root / pobysoPythonSage / src / pobyso.py @ 80
Historique | Voir | Annoter | Télécharger (37,12 ko)
1 |
"""
|
---|---|
2 |
Actual functions to use in Sage
|
3 |
ST 2012-11-13
|
4 |
|
5 |
Command line syntax:
|
6 |
use from Sage (via the "load" or the "attach" commands)
|
7 |
|
8 |
pobyso functions come in five flavors:
|
9 |
- the _so_so (arguments and returned objects are pointers to Sollya objects,
|
10 |
includes the void function and the no arguments function that return a
|
11 |
pointer to a Sollya object);
|
12 |
- the _so_sa (argument are pointers to Sollya objects, returned objects are
|
13 |
Sage/Python objects or, more generally, information is transfered from the
|
14 |
Sollya world to Sage/Python world; e.g. functions without arguments that
|
15 |
return a Sage/Python object);
|
16 |
- the _sa_so (arguments are Sage/Python objects, returned objects are
|
17 |
pointers to Sollya objects);
|
18 |
- the sa_sa (arguments and returned objects are all Sage/Python objects);
|
19 |
- a catch all flavor, without any suffix, (e. g. functions that have no argument
|
20 |
nor return value).
|
21 |
This classification is not always very strict. Conversion functions from Sollya
|
22 |
to Sage/Python are sometimes decorated with Sage/Python arguments to set
|
23 |
the precision. These functions remain in the so_sa category.
|
24 |
NOTES:
|
25 |
Reported errors in Eclipse come from the calls to
|
26 |
the Sollya library
|
27 |
|
28 |
ToDo (among other things):
|
29 |
-memory management.
|
30 |
"""
|
31 |
from ctypes import * |
32 |
import re |
33 |
from sage.symbolic.expression_conversions import polynomial |
34 |
from sage.symbolic.expression_conversions import PolynomialConverter |
35 |
"""
|
36 |
Create the equivalent to an enum for the Sollya function types.
|
37 |
"""
|
38 |
(SOLLYA_BASE_FUNC_ABS, |
39 |
SOLLYA_BASE_FUNC_ACOS, |
40 |
SOLLYA_BASE_FUNC_ACOSH, |
41 |
SOLLYA_BASE_FUNC_ADD, |
42 |
SOLLYA_BASE_FUNC_ASIN, |
43 |
SOLLYA_BASE_FUNC_ASINH, |
44 |
SOLLYA_BASE_FUNC_ATAN, |
45 |
SOLLYA_BASE_FUNC_ATANH, |
46 |
SOLLYA_BASE_FUNC_CEIL, |
47 |
SOLLYA_BASE_FUNC_CONSTANT, |
48 |
SOLLYA_BASE_FUNC_COS, |
49 |
SOLLYA_BASE_FUNC_COSH, |
50 |
SOLLYA_BASE_FUNC_DIV, |
51 |
SOLLYA_BASE_FUNC_DOUBLE, |
52 |
SOLLYA_BASE_FUNC_DOUBLEDOUBLE, |
53 |
SOLLYA_BASE_FUNC_DOUBLEEXTENDED, |
54 |
SOLLYA_BASE_FUNC_ERF, |
55 |
SOLLYA_BASE_FUNC_ERFC, |
56 |
SOLLYA_BASE_FUNC_EXP, |
57 |
SOLLYA_BASE_FUNC_EXP_M1, |
58 |
SOLLYA_BASE_FUNC_FLOOR, |
59 |
SOLLYA_BASE_FUNC_FREE_VARIABLE, |
60 |
SOLLYA_BASE_FUNC_HALFPRECISION, |
61 |
SOLLYA_BASE_FUNC_LIBRARYCONSTANT, |
62 |
SOLLYA_BASE_FUNC_LIBRARYFUNCTION, |
63 |
SOLLYA_BASE_FUNC_LOG, |
64 |
SOLLYA_BASE_FUNC_LOG_10, |
65 |
SOLLYA_BASE_FUNC_LOG_1P, |
66 |
SOLLYA_BASE_FUNC_LOG_2, |
67 |
SOLLYA_BASE_FUNC_MUL, |
68 |
SOLLYA_BASE_FUNC_NEARESTINT, |
69 |
SOLLYA_BASE_FUNC_NEG, |
70 |
SOLLYA_BASE_FUNC_PI, |
71 |
SOLLYA_BASE_FUNC_POW, |
72 |
SOLLYA_BASE_FUNC_PROCEDUREFUNCTION, |
73 |
SOLLYA_BASE_FUNC_QUAD, |
74 |
SOLLYA_BASE_FUNC_SIN, |
75 |
SOLLYA_BASE_FUNC_SINGLE, |
76 |
SOLLYA_BASE_FUNC_SINH, |
77 |
SOLLYA_BASE_FUNC_SQRT, |
78 |
SOLLYA_BASE_FUNC_SUB, |
79 |
SOLLYA_BASE_FUNC_TAN, |
80 |
SOLLYA_BASE_FUNC_TANH, |
81 |
SOLLYA_BASE_FUNC_TRIPLEDOUBLE) = map(int,xrange(44)) |
82 |
print "\nSuperficial pobyso check..." |
83 |
print "First constant - SOLLYA_BASE_FUNC_ABS: ", SOLLYA_BASE_FUNC_ABS |
84 |
print "Last constant - SOLLYA_BASE_FUNC_TRIPLEDOUBLE: ", SOLLYA_BASE_FUNC_TRIPLEDOUBLE |
85 |
|
86 |
pobyso_max_arity = 9
|
87 |
|
88 |
def pobyso_autoprint(arg): |
89 |
sollya_lib_autoprint(arg,None)
|
90 |
|
91 |
def pobyso_autoprint_so_so(arg): |
92 |
sollya_lib_autoprint(arg,None)
|
93 |
|
94 |
def pobyso_absolute_so_so(): |
95 |
return(sollya_lib_absolute(None)) |
96 |
|
97 |
def pobyso_build_function_sub_so_so(exp1So, exp2So): |
98 |
return(sollya_lib_build_function_sub(exp1So, exp2So))
|
99 |
|
100 |
def pobyso_cmp(rnArg, soCte): |
101 |
"""
|
102 |
Compare the MPFR value a RealNumber with that of a Sollya constant.
|
103 |
|
104 |
Get the value of the Sollya constant into a RealNumber and compare
|
105 |
using MPFR. Could be optimized by working directly with a mpfr_t
|
106 |
for the intermediate number.
