root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 81
Historique | Voir | Annoter | Télécharger (17,16 ko)
1 | 61 | storres | def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
---|---|---|---|
2 | 61 | storres | upperBoundSa, approxPrecSa, |
3 | 61 | storres | sollyaPrecSa=None): |
4 | 61 | storres | """ |
5 | 61 | storres | Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
6 | 61 | storres | a polynomial that approximates the function on a an interval starting |
7 | 61 | storres | at lowerBoundSa and finishing at a value that guarantees that the polynomial |
8 | 61 | storres | approximates with the expected precision. |
9 | 61 | storres | The interval upper bound is lowered until the expected approximation |
10 | 61 | storres | precision is reached. |
11 | 61 | storres | The polynomial, the bounds, the center of the interval and the error |
12 | 61 | storres | are returned. |
13 | 61 | storres | """ |
14 | 61 | storres | RRR = lowerBoundSa.parent() |
15 | 61 | storres | intervalShrinkConstFactorSa = RRR('0.5') |
16 | 61 | storres | absoluteErrorTypeSo = pobyso_absolute_so_so() |
17 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
18 | 61 | storres | currentUpperBoundSa = upperBoundSa |
19 | 61 | storres | currentLowerBoundSa = lowerBoundSa |
20 | 61 | storres | # What we want here is the polynomial without the variable change, |
21 | 61 | storres | # since our actual variable will be x-intervalCenter defined over the |
22 | 61 | storres | # domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
23 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
24 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
25 | 61 | storres | currentRangeSo, |
26 | 61 | storres | absoluteErrorTypeSo) |
27 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
28 | 61 | storres | while maxErrorSa > approxPrecSa: |
29 | 61 | storres | sollya_lib_clear_obj(maxErrorSo) |
30 | 81 | storres | sollya_lib_clear_obj(polySo) |
31 | 81 | storres | sollya_lib_clear_obj(intervalCenterSo) |
32 | 81 | storres | shrinkFactorSa = RRR('5.0')/(maxErrorSa/approxPrecSa).log2().abs() |
33 | 81 | storres | #shrinkFactorSa = 1.5/(maxErrorSa/approxPrecSa) |
34 | 81 | storres | #errorRatioSa = approxPrecSa/maxErrorSa |
35 | 61 | storres | #print "Error ratio: ", errorRatioSa |
36 | 81 | storres | |
37 | 81 | storres | if shrinkFactorSa > intervalShrinkConstFactorSa: |
38 | 81 | storres | actualShrinkFactorSa = intervalShrinkConstFactorSa |
39 | 81 | storres | #print "Fixed" |
40 | 61 | storres | else: |
41 | 81 | storres | actualShrinkFactorSa = shrinkFactorSa |
42 | 81 | storres | #print "Computed",shrinkFactorSa,maxErrorSa |
43 | 81 | storres | #print shrinkFactorSa, maxErrorSa |
44 | 81 | storres | currentUpperBoundSa = currentLowerBoundSa + \ |
45 | 61 | storres | (currentUpperBoundSa - currentLowerBoundSa) * \ |
46 | 81 | storres | actualShrinkFactorSa |
47 | 71 | storres | #print "Current upper bound:", currentUpperBoundSa |
48 | 61 | storres | sollya_lib_clear_obj(currentRangeSo) |
49 | 61 | storres | sollya_lib_clear_obj(polySo) |
50 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
51 | 61 | storres | currentUpperBoundSa) |
52 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
53 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
54 | 61 | storres | currentRangeSo, |
55 | 61 | storres | absoluteErrorTypeSo) |
56 | 61 | storres | #maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
57 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
58 | 61 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
59 | 61 | storres | return((polySo, currentRangeSo, intervalCenterSo, maxErrorSo)) |
60 | 81 | storres | # End slz_compute_polynomial_and_interval |
61 | 61 | storres | |
62 | 72 | storres | def slz_compute_scaled_function(functionSa, \ |
63 | 72 | storres | lowerBoundSa, \ |
64 | 72 | storres | upperBoundSa, \ |
65 | 72 | storres | floatingPointPrecSa): |
66 | 72 | storres | """ |
67 | 72 | storres | From a function, compute the scaled function whose domain |
68 | 72 | storres | is included in [1, 2) and whose image is also included in [1,2). |
69 | 72 | storres | Return a tuple: |
70 | 72 | storres | [0]: the scaled function |
71 | 72 | storres | [1]: the scaled domain lower bound |
72 | 72 | storres | [2]: the scaled domain upper bound |
