa_sa(polySa))
|
1013 |
|
1014 |
def pobyso_univar_polynomial_print_reverse_sa_sa(polySa): |
1015 |
"""
|
1016 |
Return the string representation of a univariate polynomial with
|
1017 |
monomials ordered in the x^0..x^n order of the monomials.
|
1018 |
Remember: Sage
|
1019 |
"""
|
1020 |
polynomialRing = polySa.base_ring() |
1021 |
# A very expensive solution:
|
1022 |
# -create a fake multivariate polynomial field with only one variable,
|
1023 |
# specifying a negative lexicographical order;
|
1024 |
mpolynomialRing = PolynomialRing(polynomialRing.base(), \ |
1025 |
polynomialRing.variable_name(), \ |
1026 |
1, order='neglex') |
1027 |
# - convert the univariate argument polynomial into a multivariate
|
1028 |
# version;
|
1029 |
p = mpolynomialRing(polySa) |
1030 |
# - return the string representation of the converted form.
|
1031 |
# There is no simple str() method defined for p's class.
|
1032 |
return(p.__str__())
|
1033 |
#
|
1034 |
print pobyso_get_prec()
|
1035 |
pobyso_set_prec(165)
|
1036 |
print pobyso_get_prec()
|
1037 |
a=100
|
1038 |
print type(a) |
1039 |
id(a)
|
1040 |
print "Max arity: ", pobyso_max_arity |
1041 |
print "Function tripleDouble (43) as a string: ", pobyso_function_type_as_string(43) |
1042 |
print "Function None (44) as a string: ", pobyso_function_type_as_string(44) |
1043 |
print "...Pobyso check done" |