Révision 80
pobysoPythonSage/src/sageSLZ/sagePolynomialOperations.sage (revision 80) | ||
---|---|---|
1 | 1 |
load "/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageMatrixOperations.sage" |
2 | 2 |
|
3 |
def spo_add_polynomial_coeffs_to_matrix(pMonomials, |
|
4 |
pCoefficients, |
|
5 |
knownMonomials, |
|
6 |
protoMatrixRows, |
|
7 |
columnsWidth=0): |
|
8 |
""" |
|
9 |
For a given polynomial (under the form of monomials and coefficents lists), |
|
10 |
add the coefficients of the protoMatrix (a list of proto matrix rows). |
|
11 |
Coefficients are added to the protoMatrix row in the order imposed by the |
|
12 |
monomials discovery list (the knownMonomials list) built as construction |
|
13 |
goes on. |
|
14 |
As a bonus data can be printed out for a visual check. |
|
15 |
pMonomials : the list of the monomials coming form some polynomial; |
|
16 |
pCoefficients : the list of the corresponding coefficients to add to |
|
17 |
the protoMatrix in the exact same order as the monomials; |
|
18 |
knownMonomials : the list of the already knonw monomials; |
|
19 |
protoMatrixRows: a list of lists, each one holding the coefficients of the |
|
20 |
monomials |
|
21 |
columnWith : the width, in characters, of the displayed column ; if 0, |
|
22 |
do not display anything. |
|
23 |
""" |
|
24 |
# We have started with the smaller degrees in the first variable. |
|
25 |
pMonomials.reverse() |
|
26 |
pCoefficients.reverse() |
|
27 |
# New empty proto matrix row. |
|
28 |
protoMatrixRowCoefficients = [] |
|
29 |
# We work according to the order of the already known monomials |
|
30 |
# No known monomials yet: add the pMonomials to knownMonomials |
|
31 |
# and add the coefficients to the proto matrix row. |
|
32 |
if len(knownMonomials) == 0: |
|
33 |
for pmIdx in xrange(0, len(pMonomials)): |
|
34 |
knownMonomials.append(pMonomials[pmIdx]) |
|
35 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
|
36 |
if columnsWidth != 0: |
|
37 |
monomialAsString = str(pCoefficients[pmIdx]) + " " + \ |
|
38 |
str(pMonomials[pmIdx]) |
|
39 |
print monomialAsString, " " * \ |
|
40 |
(columnsWidth - len(monomialAsString)), |
|
41 |
# There are some known monomials. We search for them in pMonomials and |
|
42 |
# add their coefficients to the proto matrix row. |
|
43 |
else: |
|
44 |
for knownMonomialIndex in xrange(0,len(knownMonomials)): |
|
45 |
# We lazily use an exception here since pMonomials.index() function |
|
46 |
# may fail throwing the ValueError exception. |
|
47 |
try: |
|
48 |
indexInPmonomials = \ |
|
49 |
pMonomials.index(knownMonomials[knownMonomialIndex]) |
|
50 |
if columnsWidth != 0: |
|
51 |
monomialAsString = str(pCoefficients[indexInPmonomials]) + \ |
|
52 |
" " + str(knownMonomials[knownMonomialIndex]) |
|
53 |
print monomialAsString, " " * \ |