|
107 |
"""
|
108 |
precisionOfCte = c_int(0)
|
109 |
# From the Sollya constant, create a local Sage RealNumber.
|
110 |
sollya_lib_get_prec_of_constant(precisionOfCte, soCte) |
111 |
#print "Precision of constant: ", precisionOfCte
|
112 |
RRRR = RealField(precisionOfCte.value) |
113 |
rnLocal = RRRR(0)
|
114 |
sollya_lib_get_constant(get_rn_value(rnLocal), soCte) |
115 |
#print "rnDummy: ", rnDummy
|
116 |
# Compare the local Sage RealNumber with rnArg.
|
117 |
return(cmp_rn_value(rnArg, rnLocal))
|
118 |
|
119 |
def pobyso_change_var_in_function_so_so(funcSo, chvarExpSo): |
120 |
return(sollya_lib_evaluate(funcSo,chvarExpSo))
|
121 |
|
122 |
|
123 |
def pobyso_chebyshevform_so_so(functionSo, degreeSo, intervalSo): |
124 |
resultSo = sollya_lib_chebyshevform(functionSo, degreeSo, intervalSo) |
125 |
return(resultSo)
|
126 |
|
127 |
|
128 |
|
129 |
def pobyso_compute_pos_function_abs_val_bounds_sa_sa(funcSa, lowerBoundSa, \ |
130 |
upperBoundSa): |
131 |
"""
|
132 |
TODO: set the variable name in Sollya.
|
133 |
"""
|
134 |
funcSo = pobyso_parse_string(funcSa._assume_str()) |
135 |
rangeSo = pobyso_range_sa_so(lowerBoundSa, upperBoundSa) |
136 |
infnormSo = pobyso_infnorm_so_so(funcSo,rangeSo) |
137 |
fMaxSa = pobyso_get_interval_from_range_so_sa(infnormSo) |
138 |
# Get the top bound and compute the binade top limit.
|
139 |
fMaxUpperBoundSa = fMaxSa.upper() |
140 |
binadeTopLimitSa = 2**ceil(fMaxUpperBoundSa.log2())
|
141 |
# Put up together the function to use to compute the lower bound.
|
142 |
funcAuxSo = pobyso_parse_string(str(binadeTopLimitSa) + \
|
143 |
'-(' + f._assume_str() + ')') |
144 |
pobyso_autoprint(funcAuxSo) |
145 |
# Clear the Sollay range before a new call to infnorm and issue the call.
|
146 |
sollya_lib_clear_obj(infnormSo) |
147 |
infnormSo = pobyso_infnorm_so_so(funcAuxSo,rangeSo) |
148 |
fMinSa = pobyso_get_interval_from_range_so_sa(infnormSo) |
149 |
sollya_lib_clear_obj(infnormSo) |
150 |
fMinLowerBoundSa = topBinadeLimit - fMinSa.lower() |
151 |
# Compute the maximum of the precisions of the different bounds.
|
152 |
maxPrecSa = max([fMinLowerBoundSa.parent().precision(), \
|
153 |
fMaxUpperBoundSa.parent().precision()]) |
154 |
# Create a RealIntervalField and create an interval with the "good" bounds.
|
155 |
RRRI = RealIntervalField(maxPrecSa) |
156 |
imageIntervalSa = RRRI(fMinLowerBoundSa, fMaxUpperBoundSa) |
157 |
# Free the uneeded Sollya objects
|
158 |
sollya_lib_clear_obj(funcSo) |
159 |
sollya_lib_clear_obj(funcAuxSo) |
160 |
sollya_lib_clear_obj(rangeSo) |
161 |
return(imageIntervalSa)
|
162 |
# End pobyso_compute_function_abs_val_bounds_sa_sa
|
163 |
|
164 |
def pobyso_constant(rnArg): |
165 |
""" Legacy function. See pobyso_constant_sa_so. """
|
166 |
return(pobyso_constant_sa_so(rnArg))
|
167 |
|
168 |
def pobyso_constant_sa_so(rnArg): |
169 |
"""
|
170 |
Create a Sollya constant from a RealNumber.
|
171 |
"""
|
172 |
return(sollya_lib_constant(get_rn_value(rnArg)))
|
173 |
|
174 |
def pobyso_constant_0_sa_so(): |
175 |
return(pobyso_constant_from_int_sa_so(0)) |
176 |
|
177 |
def pobyso_constant_1(): |
178 |
""" Legacy function. See pobyso_constant_so_so. """
|
179 |
return(pobyso_constant_1_sa_so())
|
180 |
|
181 |
def pobyso_constant_1_sa_so(): |
182 |
return(pobyso_constant_from_int_sa_so(1)) |
183 |
|
184 |
def pobyso_constant_from_int(anInt): |
185 |
""" Legacy function. See pobyso_constant_from_int_sa_so. """
|
186 |
return(pobyso_constant_from_int_sa_so(anInt))
|
187 |
|
188 |
def pobyso_constant_from_int_sa_so(anInt): |
189 |
return(sollya_lib_constant_from_int(int(anInt))) |
190 |
|
191 |
def pobyso_function_type_as_string(funcType): |
192 |
""" Legacy function. See pobyso_function_type_as_string_so_sa. """
|
193 |
return(pobyso_function_type_as_string_so_sa(funcType))
|
194 |
|
195 |
def pobyso_function_type_as_string_so_sa(funcType): |
196 |
"""
|
197 |
Numeric Sollya function codes -> Sage mathematical function names.
|
198 |
Notice that pow -> ^ (a la Sage, not a la Python).
