Révision 80 pobysoPythonSage/src/sageSLZ/sagePolynomialOperations.sage
sagePolynomialOperations.sage (revision 80) | ||
---|---|---|
1 | 1 |
load "/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageMatrixOperations.sage" |
2 | 2 |
|
3 |
def spo_add_polynomial_coeffs_to_matrix(pMonomials, |
|
4 |
pCoefficients, |
|
5 |
knownMonomials, |
|
6 |
protoMatrixRows, |
|
7 |
columnsWidth=0): |
|
8 |
""" |
|
9 |
For a given polynomial (under the form of monomials and coefficents lists), |
|
10 |
add the coefficients of the protoMatrix (a list of proto matrix rows). |
|
11 |
Coefficients are added to the protoMatrix row in the order imposed by the |
|
12 |
monomials discovery list (the knownMonomials list) built as construction |
|
13 |
goes on. |
|
14 |
As a bonus data can be printed out for a visual check. |
|
15 |
pMonomials : the list of the monomials coming form some polynomial; |
|
16 |
pCoefficients : the list of the corresponding coefficients to add to |
|
17 |
the protoMatrix in the exact same order as the monomials; |
|
18 |
knownMonomials : the list of the already knonw monomials; |
|
19 |
protoMatrixRows: a list of lists, each one holding the coefficients of the |
|
20 |
monomials |
|
21 |
columnWith : the width, in characters, of the displayed column ; if 0, |
|
22 |
do not display anything. |
|
23 |
""" |
|
24 |
# We have started with the smaller degrees in the first variable. |
|
25 |
pMonomials.reverse() |
|
26 |
pCoefficients.reverse() |
|
27 |
# New empty proto matrix row. |
|
28 |
protoMatrixRowCoefficients = [] |
|
29 |
# We work according to the order of the already known monomials |
|
30 |
# No known monomials yet: add the pMonomials to knownMonomials |
|
31 |
# and add the coefficients to the proto matrix row. |
|
32 |
if len(knownMonomials) == 0: |
|
33 |
for pmIdx in xrange(0, len(pMonomials)): |
|
34 |
knownMonomials.append(pMonomials[pmIdx]) |
|
35 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
|
36 |
if columnsWidth != 0: |
|
37 |
monomialAsString = str(pCoefficients[pmIdx]) + " " + \ |
|
38 |
str(pMonomials[pmIdx]) |
|
39 |
print monomialAsString, " " * \ |
|
40 |
(columnsWidth - len(monomialAsString)), |
|
41 |
# There are some known monomials. We search for them in pMonomials and |
|
42 |
# add their coefficients to the proto matrix row. |
|
43 |
else: |
|
44 |
for knownMonomialIndex in xrange(0,len(knownMonomials)): |
|
45 |
# We lazily use an exception here since pMonomials.index() function |
|
46 |
# may fail throwing the ValueError exception. |
|
47 |
try: |
|
48 |
indexInPmonomials = \ |
|
49 |
pMonomials.index(knownMonomials[knownMonomialIndex]) |
|
50 |
if columnsWidth != 0: |
|
51 |
monomialAsString = str(pCoefficients[indexInPmonomials]) + \ |
|
52 |
" " + str(knownMonomials[knownMonomialIndex]) |
|
53 |
print monomialAsString, " " * \ |
|
54 |
(columnsWidth - len(monomialAsString)), |
|
55 |
# Add the coefficient to the proto matrix row and delete the \ |
|
56 |
# known monomial from the current pMonomial list |
|
57 |
#(and the corresponding coefficient as well). |
|
58 |
protoMatrixRowCoefficients.append(pCoefficients[indexInPmonomials]) |
|
59 |
del pMonomials[indexInPmonomials] |
|
60 |
del pCoefficients[indexInPmonomials] |
|
61 |
# The knownMonomials element is not in pMonomials |
|
62 |
except ValueError: |
|
63 |
protoMatrixRowCoefficients.append(0) |
|
64 |
if columnsWidth != 0: |
|
65 |
monomialAsString = "0" + " "+ \ |
|
66 |
str(knownMonomials[knownMonomialIndex]) |
|
67 |
print monomialAsString, " " * \ |
|
68 |
(columnsWidth - len(monomialAsString)), |
|
69 |
# End for knownMonomialKey loop. |
|
70 |