|
54 |
(columnsWidth - len(monomialAsString)), |
|
55 |
# Add the coefficient to the proto matrix row and delete the \ |
|
56 |
# known monomial from the current pMonomial list |
|
57 |
#(and the corresponding coefficient as well). |
|
58 |
protoMatrixRowCoefficients.append(pCoefficients[indexInPmonomials]) |
|
59 |
del pMonomials[indexInPmonomials] |
|
60 |
del pCoefficients[indexInPmonomials] |
|
61 |
# The knownMonomials element is not in pMonomials |
|
62 |
except ValueError: |
|
63 |
protoMatrixRowCoefficients.append(0) |
|
64 |
if columnsWidth != 0: |
|
65 |
monomialAsString = "0" + " "+ \ |
|
66 |
str(knownMonomials[knownMonomialIndex]) |
|
67 |
print monomialAsString, " " * \ |
|
68 |
(columnsWidth - len(monomialAsString)), |
|
69 |
# End for knownMonomialKey loop. |
|
70 |
# We now append the remaining monomials of pMonomials to knownMonomials |
|
71 |
# and the corresponding coefficients to proto matrix row. |
|
72 |
for pmIdx in xrange(0, len(pMonomials)): |
|
73 |
knownMonomials.append(pMonomials[pmIdx]) |
|
74 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
|
75 |
if columnsWidth != 0: |
|
76 |
monomialAsString = str(pCoefficients[pmIdx]) + " " \ |
|
77 |
+ str(pMonomials[pmIdx]) |
|
78 |
print monomialAsString, " " * \ |
|
79 |
(columnsWidth - len(monomialAsString)), |
|
80 |
# End for pmIdx loop. |
|
81 |
# Add the new list row elements to the proto matrix. |
|
82 |
protoMatrixRows.append(protoMatrixRowCoefficients) |
|
83 |
if columnsWidth != 0: |
|
84 |
|
|
85 |
# End spo_add_polynomial_coeffs_to_matrix |
|
86 |
|
|
87 |
def spo_expression_as_string(powI, powT, powP, alpha): |
|
88 |
""" |
|
89 |
Computes a string version of the i^k + t^l + p^m + N^n expression for |
|
90 |
output. |
|
91 |
""" |
|
92 |
expressionAsString ="" |
|
93 |
if powI != 0: |
|
94 |
expressionAsString += "i^" + str(powI) |
|
95 |
if powT != 0: |
|
96 |
if len(expressionAsString) != 0: |
|
97 |
expressionAsString += " * " |
|
98 |
expressionAsString += "t^" + str(powT) |
|
99 |
if powP != 0: |
|
100 |
if len(expressionAsString) != 0: |
|
101 |
expressionAsString += " * " |
|
102 |
expressionAsString += "p^" + str(powP) |
|
103 |
if (alpha - powP) != 0 : |
|
104 |
if len(expressionAsString) != 0: |
|
105 |
expressionAsString += " * " |
|
106 |
expressionAsString += "N^" + str(alpha - powP) |
|
107 |
return(expressionAsString) |
|
108 |
# End spo_expression_as_string. |
|
109 |
|
|
3 | 110 |
def spo_polynomial_to_matrix(p, pRing, alpha, N, columnsWidth=0): |
4 | 111 |
""" |
5 | 112 |
From a (bivariate) polynomial and some other parameters build a matrix |
6 | 113 |
to be reduced by fpLLL. |
7 |
The matrix is such as those found in Boneh-Durphy and Stehlé.
|
|
114 |
The matrix is such as those found in Boneh-Durphee and Stehl?.