73 | 72 | storres | [3]: the scaled image lower bound |
74 | 72 | storres | [4]: the scaled image upper bound |
75 | 72 | storres | """ |
76 | 80 | storres | x = functionSa.variables()[0] |
77 | 80 | storres | # Reassert f as a function (an not a mere expression). |
78 | 80 | storres | |
79 | 72 | storres | # Scalling the domain -> [1,2[. |
80 | 72 | storres | boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
81 | 72 | storres | domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
82 | 72 | storres | (domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
83 | 80 | storres | slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
84 | 72 | storres | print "domainScalingExpression for argument :", domainScalingExpressionSa |
85 | 72 | storres | print "f: ", f |
86 | 72 | storres | ff = f.subs({x : domainScalingExpressionSa}) |
87 | 72 | storres | #ff = f.subs_expr(x==domainScalingExpressionSa) |
88 | 80 | storres | domainScalingFunction(x) = invDomainScalingExpressionSa |
89 | 80 | storres | scaledLowerBoundSa = domainScalingFunction(lowerBoundSa).n() |
90 | 80 | storres | scaledUpperBoundSa = domainScalingFunction(upperBoundSa).n() |
91 | 72 | storres | print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
92 | 72 | storres | # |
93 | 72 | storres | # Scalling the image -> [1,2[. |
94 | 72 | storres | flbSa = f(lowerBoundSa).n() |
95 | 72 | storres | fubSa = f(upperBoundSa).n() |
96 | 72 | storres | if flbSa <= fubSa: # Increasing |
97 | 72 | storres | imageBinadeBottomSa = floor(flbSa.log2()) |
98 | 72 | storres | else: # Decreasing |
99 | 72 | storres | imageBinadeBottomSa = floor(fubSa.log2()) |
100 | 72 | storres | print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
101 | 72 | storres | imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
102 | 72 | storres | (imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
103 | 80 | storres | slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
104 | 72 | storres | iis = invImageScalingExpressionSa.function(x) |
105 | 72 | storres | fff = iis.subs({x:ff}) |
106 | 72 | storres | print "fff:", fff, |
107 | 72 | storres | print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
108 | 72 | storres | return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
109 | 72 | storres | fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
110 | 72 | storres | |
111 | 79 | storres | def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
112 | 79 | storres | # Create a polynomial over the rationals. |
113 | 79 | storres | polynomialRing = QQ[str(polyOfFloat.variables()[0])] |
114 | 79 | storres | return(polynomialRing(polyOfFloat)) |
115 | 79 | storres | # End slz_float_poly_of_float_to_rat_poly_of_rat |
116 | 81 | storres | |
117 | 80 | storres | def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
118 | 63 | storres | lowerBoundSa, |
119 | 60 | storres | upperBoundSa, floatingPointPrecSa, |
120 | 64 | storres | internalSollyaPrecSa, approxPrecSa): |
121 | 60 | storres | """ |
122 | 60 | storres | Under the assumption that: |
123 | 60 | storres | - functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
124 | 60 | storres | - lowerBound and upperBound belong to the same binade. |
125 | 60 | storres | from a: |
126 | 60 | storres | - function; |
127 | 60 | storres | - a degree |
128 | 60 | storres | - a pair of bounds; |
129 | 60 | storres | - the floating-point precision we work on; |
130 | 60 | storres | - the internal Sollya precision; |
131 | 64 | storres | - the requested approximation error |
132 | 61 | storres | The initial interval is, possibly, splitted into smaller intervals. |
133 | 61 | storres | It return a list of tuples, each made of: |
134 | 72 | storres | - a first polynomial (without the changed variable f(x) = p(x-x0)); |
135 | 79 | storres | - a second polynomial (with a changed variable f(x) = q(x)) |
136 | 61 | storres | - the approximation interval; |
137 | 72 | storres | - the center, x0, of the interval; |
138 | 61 | storres | - the corresponding approximation error. |
139 | 60 | storres | """ |
140 | 80 | storres | x = functionSa.variables()[0] # Actual variable name can be anything. |
141 | 80 | storres | (fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
142 | 80 | storres | scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