|
199 |
"""
|
200 |
if funcType == SOLLYA_BASE_FUNC_ABS:
|
201 |
return "abs" |
202 |
elif funcType == SOLLYA_BASE_FUNC_ACOS:
|
203 |
return "arccos" |
204 |
elif funcType == SOLLYA_BASE_FUNC_ACOSH:
|
205 |
return "arccosh" |
206 |
elif funcType == SOLLYA_BASE_FUNC_ADD:
|
207 |
return "+" |
208 |
elif funcType == SOLLYA_BASE_FUNC_ASIN:
|
209 |
return "arcsin" |
210 |
elif funcType == SOLLYA_BASE_FUNC_ASINH:
|
211 |
return "arcsinh" |
212 |
elif funcType == SOLLYA_BASE_FUNC_ATAN:
|
213 |
return "arctan" |
214 |
elif funcType == SOLLYA_BASE_FUNC_ATANH:
|
215 |
return "arctanh" |
216 |
elif funcType == SOLLYA_BASE_FUNC_CEIL:
|
217 |
return "ceil" |
218 |
elif funcType == SOLLYA_BASE_FUNC_CONSTANT:
|
219 |
return "cte" |
220 |
elif funcType == SOLLYA_BASE_FUNC_COS:
|
221 |
return "cos" |
222 |
elif funcType == SOLLYA_BASE_FUNC_COSH:
|
223 |
return "cosh" |
224 |
elif funcType == SOLLYA_BASE_FUNC_DIV:
|
225 |
return "/" |
226 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLE:
|
227 |
return "double" |
228 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLEDOUBLE:
|
229 |
return "doubleDouble" |
230 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLEEXTENDED:
|
231 |
return "doubleDxtended" |
232 |
elif funcType == SOLLYA_BASE_FUNC_ERF:
|
233 |
return "erf" |
234 |
elif funcType == SOLLYA_BASE_FUNC_ERFC:
|
235 |
return "erfc" |
236 |
elif funcType == SOLLYA_BASE_FUNC_EXP:
|
237 |
return "exp" |
238 |
elif funcType == SOLLYA_BASE_FUNC_EXP_M1:
|
239 |
return "expm1" |
240 |
elif funcType == SOLLYA_BASE_FUNC_FLOOR:
|
241 |
return "floor" |
242 |
elif funcType == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
243 |
return "freeVariable" |
244 |
elif funcType == SOLLYA_BASE_FUNC_HALFPRECISION:
|
245 |
return "halfPrecision" |
246 |
elif funcType == SOLLYA_BASE_FUNC_LIBRARYCONSTANT:
|
247 |
return "libraryConstant" |
248 |
elif funcType == SOLLYA_BASE_FUNC_LIBRARYFUNCTION:
|
249 |
return "libraryFunction" |
250 |
elif funcType == SOLLYA_BASE_FUNC_LOG:
|
251 |
return "log" |
252 |
elif funcType == SOLLYA_BASE_FUNC_LOG_10:
|
253 |
return "log10" |
254 |
elif funcType == SOLLYA_BASE_FUNC_LOG_1P:
|
255 |
return "log1p" |
256 |
elif funcType == SOLLYA_BASE_FUNC_LOG_2:
|
257 |
return "log2" |
258 |
elif funcType == SOLLYA_BASE_FUNC_MUL:
|
259 |
return "*" |
260 |
elif funcType == SOLLYA_BASE_FUNC_NEARESTINT:
|
261 |
return "round" |
262 |
elif funcType == SOLLYA_BASE_FUNC_NEG:
|
263 |
return "__neg__" |
264 |
elif funcType == SOLLYA_BASE_FUNC_PI:
|
265 |
return "pi" |
266 |
elif funcType == SOLLYA_BASE_FUNC_POW:
|
267 |
return "^" |
268 |
elif funcType == SOLLYA_BASE_FUNC_PROCEDUREFUNCTION:
|
269 |
return "procedureFunction" |
270 |
elif funcType == SOLLYA_BASE_FUNC_QUAD:
|
271 |
return "quad" |
272 |
elif funcType == SOLLYA_BASE_FUNC_SIN:
|
273 |
return "sin" |
274 |
elif funcType == SOLLYA_BASE_FUNC_SINGLE:
|
275 |
return "single" |
276 |
elif funcType == SOLLYA_BASE_FUNC_SINH:
|
277 |
return "sinh" |
278 |
elif funcType == SOLLYA_BASE_FUNC_SQRT:
|
279 |
return "sqrt" |
280 |
elif funcType == SOLLYA_BASE_FUNC_SUB:
|
281 |
return "-" |
282 |
elif funcType == SOLLYA_BASE_FUNC_TAN:
|
283 |
return "tan" |
284 |
elif funcType == SOLLYA_BASE_FUNC_TANH:
|
285 |
return "tanh" |
286 |
elif funcType == SOLLYA_BASE_FUNC_TRIPLEDOUBLE:
|
287 |
return "tripleDouble" |
288 |
else:
|
289 |
return None |
290 |
|
291 |
def pobyso_get_constant(rnArg, soConst): |
292 |
""" Legacy function. See pobyso_get_constant_so_sa. """
|
293 |
return(pobyso_get_constant_so_sa(rnArg, soConst))
|
294 |
|
295 |
def pobyso_get_constant_so_sa(rnArg, soConst): |
296 |
"""
|
297 |
Set the value of rnArg to the value of soConst in MPFR_RNDN mode.
|
298 |
rnArg must already exist and belong to some RealField.
|
299 |
We assume that soConst points to a Sollya constant.
|
300 |
"""
|
301 |
return(sollya_lib_get_constant(get_rn_value(rnArg), soConst))
|
302 |
|
303 |
def pobyso_get_constant_as_rn(ctExpSo): |
304 |
""" Legacy function. See pobyso_get_constant_as_rn_so_sa. """
|
305 |
return(pobyso_get_constant_as_rn_so_sa(ctExpSo))
|
306 |
|
307 |
def pobyso_get_constant_as_rn_so_sa(constExpSo): |
308 |
precisionSa = pobyso_get_prec_of_constant_so_sa(constExpSo) |
309 |
RRRR = RealField(precisionSa) |
310 |
rnSa = RRRR(0)
|
311 |
sollya_lib_get_constant(get_rn_value(rnSa), constExpSo) |
312 |
return(rnSa)
|
313 |
|
314 |
def pobyso_get_constant_as_rn_with_rf(ctExp, realField): |
315 |
""" Legacy function. See pobyso_get_constant_as_rn_with_rf_so_sa."""
|
316 |
return(pobyso_get_constant_as_rn_with_rf_so_sa(ctExp, realField))
|
317 |
|
318 |
def pobyso_get_constant_as_rn_with_rf_so_sa(ctExpSo, realFieldSa = None): |
319 |
if realFieldSa is None: |
320 |
sollyaPrecSa = pobyso_get_prec_so_sa() |
321 |
realFieldSa = RealField(sollyaPrecSa) |
322 |
rnSa = realFieldSa(0)
|
323 |
sollya_lib_get_constant(get_rn_value(rnSa), ctExpSo) |
324 |
return(rnSa)
|
325 |
|
326 |
def pobyso_get_free_variable_name(): |
327 |
""" Legacy function. See pobyso_get_free_variable_name_so_sa."""
|
328 |
return(pobyso_get_free_variable_name_so_sa())
|
329 |
|
330 |
def pobyso_get_free_variable_name_so_sa(): |
331 |
return(sollya_lib_get_free_variable_name())
|
332 |
|
333 |
def pobyso_get_function_arity(expressionSo): |
334 |
""" Legacy function. See pobyso_get_function_arity_so_sa."""