|
|
8 | 115 |
|
9 | 116 |
p: the (bivariate) polynomial |
10 | 117 |
alpha: |
... | ... | |
209 | 316 |
# End for pPower loop |
210 | 317 |
return protoMatrixRows |
211 | 318 |
# End spo_polynomial_to_matrix |
212 |
|
|
213 |
def spo_add_polynomial_coeffs_to_matrix(pMonomials, |
|
214 |
pCoefficients, |
|
215 |
knownMonomials, |
|
216 |
protoMatrixRows, |
|
217 |
columnsWidth=0): |
|
218 |
""" |
|
219 |
For a given polynomial (under the form of monomials and coefficents lists), |
|
220 |
add the coefficients of the protoMatrix (a list of proto rows). |
|
221 |
Coefficients are added to the protoMatrix row in the order imposed by the |
|
222 |
monomials discovery list (the knownMonomials list) built as construction |
|
223 |
goes on. |
|
224 |
As a bonus data can be printed out for a visual check. |
|
225 |
pMonomials : the list of the monomials coming form some polynomial; |
|
226 |
pCoefficients : the list of the corresponding coefficients to add to |
|
227 |
the protoMatrix in the exact same order as the monomials; |
|
228 |
knownMonomials : the list of the already knonw monomials; |
|
229 |
protoMatrixRows: a list of lists, each one holding the coefficients of the |
|
230 |
monomials |
|
231 |
columnWith : the width, in characters, of the displayed column ; if 0, |
|
232 |
do not display anything. |
|
233 |
""" |
|
234 |
# We have started with the smaller degrees in the first variable. |
|
235 |
pMonomials.reverse() |
|
236 |
pCoefficients.reverse() |
|
237 |
# New empty proto matrix row. |
|
238 |
protoMatrixRowCoefficients = [] |
|
239 |
# We work according to the order of the already known monomials |
|
240 |
# No known monomials yet: add the pMonomials to knownMonomials |
|
241 |
# and add the coefficients to the proto matrix row. |
|
242 |
if len(knownMonomials) == 0: |
|
243 |
for pmIdx in xrange(0, len(pMonomials)): |
|
244 |
knownMonomials.append(pMonomials[pmIdx]) |
|
245 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
|
246 |
if columnsWidth != 0: |
|
247 |
monomialAsString = str(pCoefficients[pmIdx]) + " " + \ |
|
248 |
str(pMonomials[pmIdx]) |
|
249 |
print monomialAsString, " " * \ |
|
250 |
(columnsWidth - len(monomialAsString)), |
|
251 |
# There are some known monomials. We search for them in pMonomials and |
|
252 |
# add their coefficients to the proto matrix row. |
|
253 |
else: |
|
254 |
for knownMonomialIndex in xrange(0,len(knownMonomials)): |
|
255 |
# We lazily use an exception here since pMonomials.index() function |
|
256 |
# may fail throwing the ValueError exception. |
|
257 |
try: |
|
258 |
indexInPmonomials = \ |
|
259 |
pMonomials.index(knownMonomials[knownMonomialIndex]) |
|
260 |
if columnsWidth != 0: |
|
261 |
monomialAsString = str(pCoefficients[indexInPmonomials]) + \ |
|
262 |
" " + str(knownMonomials[knownMonomialIndex]) |
|
263 |
print monomialAsString, " " * \ |
|
264 |
(columnsWidth - len(monomialAsString)), |
|
265 |
# Add the coefficient to the proto matrix row and delete the \ |
|
266 |
# known monomial from the current pMonomial list |
|
267 |
#(and the corresponding coefficient as well). |
|
268 |
protoMatrixRowCoefficients.append(pCoefficients[indexInPmonomials]) |
|
269 |
del pMonomials[indexInPmonomials] |
|
270 |
del pCoefficients[indexInPmonomials] |
|
271 |
# The knownMonomials element is not in pMonomials |
|
272 |
except ValueError: |
|
273 |
protoMatrixRowCoefficients.append(0) |
|
274 |
if columnsWidth != 0: |