143 | 80 | storres | slz_compute_scaled_function(functionSa, \ |
144 | 80 | storres | lowerBoundSa, \ |
145 | 80 | storres | upperBoundSa, \ |
146 | 80 | storres | floatingPointPrecSa) |
147 | 60 | storres | # |
148 | 60 | storres | resultArray = [] |
149 | 60 | storres | # |
150 | 60 | storres | print "Approximation precision: ", RR(approxPrecSa) |
151 | 61 | storres | # Prepare the arguments for the Taylor expansion computation with Sollya. |
152 | 62 | storres | functionSo = pobyso_parse_string_sa_so(fff._assume_str()) |
153 | 60 | storres | degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
154 | 61 | storres | scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
155 | 61 | storres | scaledUpperBoundSa) |
156 | 61 | storres | # Compute the first Taylor expansion. |
157 | 60 | storres | (polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
158 | 60 | storres | slz_compute_polynomial_and_interval(functionSo, degreeSo, |
159 | 60 | storres | scaledLowerBoundSa, scaledUpperBoundSa, |
160 | 60 | storres | approxPrecSa, internalSollyaPrecSa) |
161 | 64 | storres | # Change variable stuff |
162 | 62 | storres | changeVarExpressionSo = sollya_lib_build_function_sub( |
163 | 62 | storres | sollya_lib_build_function_free_variable(), |
164 | 62 | storres | sollya_lib_copy_obj(intervalCenterSo)) |
165 | 62 | storres | polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
166 | 64 | storres | resultArray.append((polySo, polyVarChangedSo, boundsSo, intervalCenterSo,\ |
167 | 64 | storres | maxErrorSo)) |
168 | 60 | storres | realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
169 | 60 | storres | upperBoundSa.parent().precision())) |
170 | 61 | storres | boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
171 | 81 | storres | # Compute the next upper bound. |
172 | 81 | storres | # If the error of approximation is more than half of the target, |
173 | 81 | storres | # use the same interval. |
174 | 81 | storres | # If it is less, increase it a bit. |
175 | 81 | storres | errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
176 | 81 | storres | currentErrorRatio = approxPrecSa / errorSa |
177 | 81 | storres | currentScaledUpperBoundSa = boundsSa.endpoints()[1] |
178 | 81 | storres | if currentErrorRatio < 2 : |
179 | 81 | storres | currentScaledUpperBoundSa += \ |
180 | 81 | storres | (boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) |
181 | 81 | storres | else: |
182 | 81 | storres | currentScaledUpperBoundSa += \ |
183 | 81 | storres | (boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) \ |
184 | 81 | storres | * currentErrorRatio.log2() * 2 |
185 | 81 | storres | if currentScaledUpperBoundSa > scaledUpperBoundSa: |
186 | 81 | storres | currentScaledUpperBoundSa = scaledUpperBoundSa |
187 | 61 | storres | # Compute the other expansions. |
188 | 60 | storres | while boundsSa.endpoints()[1] < scaledUpperBoundSa: |
189 | 60 | storres | currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
190 | 60 | storres | (polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
191 | 60 | storres | slz_compute_polynomial_and_interval(functionSo, degreeSo, |
192 | 60 | storres | currentScaledLowerBoundSa, |
193 | 81 | storres | currentScaledUpperBoundSa, |
194 | 81 | storres | approxPrecSa, |
195 | 60 | storres | internalSollyaPrecSa) |
196 | 64 | storres | # Change variable stuff |
197 | 64 | storres | changeVarExpressionSo = sollya_lib_build_function_sub( |
198 | 64 | storres | sollya_lib_build_function_free_variable(), |
199 | 64 | storres | sollya_lib_copy_obj(intervalCenterSo)) |
200 | 64 | storres | polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
201 | 64 | storres | resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
202 | 64 | storres | intervalCenterSo, maxErrorSo)) |
203 | 61 | storres | boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
204 | 81 | storres | # Compute the next upper bound. |
205 | 81 | storres | # If the error of approximation is more than half of the target, |
206 | 81 | storres | # use the same interval. |
207 | 81 | storres | # If it is less, increase it a bit. |
208 | 81 | storres | errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
209 | 81 | storres | currentErrorRatio = approxPrecSa / errorSa |
210 | 81 | storres | if currentErrorRatio < RR('1.5') : |