|
335 |
return(pobyso_get_function_arity_so_sa(expressionSo))
|
336 |
|
337 |
def pobyso_get_function_arity_so_sa(expressionSo): |
338 |
arity = c_int(0)
|
339 |
sollya_lib_get_function_arity(byref(arity),expressionSo) |
340 |
return(int(arity.value)) |
341 |
|
342 |
def pobyso_get_head_function(expressionSo): |
343 |
""" Legacy function. See pobyso_get_head_function_so_sa. """
|
344 |
return(pobyso_get_head_function_so_sa(expressionSo))
|
345 |
|
346 |
def pobyso_get_head_function_so_sa(expressionSo): |
347 |
functionType = c_int(0)
|
348 |
sollya_lib_get_head_function(byref(functionType), expressionSo, None)
|
349 |
return(int(functionType.value)) |
350 |
|
351 |
def pobyso_get_interval_from_range_so_sa(soRange, realIntervalFieldSa = None ): |
352 |
"""
|
353 |
Return the Sage interval corresponding to the Sollya range argument.
|
354 |
If no reaInterval lField is passed as argument, the interval bounds are not
|
355 |
rounded: they are elements of RealIntervalField of the "right" precision
|
356 |
to hold all the digits.
|
357 |
"""
|
358 |
prec = c_int(0)
|
359 |
if realIntervalFieldSa is None: |
360 |
retval = sollya_lib_get_prec_of_range(byref(prec), soRange, None)
|
361 |
if retval == 0: |
362 |
return(None) |
363 |
realIntervalFieldSa = RealIntervalField(prec.value) |
364 |
intervalSa = realIntervalFieldSa(0,0) |
365 |
retval = \ |
366 |
sollya_lib_get_interval_from_range(get_interval_value(intervalSa),\ |
367 |
soRange) |
368 |
if retval == 0: |
369 |
return(None) |
370 |
return(intervalSa)
|
371 |
# End pobyso_get_interval_from_range_so_sa
|
372 |
|
373 |
def pobyso_get_list_elements(soObj): |
374 |
""" Legacy function. See pobyso_get_list_elements_so_so. """
|
375 |
return(pobyso_get_list_elements_so_so(soObj))
|
376 |
|
377 |
def pobyso_get_list_elements_so_so(soObj): |
378 |
"""
|
379 |
Get the list elements as a Sage/Python array of Sollya objects.
|
380 |
The other data returned are also Sage/Python objects.
|
381 |
"""
|
382 |
listAddress = POINTER(c_longlong)() |
383 |
numElements = c_int(0)
|
384 |
isEndElliptic = c_int(0)
|
385 |
listAsList = [] |
386 |
result = sollya_lib_get_list_elements(byref(listAddress),\ |
387 |
byref(numElements),\ |
388 |
byref(isEndElliptic),\ |
389 |
soObj) |
390 |
if result == 0 : |
391 |
return None |
392 |
for i in xrange(0, numElements.value, 1): |
393 |
listAsList.append(listAddress[i]) |
394 |
return(listAsList, numElements.value, isEndElliptic.value)
|
395 |
|
396 |
def pobyso_get_max_prec_of_exp(soExp): |
397 |
""" Legacy function. See pobyso_get_max_prec_of_exp_so_sa. """
|
398 |
return(pobyso_get_max_prec_of_exp_so_sa(soExp))
|
399 |
|
400 |
def pobyso_get_max_prec_of_exp_so_sa(soExp): |
401 |
"""
|
402 |
Get the maximum precision used for the numbers in a Sollya expression.
|
403 |
|
404 |
Arguments:
|
405 |
soExp -- a Sollya expression pointer
|
406 |
Return value:
|
407 |
A Python integer
|
408 |
TODO:
|
409 |
- error management;
|
410 |
- correctly deal with numerical type such as DOUBLEEXTENDED.
|
411 |
"""
|
412 |
maxPrecision = 0
|
413 |
minConstPrec = 0
|
414 |
currentConstPrec = 0
|
415 |
operator = pobyso_get_head_function_so_sa(soExp) |
416 |
if (operator != SOLLYA_BASE_FUNC_CONSTANT) and \ |
417 |
(operator != SOLLYA_BASE_FUNC_FREE_VARIABLE): |
418 |
(arity, subexpressions) = pobyso_get_subfunctions_so_sa(soExp) |
419 |
for i in xrange(arity): |
420 |
maxPrecisionCandidate = \ |
421 |
pobyso_get_max_prec_of_exp_so_sa(subexpressions[i]) |
422 |
if maxPrecisionCandidate > maxPrecision:
|
423 |
maxPrecision = maxPrecisionCandidate |
424 |
return(maxPrecision)
|
425 |
elif operator == SOLLYA_BASE_FUNC_CONSTANT:
|
426 |
minConstPrec = pobyso_get_min_prec_of_constant_so_sa(soExp) |
427 |
#currentConstPrec = pobyso_get_min_prec_of_constant_so_sa(soExp)
|
428 |
#print minConstPrec, " - ", currentConstPrec
|
429 |
return(pobyso_get_min_prec_of_constant_so_sa(soExp))
|
430 |
|
431 |
elif operator == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
432 |
return(0) |
433 |
else:
|
434 |
print "pobyso_get_max_prec_of_exp_so_sa: unexepected operator." |
435 |
return(0) |
436 |
|
437 |
def pobyso_get_min_prec_of_constant_so_sa(soConstExp): |
438 |
"""
|
439 |
Get the minimum precision necessary to represent the value of a Sollya
|
440 |
constant.
|
441 |
MPFR_MIN_PREC and powers of 2 are taken into account.
|
442 |
We assume that soCteExp is a point
|
443 |
"""
|
444 |
constExpAsRn = pobyso_get_constant_as_rn_so_sa(soConstExp) |
445 |
return(min_mpfr_size(get_rn_value(constExpAsRn)))
|
446 |
|
447 |
def pobyso_get_sage_exp_from_sollya_exp(sollyaExp, realField = RR): |
448 |
""" Legacy function. See pobyso_get_sage_exp_from_sollya_exp_so_sa. """
|
449 |
return(pobyso_get_sage_exp_from_sollya_exp_so_sa(sollyaExp, realField = RR))
|
450 |
|
451 |
def pobyso_get_sage_exp_from_sollya_exp_so_sa(sollyaExp, realField = RR): |
452 |
"""
|
453 |
Get a Sage expression from a Sollya expression.
|
454 |
Currently only tested with polynomials with floating-point coefficients.
|
455 |
Notice that, in the returned polynomial, the exponents are RealNumbers.