|
275 |
monomialAsString = "0" + " "+ \ |
|
276 |
str(knownMonomials[knownMonomialIndex]) |
|
277 |
print monomialAsString, " " * \ |
|
278 |
(columnsWidth - len(monomialAsString)), |
|
279 |
# End for knownMonomialKey loop. |
|
280 |
# We now append the remaining monomials of pMonomials to knownMonomials |
|
281 |
# and the corresponding coefficients to proto matrix row. |
|
282 |
for pmIdx in xrange(0, len(pMonomials)): |
|
283 |
knownMonomials.append(pMonomials[pmIdx]) |
|
284 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
|
285 |
if columnsWidth != 0: |
|
286 |
monomialAsString = str(pCoefficients[pmIdx]) + " " \ |
|
287 |
+ str(pMonomials[pmIdx]) |
|
288 |
print monomialAsString, " " * \ |
|
289 |
(columnsWidth - len(monomialAsString)), |
|
290 |
# End for pmIdx loop. |
|
291 |
# Add the new list row elements to the proto matrix. |
|
292 |
protoMatrixRows.append(protoMatrixRowCoefficients) |
|
293 |
if columnsWidth != 0: |
|
294 |
|
|
295 |
# End spo_add_polynomial_coeffs_to_matrix |
|
296 |
|
|
297 |
def spo_expression_as_string(powI, powT, powP, alpha): |
|
298 |
""" |
|
299 |
Computes a string version of the i^k + t^l + p^m + N^n expression for |
|
300 |
output. |
|
301 |
""" |
|
302 |
expressionAsString ="" |
|
303 |
if powI != 0: |
|
304 |
expressionAsString += "i^" + str(powI) |
|
305 |
if powT != 0: |
|
306 |
if len(expressionAsString) != 0: |
|
307 |
expressionAsString += " * " |
|
308 |
expressionAsString += "t^" + str(powT) |
|
309 |
if powP != 0: |
|
310 |
if len(expressionAsString) != 0: |
|
311 |
expressionAsString += " * " |
|
312 |
expressionAsString += "p^" + str(powP) |
|
313 |
if (alpha - powP) != 0 : |
|
314 |
if len(expressionAsString) != 0: |
|
315 |
expressionAsString += " * " |
|
316 |
expressionAsString += "N^" + str(alpha - powP) |
|
317 |
return(expressionAsString) |
|
318 |
# End spo_expression_as_string. |
pobysoPythonSage/src/sageSLZ/sageSLZ.sage (revision 80) | ||
---|---|---|
58 | 58 |
# End slz_compute_polynomial_and_interval |
59 | 59 |
|
60 | 60 |
def slz_compute_scaled_function(functionSa, \ |
61 |
variableNameSa, \ |
|
62 | 61 |
lowerBoundSa, \ |
63 | 62 |
upperBoundSa, \ |
64 | 63 |
floatingPointPrecSa): |
... | ... | |
72 | 71 |
[3]: the scaled image lower bound |
73 | 72 |
[4]: the scaled image upper bound |
74 | 73 |
""" |
75 |
x = var(variableNameSa) |
|
74 |
x = functionSa.variables()[0] |
|
75 |
# Reassert f as a function (an not a mere expression). |
|
76 |
|
|
76 | 77 |
# Scalling the domain -> [1,2[. |
77 | 78 |
boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
78 | 79 |
domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
79 | 80 |
(domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
80 |
slz_interval_scaling_expression(domainBoundsIntervalSa, variableNameSa)
|
|
81 |
slz_interval_scaling_expression(domainBoundsIntervalSa, x)
|
|
81 | 82 |
print "domainScalingExpression for argument :", domainScalingExpressionSa |
82 | 83 |
print "f: ", f |
83 | 84 |
ff = f.subs({x : domainScalingExpressionSa}) |
84 | 85 |
#ff = f.subs_expr(x==domainScalingExpressionSa) |
85 |
scaledLowerBoundSa = invDomainScalingExpressionSa(lowerBoundSa).n() |
|
86 |
scaledUpperBoundSa = invDomainScalingExpressionSa(upperBoundSa).n() |
|
86 |
domainScalingFunction(x) = invDomainScalingExpressionSa |
|
87 |
scaledLowerBoundSa = domainScalingFunction(lowerBoundSa).n() |
|
88 |
scaledUpperBoundSa = domainScalingFunction(upperBoundSa).n() |