# We now append the remaining monomials of pMonomials to knownMonomials |
|
71 |
# and the corresponding coefficients to proto matrix row. |
|
72 |
for pmIdx in xrange(0, len(pMonomials)): |
|
73 |
knownMonomials.append(pMonomials[pmIdx]) |
|
74 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
|
75 |
if columnsWidth != 0: |
|
76 |
monomialAsString = str(pCoefficients[pmIdx]) + " " \ |
|
77 |
+ str(pMonomials[pmIdx]) |
|
78 |
print monomialAsString, " " * \ |
|
79 |
(columnsWidth - len(monomialAsString)), |
|
80 |
# End for pmIdx loop. |
|
81 |
# Add the new list row elements to the proto matrix. |
|
82 |
protoMatrixRows.append(protoMatrixRowCoefficients) |
|
83 |
if columnsWidth != 0: |
|
84 |
|
|
85 |
# End spo_add_polynomial_coeffs_to_matrix |
|
86 |
|
|
87 |
def spo_expression_as_string(powI, powT, powP, alpha): |
|
88 |
""" |
|
89 |
Computes a string version of the i^k + t^l + p^m + N^n expression for |
|
90 |
output. |
|
91 |
""" |
|
92 |
expressionAsString ="" |
|
93 |
if powI != 0: |
|
94 |
expressionAsString += "i^" + str(powI) |
|
95 |
if powT != 0: |
|
96 |
if len(expressionAsString) != 0: |
|
97 |
expressionAsString += " * " |
|
98 |
expressionAsString += "t^" + str(powT) |
|
99 |
if powP != 0: |
|
100 |
if len(expressionAsString) != 0: |
|
101 |
expressionAsString += " * " |
|
102 |
expressionAsString += "p^" + str(powP) |
|
103 |
if (alpha - powP) != 0 : |
|
104 |
if len(expressionAsString) != 0: |
|
105 |
expressionAsString += " * " |
|
106 |
expressionAsString += "N^" + str(alpha - powP) |
|
107 |
return(expressionAsString) |
|
108 |
# End spo_expression_as_string. |
|
109 |
|
|
3 | 110 |
def spo_polynomial_to_matrix(p, pRing, alpha, N, columnsWidth=0): |
4 | 111 |
""" |
5 | 112 |
From a (bivariate) polynomial and some other parameters build a matrix |
6 | 113 |
to be reduced by fpLLL. |
7 |
The matrix is such as those found in Boneh-Durphy and Stehlé.
|
|
114 |
The matrix is such as those found in Boneh-Durphee and Stehl?.
|
|
8 | 115 |
|
9 | 116 |
p: the (bivariate) polynomial |
10 | 117 |
alpha: |
... | ... | |
209 | 316 |
# End for pPower loop |
210 | 317 |
return protoMatrixRows |
211 | 318 |
# End spo_polynomial_to_matrix |
212 |
|
|
213 |
def spo_add_polynomial_coeffs_to_matrix(pMonomials, |
|
214 |
pCoefficients, |
|
215 |
knownMonomials, |
|
216 |
protoMatrixRows, |
|
217 |
columnsWidth=0): |
|
218 |
""" |
|
219 |
For a given polynomial (under the form of monomials and coefficents lists), |
|
220 |
add the coefficients of the protoMatrix (a list of proto rows). |
|
221 |
Coefficients are added to the protoMatrix row in the order imposed by the |
|
222 |
monomials discovery list (the knownMonomials list) built as construction |
|
223 |
goes on. |
|
224 |
As a bonus data can be printed out for a visual check. |
|
225 |
pMonomials : the list of the monomials coming form some polynomial; |
|
226 |
pCoefficients : the list of the corresponding coefficients to add to |
|
227 |
the protoMatrix in the exact same order as the monomials; |
|
228 |
knownMonomials : the list of the already knonw monomials; |
|
229 |
protoMatrixRows: a list of lists, each one holding the coefficients of the |
|
230 |
monomials |
|
231 |
columnWith : the width, in characters, of the displayed column ; if 0, |
|
232 |
do not display anything. |
|
233 |
""" |
|
234 |
# We have started with the smaller degrees in the first variable. |
|
235 |
pMonomials.reverse() |
|
236 |
pCoefficients.reverse() |
|
237 |
# New empty proto matrix row. |
|
238 |
protoMatrixRowCoefficients = [] |
|
239 |
# We work according to the order of the already known monomials |
|
240 |
# No known monomials yet: add the pMonomials to knownMonomials |
|