211 | 81 | storres | currentScaledUpperBoundSa = \ |
212 | 81 | storres | boundsSa.endpoints()[1] + \ |
213 | 81 | storres | (boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) |
214 | 81 | storres | elif currentErrorRatio < 2: |
215 | 81 | storres | currentScaledUpperBoundSa = \ |
216 | 81 | storres | boundsSa.endpoints()[1] + \ |
217 | 81 | storres | (boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) \ |
218 | 81 | storres | * currentErrorRatio.log2() |
219 | 81 | storres | else: |
220 | 81 | storres | currentScaledUpperBoundSa = \ |
221 | 81 | storres | boundsSa.endpoints()[1] + \ |
222 | 81 | storres | (boundsSa.endpoints()[1] - boundsSa.endpoints()[0]) \ |
223 | 81 | storres | * currentErrorRatio.log2() * 2 |
224 | 81 | storres | if currentScaledUpperBoundSa > scaledUpperBoundSa: |
225 | 81 | storres | currentScaledUpperBoundSa = scaledUpperBoundSa |
226 | 60 | storres | sollya_lib_clear_obj(functionSo) |
227 | 60 | storres | sollya_lib_clear_obj(degreeSo) |
228 | 60 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
229 | 60 | storres | return(resultArray) |
230 | 81 | storres | # End slz_get_intervals_and_polynomials |
231 | 60 | storres | |
232 | 81 | storres | |
233 | 80 | storres | def slz_interval_scaling_expression(boundsInterval, expVar): |
234 | 61 | storres | """ |
235 | 61 | storres | Compute the scaling expression to map an interval that span only |
236 | 62 | storres | a binade to [1, 2) and the inverse expression as well. |
237 | 62 | storres | Not very sure that the transformation makes sense for negative numbers. |
238 | 61 | storres | """ |
239 | 62 | storres | # The scaling offset is only used for negative numbers. |
240 | 61 | storres | if abs(boundsInterval.endpoints()[0]) < 1: |
241 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
242 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
243 | 62 | storres | invScalingCoeff = 1/scalingCoeff |
244 | 80 | storres | return((scalingCoeff * expVar, |
245 | 80 | storres | invScalingCoeff * expVar)) |
246 | 60 | storres | else: |
247 | 62 | storres | scalingCoeff = \ |
248 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
249 | 62 | storres | scalingOffset = -3 * scalingCoeff |
250 | 80 | storres | return((scalingCoeff * expVar + scalingOffset, |
251 | 80 | storres | 1/scalingCoeff * expVar + 3)) |
252 | 61 | storres | else: |
253 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
254 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
255 | 61 | storres | scalingOffset = 0 |
256 | 80 | storres | return((scalingCoeff * expVar, |
257 | 80 | storres | 1/scalingCoeff * expVar)) |
258 | 61 | storres | else: |
259 | 62 | storres | scalingCoeff = \ |
260 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[1]).log2())) |
261 | 62 | storres | scalingOffset = -3 * scalingCoeff |
262 | 62 | storres | #scalingOffset = 0 |
263 | 80 | storres | return((scalingCoeff * expVar + scalingOffset, |
264 | 80 | storres | 1/scalingCoeff * expVar + 3)) |
265 | 61 | storres | |
266 | 61 | storres | |
267 | 60 | storres | def slz_polynomial_and_interval_to_sage(polyRangeCenterErrorSo): |
268 | 72 | storres | """ |
269 | 72 | storres | Compute the Sage version of the Taylor polynomial and it's |
270 | 72 | storres | companion data (interval, center...) |
271 | 72 | storres | The input parameter is a five elements tuple: |
272 | 79 | storres | - [0]: the polyomial (without variable change), as polynomial over a |
273 | 79 | storres | real ring; |
274 | 79 | storres | - [1]: the polyomial (with variable change done in Sollya), as polynomial |
275 | 79 | storres | over a real ring; |
276 | 72 | storres | - [2]: the interval (as Sollya range); |
277 | 72 | storres | - [3]: the interval center; |
278 | 72 | storres | - [4]: the approximation error. |
279 | 72 | storres | |
280 | 72 | storres | The function return a 5 elements tuple: formed with all the |
281 | 72 | storres | input elements converted into their Sollya counterpart. |
282 | 72 | storres | """ |
283 | 60 | storres | polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
284 | 64 | storres | polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
285 | 60 | storres | intervalSa = \ |
286 | 64 | storres | pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