|
87 | 89 |
print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
88 | 90 |
# |
89 | 91 |
# Scalling the image -> [1,2[. |
... | ... | |
96 | 98 |
print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
97 | 99 |
imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
98 | 100 |
(imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
99 |
slz_interval_scaling_expression(imageBoundsIntervalSa, variableNameSa)
|
|
101 |
slz_interval_scaling_expression(imageBoundsIntervalSa, x)
|
|
100 | 102 |
iis = invImageScalingExpressionSa.function(x) |
101 | 103 |
fff = iis.subs({x:ff}) |
102 | 104 |
print "fff:", fff, |
... | ... | |
110 | 112 |
return(polynomialRing(polyOfFloat)) |
111 | 113 |
# End slz_float_poly_of_float_to_rat_poly_of_rat |
112 | 114 |
|
113 |
def slz_get_intervals_and_polynomials(functionSa, variableNameSa, degreeSa,
|
|
115 |
def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
|
114 | 116 |
lowerBoundSa, |
115 | 117 |
upperBoundSa, floatingPointPrecSa, |
116 | 118 |
internalSollyaPrecSa, approxPrecSa): |
... | ... | |
133 | 135 |
- the center, x0, of the interval; |
134 | 136 |
- the corresponding approximation error. |
135 | 137 |
""" |
136 |
x = var(variableNameSa) |
|
137 |
# Scalling the domain -> [1,2[. |
|
138 |
boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
|
139 |
domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
|
140 |
(domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
|
141 |
slz_interval_scaling_expression(domainBoundsIntervalSa, variableNameSa) |
|
142 |
print "domainScalingExpression for argument :", domainScalingExpressionSa |
|
143 |
print "f: ", f |
|
144 |
ff = f.subs({x : domainScalingExpressionSa}) |
|
145 |
#ff = f.subs_expr(x==domainScalingExpressionSa) |
|
146 |
scaledLowerBoundSa = invDomainScalingExpressionSa(lowerBoundSa).n() |
|
147 |
scaledUpperBoundSa = invDomainScalingExpressionSa(upperBoundSa).n() |
|
148 |
print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
|
138 |
x = functionSa.variables()[0] # Actual variable name can be anything. |
|
139 |
(fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
|
140 |
scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
|
141 |
slz_compute_scaled_function(functionSa, \ |
|
142 |
lowerBoundSa, \ |
|
143 |
upperBoundSa, \ |
|
144 |
floatingPointPrecSa) |
|
149 | 145 |
# |
150 |
# Scalling the image -> [1,2[. |
|
151 |
flbSa = f(lowerBoundSa).n() |
|
152 |
fubSa = f(upperBoundSa).n() |
|
153 |
if flbSa <= fubSa: # Increasing |
|
154 |
imageBinadeBottomSa = floor(flbSa.log2()) |
|
155 |
else: # Decreasing |
|
156 |
imageBinadeBottomSa = floor(fubSa.log2()) |
|
157 |
print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
|
158 |
imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
|
159 |
(imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
|
160 |
slz_interval_scaling_expression(imageBoundsIntervalSa, variableNameSa) |
|
161 |
iis = invImageScalingExpressionSa.function(x) |
|
162 |
fff = iis.subs({x:ff}) |
|
163 |
print "fff:", fff, |
|
164 |
print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
|
165 |
# |
|
166 | 146 |
resultArray = [] |
167 | 147 |
# |
168 | 148 |
print "Approximation precision: ", RR(approxPrecSa) |
... | ... | |
208 | 188 |
return(resultArray) |
209 | 189 |
# End slz_get_intervals_and_polynomials |
210 | 190 |
|
211 |
def slz_interval_scaling_expression(boundsInterval, varName):
|
|
191 |
