Révision 81 pobysoPythonSage/src/sageSLZ/sagePolynomialOperations.sage

sagePolynomialOperations.sage (revision 81)
107 107
    return(expressionAsString)
108 108
# End spo_expression_as_string.
109 109

  
110
def spo_norm(poly, degree):
111
    """
112
    Behaves more or less (no infinity defined) as the norm for the
113
    univariate polynomials.
114
    Quoting the Sage documentation:
115
    Definition: For integer p, the p-norm of a polynomial is the pth root of 
116
    the sum of the pth powers of the absolute values of the coefficients of 
117
    the polynomial.
118
    """
119
    # TODO: check the arguments.
120
    norm = 0
121
    for coefficient in poly.coefficients():
122
        norm +=  (coefficient^degree).abs()
123
    return pow(norm, 1/degree)
124
# end spo_norm
125

  
110 126
def spo_polynomial_to_matrix(p, pRing, alpha, N, columnsWidth=0):
111 127
    """
112 128
    From a (bivariate) polynomial and some other parameters build a matrix
......
316 332
    # End for pPower loop
317 333
    return protoMatrixRows
318 334
# End spo_polynomial_to_matrix
335

  
336
print "sagePolynomialOperations loaded..."

Formats disponibles : Unified diff