287 | 60 | storres | centerSa = \ |
288 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
289 | 60 | storres | errorSa = \ |
290 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
291 | 64 | storres | return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
292 | 60 | storres | # End slz_polynomial_and_interval_to_sage |
293 | 62 | storres | |
294 | 80 | storres | def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
295 | 80 | storres | precision, |
296 | 80 | storres | targetHardnessToRound, |
297 | 80 | storres | variable1, |
298 | 80 | storres | variable2): |
299 | 80 | storres | """ |
300 | 80 | storres | Creates a new polynomial with integer coefficients for use with the |
301 | 80 | storres | Coppersmith method. |
302 | 80 | storres | A the same time it computes : |
303 | 80 | storres | - 2^K (N); |
304 | 80 | storres | - 2^k |
305 | 80 | storres | - lcm |
306 | 80 | storres | """ |
307 | 80 | storres | # Create a new integer polynomial ring. |
308 | 80 | storres | IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
309 | 80 | storres | # Coefficients are issued in the increasing power order. |
310 | 80 | storres | ratPolyCoefficients = ratPolyOfInt.coefficients() |
311 | 80 | storres | # Build the list of number we compute the lcmm of. |
312 | 80 | storres | coefficientDenominators = sro_denominators(ratPolyCoefficients) |
313 | 80 | storres | coefficientDenominators.append(2^precision) |
314 | 80 | storres | coefficientDenominators.append(2^(targetHardnessToRound + 1)) |
315 | 80 | storres | leastCommonMultiple = sro_lcmm(coefficientDenominators) |
316 | 80 | storres | # Compute the lcm |
317 | 80 | storres | leastCommonMultiple = sro_lcmm(coefficientDenominators) |
318 | 80 | storres | # Compute the expression corresponding to the new polynomial |
319 | 80 | storres | coefficientNumerators = sro_numerators(ratPolyCoefficients) |
320 | 80 | storres | print coefficientNumerators |
321 | 80 | storres | polynomialExpression = 0 |
322 | 80 | storres | power = 0 |
323 | 80 | storres | # Iterate over two lists at the same time, stop when the shorter is |
324 | 80 | storres | # exhausted. |
325 | 80 | storres | for numerator, denominator in \ |
326 | 80 | storres | zip(coefficientNumerators, coefficientDenominators): |
327 | 80 | storres | multiplicator = leastCommonMultiple / denominator |
328 | 80 | storres | newCoefficient = numerator * multiplicator |
329 | 80 | storres | polynomialExpression += newCoefficient * variable1^power |
330 | 80 | storres | power +=1 |
331 | 80 | storres | polynomialExpression += - variable2 |
332 | 80 | storres | return (IP(polynomialExpression), |
333 | 80 | storres | leastCommonMultiple / 2^precision, # 2^K or N. |
334 | 80 | storres | leastCommonMultiple / 2 ^(targetHardnessToRound + 1), # tBound |
335 | 80 | storres | leastCommonMultiple) |
336 | 80 | storres | |
337 | 80 | storres | # End slz_ratPoly_of_int_to_poly_for_coppersmith |
338 | 79 | storres | |
339 | 79 | storres | def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
340 | 79 | storres | precision): |
341 | 79 | storres | """ |
342 | 79 | storres | Makes a variable substitution into the input polynomial so that the output |
343 | 79 | storres | polynomial can take integer arguments. |
344 | 79 | storres | All variables of the input polynomial "have precision p". That is to say |
345 | 79 | storres | that they are rationals with denominator == 2^precision: x = y/2^precision |
346 | 79 | storres | We "incorporate" these denominators into the coefficients with, |
347 | 79 | storres | respectively, the "right" power. |
348 | 79 | storres | """ |
349 | 79 | storres | polynomialField = ratPolyOfRat.parent() |
350 | 79 | storres | polynomialVariable = rationalPolynomial.variables()[0] |
351 | 79 | storres | print "The polynomial field is:", polynomialField |
352 | 79 | storres | return \ |
353 | 79 | storres | polynomialField(rationalPolynomial.subs({polynomialVariable : \ |
354 | 79 | storres | polynomialVariable/2^(precision-1)})) |
355 | 79 | storres | |
356 | 79 | storres | # Return a tuple: |
357 | 79 | storres | # - the bivariate integer polynomial in (i,j); |
358 | 79 | storres | # - 2^K |
359 | 79 | storres | # End slz_rat_poly_of_rat_to_rat_poly_of_int |
360 | 79 | storres | |
361 | 62 | storres | print "sageSLZ loaded..." |