241 |
# and add the coefficients to the proto matrix row. |
|
242 |
if len(knownMonomials) == 0: |
|
243 |
for pmIdx in xrange(0, len(pMonomials)): |
|
244 |
knownMonomials.append(pMonomials[pmIdx]) |
|
245 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
|
246 |
if columnsWidth != 0: |
|
247 |
monomialAsString = str(pCoefficients[pmIdx]) + " " + \ |
|
248 |
str(pMonomials[pmIdx]) |
|
249 |
print monomialAsString, " " * \ |
|
250 |
(columnsWidth - len(monomialAsString)), |
|
251 |
# There are some known monomials. We search for them in pMonomials and |
|
252 |
# add their coefficients to the proto matrix row. |
|
253 |
else: |
|
254 |
for knownMonomialIndex in xrange(0,len(knownMonomials)): |
|
255 |
# We lazily use an exception here since pMonomials.index() function |
|
256 |
# may fail throwing the ValueError exception. |
|
257 |
try: |
|
258 |
indexInPmonomials = \ |
|
259 |
pMonomials.index(knownMonomials[knownMonomialIndex]) |
|
260 |
if columnsWidth != 0: |
|
261 |
monomialAsString = str(pCoefficients[indexInPmonomials]) + \ |
|
262 |
" " + str(knownMonomials[knownMonomialIndex]) |
|
263 |
print monomialAsString, " " * \ |
|
264 |
(columnsWidth - len(monomialAsString)), |
|
265 |
# Add the coefficient to the proto matrix row and delete the \ |
|
266 |
# known monomial from the current pMonomial list |
|
267 |
#(and the corresponding coefficient as well). |
|
268 |
protoMatrixRowCoefficients.append(pCoefficients[indexInPmonomials]) |
|
269 |
del pMonomials[indexInPmonomials] |
|
270 |
del pCoefficients[indexInPmonomials] |
|
271 |
# The knownMonomials element is not in pMonomials |
|
272 |
except ValueError: |
|
273 |
protoMatrixRowCoefficients.append(0) |
|
274 |
if columnsWidth != 0: |
|
275 |
monomialAsString = "0" + " "+ \ |
|
276 |
str(knownMonomials[knownMonomialIndex]) |
|
277 |
print monomialAsString, " " * \ |
|
278 |
(columnsWidth - len(monomialAsString)), |
|
279 |
# End for knownMonomialKey loop. |
|
280 |
# We now append the remaining monomials of pMonomials to knownMonomials |
|
281 |
# and the corresponding coefficients to proto matrix row. |
|
282 |
for pmIdx in xrange(0, len(pMonomials)): |
|
283 |
knownMonomials.append(pMonomials[pmIdx]) |
|
284 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
|
285 |
if columnsWidth != 0: |
|
286 |
monomialAsString = str(pCoefficients[pmIdx]) + " " \ |
|
287 |
+ str(pMonomials[pmIdx]) |
|
288 |
print monomialAsString, " " * \ |
|
289 |
(columnsWidth - len(monomialAsString)), |
|
290 |
# End for pmIdx loop. |
|
291 |
# Add the new list row elements to the proto matrix. |
|
292 |
protoMatrixRows.append(protoMatrixRowCoefficients) |
|
293 |
if columnsWidth != 0: |
|
294 |
|
|
295 |
# End spo_add_polynomial_coeffs_to_matrix |
|
296 |
|
|
297 |
def spo_expression_as_string(powI, powT, powP, alpha): |
|
298 |
""" |
|
299 |
Computes a string version of the i^k + t^l + p^m + N^n expression for |
|
300 |
output. |
|
301 |
""" |
|
302 |
expressionAsString ="" |
|
303 |
if powI != 0: |
|
304 |
expressionAsString += "i^" + str(powI) |
|
305 |
if powT != 0: |
|
306 |
if len(expressionAsString) != 0: |
|
307 |
expressionAsString += " * " |
|
308 |
expressionAsString += "t^" + str(powT) |
|
309 |
if powP != 0: |
|
310 |
if len(expressionAsString) != 0: |
|
311 |
expressionAsString += " * " |
|
312 |
expressionAsString += "p^" + str(powP) |
|
313 |
if (alpha - powP) != 0 : |
|
314 |
if len(expressionAsString) != 0: |
|
315 |
expressionAsString += " * " |
|
316 |
expressionAsString += "N^" + str(alpha - powP) |
|
317 |
return(expressionAsString) |
|
318 |
# End spo_expression_as_string. |
Formats disponibles : Unified diff