def slz_interval_scaling_expression(boundsInterval, expVar):
|
|
212 | 192 |
""" |
213 | 193 |
Compute the scaling expression to map an interval that span only |
214 | 194 |
a binade to [1, 2) and the inverse expression as well. |
... | ... | |
219 | 199 |
if boundsInterval.endpoints()[0] >= 0: |
220 | 200 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
221 | 201 |
invScalingCoeff = 1/scalingCoeff |
222 |
return((scalingCoeff * eval(varName),
|
|
223 |
invScalingCoeff * eval(varName)))
|
|
202 |
return((scalingCoeff * expVar,
|
|
203 |
invScalingCoeff * expVar))
|
|
224 | 204 |
else: |
225 | 205 |
scalingCoeff = \ |
226 | 206 |
2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
227 | 207 |
scalingOffset = -3 * scalingCoeff |
228 |
return((scalingCoeff * eval(varName) + scalingOffset,
|
|
229 |
1/scalingCoeff * eval(varName) + 3))
|
|
208 |
return((scalingCoeff * expVar + scalingOffset,
|
|
209 |
1/scalingCoeff * expVar + 3))
|
|
230 | 210 |
else: |
231 | 211 |
if boundsInterval.endpoints()[0] >= 0: |
232 | 212 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
233 | 213 |
scalingOffset = 0 |
234 |
return((scalingCoeff * eval(varName),
|
|
235 |
1/scalingCoeff * eval(varName)))
|
|
214 |
return((scalingCoeff * expVar,
|
|
215 |
1/scalingCoeff * expVar))
|
|
236 | 216 |
else: |
237 | 217 |
scalingCoeff = \ |
238 | 218 |
2^(floor((-boundsInterval.endpoints()[1]).log2())) |
239 | 219 |
scalingOffset = -3 * scalingCoeff |
240 | 220 |
#scalingOffset = 0 |
241 |
return((scalingCoeff * eval(varName) + scalingOffset,
|
|
242 |
1/scalingCoeff * eval(varName) + 3))
|
|
221 |
return((scalingCoeff * expVar + scalingOffset,
|
|
222 |
1/scalingCoeff * expVar + 3))
|
|
243 | 223 |
|
244 | 224 |
|
245 | 225 |
def slz_polynomial_and_interval_to_sage(polyRangeCenterErrorSo): |
... | ... | |
269 | 249 |
return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
270 | 250 |
# End slz_polynomial_and_interval_to_sage |
271 | 251 |
|
272 |
def slz_rat_poly_of_int_to_int_poly_of_int(ratPolyOfInt): |
|
273 |
pass |
|
274 |
# End slz_ratPoly_of_int_to_int_poly_of_int |
|
252 |
def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
|
253 |
precision, |
|
254 |
targetHardnessToRound, |
|
255 |
variable1, |
|
256 |
variable2): |
|
257 |
""" |
|
258 |
Creates a new polynomial with integer coefficients for use with the |
|
259 |
Coppersmith method. |
|
260 |
A the same time it computes : |
|
261 |
- 2^K (N); |
|
262 |
- 2^k |
|
263 |
- lcm |
|
264 |
""" |
|
265 |
# Create a new integer polynomial ring. |
|
266 |
IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
|
267 |
# Coefficients are issued in the increasing power order. |
|
268 |
ratPolyCoefficients = ratPolyOfInt.coefficients() |
|
269 |
# Build the list of number we compute the lcmm of. |
|
270 |
coefficientDenominators = sro_denominators(ratPolyCoefficients) |
|
271 |
coefficientDenominators.append(2^precision) |
|
272 |
coefficientDenominators.append(2^(targetHardnessToRound + 1)) |
|
273 |
leastCommonMultiple = sro_lcmm(coefficientDenominators) |
|
274 |
# Compute the lcm |
|
275 |
leastCommonMultiple = sro_lcmm(coefficientDenominators) |
|
276 |
# Compute the expression corresponding to the new polynomial |
|
277 |
coefficientNumerators = sro_numerators(ratPolyCoefficients) |
|
278 |
print coefficientNumerators |
|
279 |
polynomialExpression = 0 |
|
280 |
power = 0 |
|
281 |
# Iterate over two lists at the same time, stop when the shorter is |
|