|
456 |
"""
|
457 |
#pobyso_autoprint(sollyaExp)
|
458 |
operator = pobyso_get_head_function_so_sa(sollyaExp) |
459 |
# Constants and the free variable are special cases.
|
460 |
# All other operator are dealt with in the same way.
|
461 |
if (operator != SOLLYA_BASE_FUNC_CONSTANT) and \ |
462 |
(operator != SOLLYA_BASE_FUNC_FREE_VARIABLE): |
463 |
(arity, subexpressions) = pobyso_get_subfunctions_so_sa(sollyaExp) |
464 |
if arity == 1: |
465 |
sageExp = eval(pobyso_function_type_as_string_so_sa(operator) + \
|
466 |
"(" + pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressions[0], \ |
467 |
realField) + ")")
|
468 |
elif arity == 2: |
469 |
# We do not get through the preprocessor.
|
470 |
# The "^" operator is then a special case.
|
471 |
if operator == SOLLYA_BASE_FUNC_POW:
|
472 |
operatorAsString = "**"
|
473 |
else:
|
474 |
operatorAsString = \ |
475 |
pobyso_function_type_as_string_so_sa(operator) |
476 |
sageExp = \ |
477 |
eval("pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressions[0], realField)"\ |
478 |
+ " " + operatorAsString + " " + \ |
479 |
"pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressions[1], realField)")
|
480 |
# We do not know yet how to deal with arity >= 3
|
481 |
# (is there any in Sollya anyway?).
|
482 |
else:
|
483 |
sageExp = eval('None') |
484 |
return(sageExp)
|
485 |
elif operator == SOLLYA_BASE_FUNC_CONSTANT:
|
486 |
#print "This is a constant"
|
487 |
return pobyso_get_constant_as_rn_with_rf_so_sa(sollyaExp, realField)
|
488 |
elif operator == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
489 |
#print "This is free variable"
|
490 |
return(eval(sollya_lib_get_free_variable_name())) |
491 |
else:
|
492 |
print "Unexpected" |
493 |
return eval('None') |
494 |
# End pobyso_get_sage_poly_from_sollya_poly
|
495 |
|
496 |
def pobyso_get_poly_sa_so(polySo, realFieldSa=None): |
497 |
pass
|
498 |
# pobyso_get_poly_sa_so
|
499 |
|
500 |
def pobyso_get_poly_so_sa(polySo, realFieldSa=None): |
501 |
"""
|
502 |
Convert a Sollya polynomial into a Sage polynomial.
|
503 |
We assume that the polynomial is in canonical form.
|
504 |
If no realField is given, a RealField corresponding to the maximum precision
|
505 |
of the coefficients is internally computed.
|
506 |
It is not returned but can be easily retrieved from the polynomial itself.
|
507 |
Main steps:
|
508 |
- (optional) compute the RealField of the coefficients;
|
509 |
- convert the Sollya expression into a Sage expression;
|
510 |
- convert the Sage expression into a Sage polynomial
|
511 |
TODO: the canonical thing for the polynomial.
|
512 |
"""
|
513 |
if realFieldSa is None: |
514 |
expressionPrecSa = pobyso_get_max_prec_of_exp_so_sa(polySo) |
515 |
realFieldSa = RealField(expressionPrecSa) |
516 |
#print "Sollya expression before...",
|
517 |
#pobyso_autoprint(polySo)
|
518 |
|
519 |
expressionSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, \ |
520 |
realFieldSa) |
521 |
#print "...Sollya expression after.",
|
522 |
#pobyso_autoprint(polySo)
|
523 |
polyVariableSa = expressionSa.variables()[0]
|
524 |
polyRingSa = realFieldSa[str(polyVariableSa)]
|
525 |
print polyRingSa
|
526 |
# Do not use the polynomial(expressionSa, ring=polyRingSa) form!
|
527 |
polynomialSa = polyRingSa(expressionSa) |
528 |
return(polynomialSa)
|
529 |
# End pobyso_get_sage_poly_from_sollya_poly
|
530 |
|
531 |
def pobyso_get_subfunctions(expressionSo): |
532 |
""" Legacy function. See pobyso_get_subfunctions_so_sa. """
|
533 |
return(pobyso_get_subfunctions_so_sa(expressionSo))
|
534 |
|
535 |
def pobyso_get_subfunctions_so_sa(expressionSo): |
536 |
"""
|
537 |
Get the subfunctions of an expression.
|
538 |
Return the number of subfunctions and the list of subfunctions addresses.
|
539 |
S.T.: Could not figure out another way than that ugly list of declarations
|
540 |
to recover the addresses of the subfunctions.
|
541 |
"""
|
542 |
subf0 = c_int(0)
|
543 |
subf1 = c_int(0)
|
544 |
subf2 = c_int(0)
|
545 |
subf3 = c_int(0)
|
546 |
subf4 = c_int(0)
|
547 |
subf5 = c_int(0)
|
548 |
subf6 = c_int(0)
|
549 |
subf7 = c_int(0)
|
550 |
subf8 = c_int(0)
|
551 |
arity = c_int(0)
|
552 |
nullPtr = POINTER(c_int)() |
553 |
sollya_lib_get_subfunctions(expressionSo, byref(arity), \ |
554 |
byref(subf0), byref(subf1), byref(subf2), byref(subf3), byref(subf4), byref(subf5),\ |
555 |
byref(subf6), byref(subf7), byref(subf8), nullPtr, None)
|
556 |
# byref(cast(subfunctions[0], POINTER(c_int))), byref(cast(subfunctions[0], POINTER(c_int))), \
|
557 |
# byref(cast(subfunctions[2], POINTER(c_int))), byref(cast(subfunctions[3], POINTER(c_int))), \
|
558 |
# byref(cast(subfunctions[4], POINTER(c_int))), byref(cast(subfunctions[5], POINTER(c_int))), \
|
559 |
# byref(cast(subfunctions[6], POINTER(c_int))), byref(cast(subfunctions[7], POINTER(c_int))), \
|
560 |
# byref(cast(subfunctions[8], POINTER(c_int))), nullPtr)
|
561 |
subfunctions = [subf0, subf1, subf2, subf3, subf4, subf5, subf6, subf7, subf8] |
562 |
subs = [] |
563 |
if arity.value > pobyso_max_arity:
|
564 |
return(0,[]) |
565 |
for i in xrange(arity.value): |
566 |
subs.append(int(subfunctions[i].value))
|
567 |
#print subs[i]
|
568 |
return(int(arity.value), subs) |
569 |
|
570 |
def pobyso_get_prec(): |
571 |
""" Legacy function. See pobyso_get_prec_so_sa(). """
|
572 |
return(pobyso_get_prec_so_sa())
|
573 |
|
574 |
def pobyso_get_prec_so_sa(): |
575 |
"""
|
576 |
Get the current default precision in Sollya.
|
577 |
The return value is Sage/Python int.