282 |
# exhausted. |
|
283 |
for numerator, denominator in \ |
|
284 |
zip(coefficientNumerators, coefficientDenominators): |
|
285 |
multiplicator = leastCommonMultiple / denominator |
|
286 |
newCoefficient = numerator * multiplicator |
|
287 |
polynomialExpression += newCoefficient * variable1^power |
|
288 |
power +=1 |
|
289 |
polynomialExpression += - variable2 |
|
290 |
return (IP(polynomialExpression), |
|
291 |
leastCommonMultiple / 2^precision, # 2^K or N. |
|
292 |
leastCommonMultiple / 2 ^(targetHardnessToRound + 1), # tBound |
|
293 |
leastCommonMultiple) |
|
294 |
|
|
295 |
# End slz_ratPoly_of_int_to_poly_for_coppersmith |
|
275 | 296 |
|
276 | 297 |
def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
277 | 298 |
precision): |
pobysoPythonSage/src/sageSLZ/sageRationalOperations.sage (revision 80) | ||
---|---|---|
6 | 6 |
- Serge Torres: first operations set (2013-04) |
7 | 7 |
""" |
8 | 8 |
|
9 |
def denominators(rationalList = None): |
|
9 |
def sro_denominators(rationalList = None):
|
|
10 | 10 |
""" |
11 | 11 |
Compute the list of the denominators of a rational numbers list. |
12 | 12 |
""" |
... | ... | |
37 | 37 |
"has no \"denominator()\" member." |
38 | 38 |
return([]) |
39 | 39 |
return(denominatorsList) |
40 |
# End sro_denominators |
|
40 | 41 |
|
41 |
def lcmm(rationalList = None): |
|
42 |
def sro_lcmm(rationalList = None):
|
|
42 | 43 |
""" |
43 | 44 |
Compute the lcm of an sequence (list, tuple) of rational numbers. |
44 | 45 |
""" |
... | ... | |
62 | 63 |
except Exception: |
63 | 64 |
print "Exception raised in lcmm!" |
64 | 65 |
return(0) |
65 |
|
|
66 |
def numerators(rationalList = None): |
|
66 |
# End sro_lcmm |
|
67 |
|
|
68 |
def sro_numerators(rationalList = None): |
|
67 | 69 |
""" |
68 | 70 |
Compute the list of the numerators of a rational numbers list. |
69 | 71 |
""" |
... | ... | |
93 | 95 |
print "numerators:", rationalList[i], \ |
94 | 96 |
"has no \"numerator()\" member." |
95 | 97 |
return([]) |
96 |
return(numeratorsList) |
|
98 |
return(numeratorsList) |
|
99 |
# End sro_numerators |
pobysoPythonSage/src/sageSLZ/sageSLZ-Notes.html (revision 80) | ||
---|---|---|
68 | 68 |
abbr {font-family : helvetica, arial, sans-serif; |
69 | 69 |
font-style : normal; |
70 | 70 |
font-weight : bold} |
71 |
/* Identique ? <abbr> */
|
|
71 |
/* Identique ? abbr */
|
|
72 | 72 |
acronym {font-family : helvetica, arial, sans-serif; |
73 | 73 |
font-style : normal; |
74 | 74 |
font-weight : bold} |
... | ... | |
265 | 265 |
hr.twentypc {margin-left: 40%; |
266 | 266 |
margin-right: 40%;} |
267 | 267 |
/* Notes */ |
268 |
/* L'appel de note est r?alis? par un ?l?ment <a> de classe callNote */
|
|
268 |
/* L'appel de note est r?alis? par un ?l?ment "a" de classe callNote */
|
|
269 | 269 |
a.callNote {} |
270 |
/* Le retour de note est r?alis? par un ?l?ment </a><a> de classe retFromNote */
|
|
270 |
/* Le retour de note est r?alis? par un ?l?ment "a" de classe retFromNote */
|
|
271 | 271 |
a.retFromNote {} |
272 | 272 |
/* Liste des notes proprement dite */ |
273 | 273 |
ol.notes {margin-left: 0%; |
... | ... | |
296 | 296 |
div.toc {margin-left : 50pt} |
297 | 297 |
ul.toc {font-size : 14pt ; |
298 | 298 |
font-family : Helvetica , Arial , sans-serif} |
299 |
</a></abbr></style>
|
|
299 |
</style> |
|
300 | 300 |
<title>sageSLZ Notes</title> |
301 | 301 |
</head> |
302 | 302 |
|
Formats disponibles : Unified diff