|
578 |
"""
|
579 |
precSo = sollya_lib_get_prec(None)
|
580 |
precSa = c_int(0)
|
581 |
sollya_lib_get_constant_as_int(byref(precSa), precSo) |
582 |
sollya_lib_clear_obj(precSo) |
583 |
return(int(precSa.value)) |
584 |
|
585 |
def pobyso_get_prec_of_constant(ctExpSo): |
586 |
""" Legacy function. See pobyso_get_prec_of_constant_so_sa. """
|
587 |
return(pobyso_get_prec_of_constant_so_sa(ctExpSo))
|
588 |
|
589 |
def pobyso_get_prec_of_constant_so_sa(ctExpSo): |
590 |
prec = c_int(0)
|
591 |
retc = sollya_lib_get_prec_of_constant(byref(prec), ctExpSo, None)
|
592 |
if retc == 0: |
593 |
return(None) |
594 |
return(int(prec.value)) |
595 |
|
596 |
def pobyso_get_prec_of_range_so_sa(rangeSo): |
597 |
prec = c_int(0)
|
598 |
retc = sollya_lib_get_prec_of_range(byref(prec), rangeSo, None)
|
599 |
if retc == 0: |
600 |
return(None) |
601 |
return(int(prec.value)) |
602 |
|
603 |
def pobyso_infnorm_so_so(func, interval, file = None, intervalList = None): |
604 |
print "Do not use this function. User pobyso_supnorm_so_so instead." |
605 |
return(None) |
606 |
|
607 |
def pobyso_lib_init(): |
608 |
sollya_lib_init(None)
|
609 |
|
610 |
def pobyso_name_free_variable(freeVariableName): |
611 |
""" Legacy function. See pobyso_name_free_variable_sa_so. """
|
612 |
pobyso_name_free_variable_sa_so(freeVariableName) |
613 |
|
614 |
def pobyso_name_free_variable_sa_so(freeVariableName): |
615 |
sollya_lib_name_free_variable(freeVariableName) |
616 |
|
617 |
def pobyso_parse_string(string): |
618 |
""" Legacy function. See pobyso_parse_string_sa_so. """
|
619 |
return(pobyso_parse_string_sa_so(string))
|
620 |
|
621 |
def pobyso_parse_string_sa_so(string): |
622 |
return(sollya_lib_parse_string(string))
|
623 |
|
624 |
def pobyso_range(rnLowerBound, rnUpperBound): |
625 |
""" Legacy function. See pobyso_range_sa_so. """
|
626 |
return(pobyso_range_sa_so(rnLowerBound, rnUpperBound))
|
627 |
|
628 |
def pobyso_bounds_to_range_sa_so(rnLowerBoundSa, rnUpperBoundSa): |
629 |
"""
|
630 |
Return a Sollya range from to 2 RealField elements.
|
631 |
The Sollya range element has a sufficient precision to hold all
|
632 |
the digits of the bounds.
|
633 |
"""
|
634 |
if rnLowerBoundSa > rnUpperBoundSa:
|
635 |
return None |
636 |
lbPrec = rnLowerBoundSa.parent().precision() |
637 |
ubPrec = rnLowerBoundSa.parent().precision() |
638 |
currentSollyaPrecSa = pobyso_get_prec_so_sa() |
639 |
maxPrecSa = max(lbPrec, ubPrec, currentSollyaPrecSa)
|
640 |
# Change the current Sollya precision only if necessary.
|
641 |
if maxPrecSa > currentSollyaPrecSa:
|
642 |
currentPrecSo = sollya_lib_get_prec(None)
|
643 |
newPrecSo = solly_lib_constant_from_uint64(maxPrecSa) |
644 |
sollya_lib_set_prec(newPrecSo) |
645 |
lowerBoundSo = sollya_lib_constant(get_rn_value(rnLowerBoundSa)) |
646 |
upperBoundSo = sollya_lib_constant(get_rn_value(rnUpperBoundSa)) |
647 |
rangeSo = sollya_lib_range(lowerBoundSo, upperBoundSo) |
648 |
currentPrecSo = sollya_lib_get_prec(None)
|
649 |
if maxPrecSa > currentSollyaPrecSa:
|
650 |
sollya_lib_set_prec(currentPrecSo) |
651 |
sollya_lib_clear_obj(currentPrecSo) |
652 |
sollya_lib_clear_obj(newPrecSo) |
653 |
sollya_lib_clear_obj(lowerBoundSo) |
654 |
sollya_lib_clear_obj(upperBoundSo) |
655 |
return(rangeSo)
|
656 |
|
657 |
def pobyso_range_to_interval_so_sa(rangeSo, realIntervalField = None): |
658 |
if realIntervalField is None: |
659 |
precSa = pobyso_get_prec_of_range_so_sa(rangeSo) |
660 |
realIntervalField = RealIntervalField(precSa) |
661 |
intervalSa = \ |
662 |
pobyso_get_interval_from_range_so_sa(rangeSo, realIntervalField) |
663 |
return(intervalSa)
|
664 |
|
665 |
def pobyso_remez_canonical_sa_sa(func, \ |
666 |
degree, \ |
667 |
lowerBound, \ |
668 |
upperBound, \ |
669 |
weight = None, \
|
670 |
quality = None):
|
671 |
"""
|
672 |
All arguments are Sage/Python.
|
673 |
The functions (func and weight) must be passed as expressions or strings.
|
674 |
Otherwise the function fails.
|
675 |
The return value is a pointer is a Sage polynomial.
|
676 |
"""
|
677 |
var('zorglub') # Dummy variable name for type check only. |
678 |
polySo = pobyso_remez_canonical_sa_so(func, \ |
679 |
degree, \ |
680 |
lowerBound, \ |
681 |
upperBound, \ |
682 |
weight = None, \
|
683 |
quality = None)
|
684 |
if parent(func) == parent("string"): |
685 |
functionSa = eval(func)
|
686 |
# Expression test.
|
687 |
elif type(func) == type(zorglub): |
688 |
functionSa = func |
689 |
maxPrecision = 0
|
690 |
if polySo is None: |
691 |
return(None) |
692 |
maxPrecision = pobyso_get_max_prec_of_exp_so_sa(polySo) |
693 |
RRRR = RealField(maxPrecision) |
694 |
polynomialRing = RRRR[functionSa.variables()[0]]
|
695 |
expSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, RRRR) |
696 |
polySa = polynomial(expSa, polynomialRing) |
697 |
return(polySa)
|
698 |
|
699 |
def pobyso_remez_canonical(func, \ |
700 |
degree, \ |
701 |
lowerBound, \ |
702 |
upperBound, \ |
703 |
weight = "1", \
|
704 |
quality = None):
|
705 |
""" Legacy function. See pobyso_remez_canonical_sa_so. """
|
706 |
return(pobyso_remez_canonical_sa_so(func, \
|
707 |
degree, \ |
708 |
lowerBound, \ |
709 |
upperBound, \ |
710 |
weight, \ |
711 |
quality)) |
712 |
def pobyso_remez_canonical_sa_so(func, \ |
713 |
degree, \ |
714 |
lowerBound, \ |
715 |
upperBound, \ |
716 |
weight = None, \
|
717 |
quality = None):
|
718 |
"""
|
719 |
All arguments are Sage/Python.
|
720 |
The functions (func and weight) must be passed as expressions or strings.
|
721 |
Otherwise the function fails.
|
722 |
The return value is a pointer to a Sollya function.
|
723 |
"""
|
724 |
var('zorglub') # Dummy variable name for type check only. |
725 |
currentVariableName = None
|
726 |
# The func argument can be of different types (string,
|
727 |
# symbolic expression...)
|
728 |
if parent(func) == parent("string"): |
729 |
functionSo = sollya_lib_parse_string(func) |
730 |
# Expression test.
|
731 |
elif type(func) == type(zorglub): |
732 |
# Until we are able to translate Sage expressions into Sollya
|
733 |
# expressions : parse the string version.
|
734 |
currentVariableName = func.variables()[0]
|
735 |
sollya_lib_name_free_variable(str(currentVariableName))
|
736 |
functionSo = sollya_lib_parse_string(func._assume_str()) |
737 |
else:
|
738 |
return(None) |
739 |
if weight is None: |
740 |
weightSo = pobyso_constant_1_sa_so() |
741 |
elif parent(weight) == parent("string"): |
742 |
weightSo = sollya_lib_parse_string(func) |
743 |
elif type(weight) == type(zorglub): |
744 |
functionSo = sollya_lib_parse_string_sa_so(weight._assume_str()) |
745 |
else:
|
746 |
return(None) |
747 |
degreeSo = pobyso_constant_from_int(degree) |
748 |
rangeSo = pobyso_range_sa_so(lowerBound, upperBound) |
749 |
if not quality is None: |
750 |
qualitySo= pobyso_constant_sa_so(quality) |
751 |
else:
|
752 |
qualitySo = None
|
753 |
return(sollya_lib_remez(functionSo, \
|
754 |
degreeSo, \ |
755 |
rangeSo, \ |
756 |
weightSo, \ |
757 |
qualitySo, \ |
758 |
None))
|
759 |
|
760 |
def pobyso_remez_canonical_so_so(funcSo, \ |
761 |
degreeSo, \ |
762 |
rangeSo, \ |
763 |
weightSo = pobyso_constant_1_sa_so(),\ |
764 |
qualitySo = None):
|
765 |
"""
|
766 |
All arguments are pointers to Sollya objects.
|
767 |
The return value is a pointer to a Sollya function.
|
768 |
"""
|
769 |
if not sollya_lib_obj_is_function(funcSo): |
770 |
return(None) |
771 |
return(sollya_lib_remez(funcSo, degreeSo, rangeSo, weightSo, qualitySo, None)) |
772 |
|
773 |
def pobyso_set_canonical_off(): |
774 |
sollya_lib_set_canonical(sollya_lib_off()) |
775 |
|
776 |
def pobyso_set_canonical_on(): |
777 |
sollya_lib_set_canonical(sollya_lib_on()) |
778 |
|
779 |
def pobyso_set_prec(p): |
780 |
""" Legacy function. See pobyso_set_prec_sa_so. """
|
781 |
return( pobyso_set_prec_sa_so(p))
|
782 |
|
783 |
def pobyso_set_prec_sa_so(p): |
784 |
a = c_int(p) |
785 |
precSo = c_void_p(sollya_lib_constant_from_int(a)) |
786 |
sollya_lib_set_prec(precSo) |
787 |
|
788 |
def pobyso_supnorm_so_so(polySo, funcSo, intervalSo, errorTypeSo, accuracySo): |
789 |
return(sollya_lib_supnorm(polySo, funcSo, intervalSo, errorTypeSo, \
|
790 |
accuracySo)) |
791 |
|
792 |
def pobyso_taylor_expansion_with_change_var_so_so(functionSo, degreeSo, rangeSo, \ |
793 |
errorTypeSo, \ |
794 |
sollyaPrecSo=None):
|
795 |
"""
|
796 |
Compute the Taylor expansion with the variable change
|
797 |
x -> (x-intervalCenter) included.
|
798 |
"""
|
799 |
# No global change of the working precision.
|
800 |
if not sollyaPrecSo is None: |
801 |
initialPrecSo = sollya_lib_get_prec(None)
|
802 |
sollya_lib_set_prec(sollyaPrecSo) |
803 |
#
|
804 |
intervalCenterSo = sollya_lib_mid(rangeSo) |
805 |
taylorFormSo = sollya_lib_taylorform(functionSo, degreeSo, \ |
806 |
intervalCenterSo, \ |
807 |
rangeSo, errorTypeSo, None)
|
808 |
(taylorFormListSo, numElements, isEndElliptic) = \ |
809 |
pobyso_get_list_elements_so_so(taylorFormSo) |
810 |
polySo = taylorFormListSo[0]
|
811 |
errorRangeSo = taylorFormListSo[2]
|
812 |
maxErrorSo = sollya_lib_sup(errorRangeSo) |
813 |
changeVarExpSo = sollya_lib_build_function_sub(\ |
814 |
sollya_lib_build_function_free_variable(),\ |
815 |
sollya_lib_copy_obj(intervalCenterSo)) |
816 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpSo) |
817 |
# If changed, reset the Sollya working precision.
|
818 |
if not sollyaPrecSo is None: |
819 |
sollya_lib_set_prec(initialPrecSo) |
820 |
sollya_lib_clear_obj(initailPrecSo) |
821 |
return((polyVarChangedSo, intervalCenterSo, maxErrorSo))
|
822 |
# end pobyso_taylor_expansion_with_change_var_so_so
|
823 |
|
824 |
def pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, rangeSo, \ |
825 |
errorTypeSo, \ |
826 |
sollyaPrecSo=None):
|
827 |
"""
|
828 |
Compute the Taylor expansion without the variable change
|
829 |
x -> x-intervalCenter.
|
830 |
"""
|
831 |
# No global change of the working precision.
|
832 |
if not sollyaPrecSo is None: |
833 |
initialPrecSo = sollya_lib_get_prec(None)
|
834 |
sollya_lib_set_prec(sollyaPrecSo) |
835 |
#
|
836 |
intervalCenterSo = sollya_lib_mid(rangeSo) |
837 |
taylorFormSo = sollya_lib_taylorform(functionSo, degreeSo, \ |
838 |
intervalCenterSo, \ |
839 |
rangeSo, errorTypeSo, None)
|
840 |
(taylorFormListSo, numElements, isEndElliptic) = \ |
841 |
pobyso_get_list_elements_so_so(taylorFormSo) |
842 |
polySo = taylorFormListSo[0]
|
843 |
errorRangeSo = taylorFormListSo[2]
|
844 |
maxErrorSo = sollya_lib_sup(errorRangeSo) |
845 |
# If changed, reset the Sollya working precision.
|
846 |
if not sollyaPrecSo is None: |
847 |
sollya_lib_set_prec(initialPrecSo) |
848 |
sollya_lib_clear_obj(initialPrecSo) |
849 |
return((polySo, intervalCenterSo, maxErrorSo))
|
850 |
# end pobyso_taylor_expansion_no_change_var_so_so
|
851 |
|
852 |
def pobyso_taylor(function, degree, point): |
853 |
""" Legacy function. See pobysoTaylor_so_so. """
|
854 |
return(pobyso_taylor_so_so(function, degree, point))
|
855 |
|
856 |
def pobyso_taylor_so_so(functionSo, degreeSo, pointSo): |
857 |
return(sollya_lib_taylor(functionSo, degreeSo, pointSo))
|
858 |
|
859 |
def pobyso_taylorform(function, degree, point = None, interval = None, errorType=None): |
860 |
""" Legacy function. See ;"""
|
861 |
|
862 |
def pobyso_taylorform_sa_sa(functionSa, \ |
863 |
degree, \ |
864 |
point, \ |
865 |
precision, \ |
866 |
interval=None, \
|
867 |
errorType=None):
|
868 |
"""
|
869 |
Compute the Taylor form of 'degree' for 'functionSa' at 'point'
|
870 |
for 'interval' with 'errorType'.
|
871 |
point: must be a Real or a Real interval.
|
872 |
return the Taylor form as an array
|
873 |
TODO: take care of the interval and of point when it is an interval;
|
874 |
when errorType is not None;
|
875 |
take care of the other elements of the Taylor form (coefficients errors and
|
876 |
delta.
|
877 |
"""
|
878 |
# Absolute as the default error.
|
879 |
if errorType is None: |
880 |
errorTypeSo = sollya_lib_absolute() |
881 |
else:
|
882 |
#TODO: deal with the other case.
|
883 |
pass
|
884 |
varSa = functionSa.variables()[0]
|
885 |
pointBaseRingString = str(point.base_ring())
|
886 |
if not re.search('Real', pointBaseRingString): |
887 |
return None |
888 |
# Call Sollya but first "sollyafy" the arguments.
|
889 |
pobyso_name_free_variable_sa_so(str(varSa))
|
890 |
#pobyso_set_prec_sa_so(300)
|
891 |
# Sollyafy the function.
|
892 |
functionSo = pobyso_parse_string_sa_so(functionSa._assume_str()) |
893 |
if sollya_lib_obj_is_error(functionSo):
|
894 |
print "pobyso_tailorform: function string can't be parsed!" |
895 |
return None |
896 |
# Sollyafy the degree
|
897 |
degreeSo = sollya_lib_constant_from_int(int(degree))
|
898 |
# Sollyafy the point
|
899 |
if not re.search('Interval', pointBaseRingString): |
900 |
pointSo = pobyso_constant_sa_so(point) |
901 |
else:
|
902 |
# TODO: deal with the interval case.
|
903 |
pass
|
904 |
# Call Sollya
|
905 |
taylorFormSo = sollya_lib_taylorform(functionSo, degreeSo, pointSo, errorTypeSo,\ |
906 |
None)
|
907 |
(tfsAsList, numElements, isEndElliptic) = \ |
908 |
pobyso_get_list_elements_so_so(taylorFormSo) |
909 |
polySo = tfsAsList[0]
|
910 |
maxPrecision = pobyso_get_max_prec_of_exp_so_sa(polySo) |
911 |
polyRealField = RealField(maxPrecision) |
912 |
expSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, polyRealField) |
913 |
sollya_lib_close() |
914 |
polynomialRing = polyRealField[str(varSa)]
|
915 |
polySa = polynomial(expSa, polynomialRing) |
916 |
taylorFormSa = [polySa] |
917 |
return(taylorFormSa)
|
918 |
# End pobyso_taylor_form_sa_sa
|
919 |
|
920 |
def pobyso_taylorform_so_so(functionSo, degreeSo, pointSo, intervalSo=None, \ |
921 |
errorTypeSo=None):
|
922 |
createdErrorType = False
|
923 |
if errorTypeSo is None: |
924 |
errorTypeSo = sollya_lib_absolute() |
925 |
createdErrorType = True
|
926 |
else:
|
927 |
#TODO: deal with the other case.
|
928 |
pass
|
929 |
if intervalSo is None: |
930 |
resultSo = sollya_lib_taylorform(functionSo, degreeSo, pointSo, \ |
931 |
errorTypeSo, None)
|
932 |
else:
|
933 |
resultSo = sollya_lib_taylorform(functionSo, degreeSo, pointSo, \ |
934 |
intervalSo, errorTypeSo, None)
|
935 |
if createdErrorType:
|
936 |
sollya_lib_clear_obj(errorTypeSo) |
937 |
return(resultSo)
|
938 |
|
939 |
|
940 |
def pobyso_univar_polynomial_print_reverse(polySa): |
941 |
""" Legacy function. See pobyso_univar_polynomial_print_reverse_sa_sa. """
|
942 |
return(pobyso_univar_polynomial_print_reverse_sa_sa(polySa))
|
943 |
|
944 |
def pobyso_univar_polynomial_print_reverse_sa_sa(polySa): |
945 |
"""
|
946 |
Return the string representation of a univariate polynomial with
|
947 |
monomials ordered in the x^0..x^n order of the monomials.
|
948 |
Remember: Sage
|
949 |
"""
|
950 |
polynomialRing = polySa.base_ring() |
951 |
# A very expensive solution:
|
952 |
# -create a fake multivariate polynomial field with only one variable,
|
953 |
# specifying a negative lexicographical order;
|
954 |
mpolynomialRing = PolynomialRing(polynomialRing.base(), \ |
955 |
polynomialRing.variable_name(), \ |
956 |
1, order='neglex') |
957 |
# - convert the univariate argument polynomial into a multivariate
|
958 |
# version;
|
959 |
p = mpolynomialRing(polySa) |
960 |
# - return the string representation of the converted form.
|
961 |
# There is no simple str() method defined for p's class.
|
962 |
return(p.__str__())
|
963 |
#
|
964 |
print pobyso_get_prec()
|
965 |
pobyso_set_prec(165)
|
966 |
print pobyso_get_prec()
|
967 |
a=100
|
968 |
print type(a) |
969 |
id(a)
|
970 |
print "Max arity: ", pobyso_max_arity |
971 |
print "Function tripleDouble (43) as a string: ", pobyso_function_type_as_string(43) |
972 |
print "Function None (44) as a string: ", pobyso_function_type_as_string(44) |
973 |
print "...Pobyso check done" |