root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 80
Historique | Voir | Annoter | Télécharger (15,26 ko)
1 | 61 | storres | def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
---|---|---|---|
2 | 61 | storres | upperBoundSa, approxPrecSa, |
3 | 61 | storres | sollyaPrecSa=None): |
4 | 61 | storres | """ |
5 | 61 | storres | Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
6 | 61 | storres | a polynomial that approximates the function on a an interval starting |
7 | 61 | storres | at lowerBoundSa and finishing at a value that guarantees that the polynomial |
8 | 61 | storres | approximates with the expected precision. |
9 | 61 | storres | The interval upper bound is lowered until the expected approximation |
10 | 61 | storres | precision is reached. |
11 | 61 | storres | The polynomial, the bounds, the center of the interval and the error |
12 | 61 | storres | are returned. |
13 | 61 | storres | """ |
14 | 61 | storres | RRR = lowerBoundSa.parent() |
15 | 61 | storres | #goldenRatioSa = RRR(5.sqrt() / 2 - 1/2) |
16 | 61 | storres | #intervalShrinkConstFactorSa = goldenRatioSa |
17 | 61 | storres | intervalShrinkConstFactorSa = RRR('0.5') |
18 | 61 | storres | absoluteErrorTypeSo = pobyso_absolute_so_so() |
19 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
20 | 61 | storres | currentUpperBoundSa = upperBoundSa |
21 | 61 | storres | currentLowerBoundSa = lowerBoundSa |
22 | 61 | storres | # What we want here is the polynomial without the variable change, |
23 | 61 | storres | # since our actual variable will be x-intervalCenter defined over the |
24 | 61 | storres | # domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
25 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
26 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
27 | 61 | storres | currentRangeSo, |
28 | 61 | storres | absoluteErrorTypeSo) |
29 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
30 | 61 | storres | while maxErrorSa > approxPrecSa: |
31 | 61 | storres | sollya_lib_clear_obj(maxErrorSo) |
32 | 71 | storres | errorRatioSa = 1/(maxErrorSa/approxPrecSa).log2() |
33 | 61 | storres | #print "Error ratio: ", errorRatioSa |
34 | 71 | storres | if errorRatioSa > intervalShrinkConstFactorSa: |
35 | 61 | storres | currentUpperBoundSa = currentLowerBoundSa + \ |
36 | 61 | storres | (currentUpperBoundSa - currentLowerBoundSa) * \ |
37 | 61 | storres | intervalShrinkConstFactorSa |
38 | 61 | storres | else: |
39 | 61 | storres | currentUpperBoundSa = currentLowerBoundSa + \ |
40 | 61 | storres | (currentUpperBoundSa - currentLowerBoundSa) * \ |
41 | 61 | storres | intervalShrinkConstFactorSa |
42 | 71 | storres | currentUpperBoundSa = currentLowerBoundSa + \ |
43 | 71 | storres | (currentUpperBoundSa - currentLowerBoundSa) * \ |
44 | 71 | storres | errorRatioSa |
45 | 71 | storres | #print "Current upper bound:", currentUpperBoundSa |
46 | 61 | storres | sollya_lib_clear_obj(currentRangeSo) |
47 | 61 | storres | sollya_lib_clear_obj(polySo) |
48 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
49 | 61 | storres | currentUpperBoundSa) |
50 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
51 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
52 | 61 | storres | currentRangeSo, |
53 | 61 | storres | absoluteErrorTypeSo) |
54 | 61 | storres | #maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
55 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
56 | 61 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
57 | 61 | storres | return((polySo, currentRangeSo, intervalCenterSo, maxErrorSo)) |
58 | 61 | storres | # End slz_compute_polynomial_and_interval |
59 | 61 | storres | |
60 | 72 | storres | def slz_compute_scaled_function(functionSa, \ |
61 | 72 | storres | lowerBoundSa, \ |
62 | 72 | storres | upperBoundSa, \ |
63 | 72 | storres | floatingPointPrecSa): |
64 | 72 | storres | """ |
65 | 72 | storres | From a function, compute the scaled function whose domain |
66 | 72 | storres | is included in [1, 2) and whose image is also included in [1,2). |
67 | 72 | storres | Return a tuple: |
68 | 72 | storres | [0]: the scaled function |
69 | 72 | storres | [1]: the scaled domain lower bound |
70 | 72 | storres | [2]: the scaled domain upper bound |
71 | 72 | storres | [3]: the scaled image lower bound |
72 | 72 | storres | [4]: the scaled image upper bound |
73 | 72 | storres | """ |
74 | 80 | storres | x = functionSa.variables()[0] |
75 | 80 | storres | # Reassert f as a function (an not a mere expression). |
76 | 80 | storres | |
77 | 72 | storres | # Scalling the domain -> [1,2[. |
78 | 72 | storres | boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
79 | 72 | storres | domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
80 | 72 | storres | (domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
81 | 80 | storres | slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
82 | 72 | storres | print "domainScalingExpression for argument :", domainScalingExpressionSa |
83 | 72 | storres | print "f: ", f |
84 | 72 | storres | ff = f.subs({x : domainScalingExpressionSa}) |
85 | 72 | storres | #ff = f.subs_expr(x==domainScalingExpressionSa) |
86 | 80 | storres | domainScalingFunction(x) = invDomainScalingExpressionSa |
87 | 80 | storres | scaledLowerBoundSa = domainScalingFunction(lowerBoundSa).n() |
88 | 80 | storres | scaledUpperBoundSa = domainScalingFunction(upperBoundSa).n() |
89 | 72 | storres | print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
90 | 72 | storres | # |
91 | 72 | storres | # Scalling the image -> [1,2[. |
92 | 72 | storres | flbSa = f(lowerBoundSa).n() |
93 | 72 | storres | fubSa = f(upperBoundSa).n() |
94 | 72 | storres | if flbSa <= fubSa: # Increasing |
95 | 72 | storres | imageBinadeBottomSa = floor(flbSa.log2()) |
96 | 72 | storres | else: # Decreasing |
97 | 72 | storres | imageBinadeBottomSa = floor(fubSa.log2()) |
98 | 72 | storres | print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
99 | 72 | storres | imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
100 | 72 | storres | (imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
101 | 80 | storres | slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
102 | 72 | storres | iis = invImageScalingExpressionSa.function(x) |
103 | 72 | storres | fff = iis.subs({x:ff}) |
104 | 72 | storres | print "fff:", fff, |
105 | 72 | storres | print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
106 | 72 | storres | return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
107 | 72 | storres | fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
108 | 72 | storres | |
109 | 79 | storres | def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
110 | 79 | storres | # Create a polynomial over the rationals. |
111 | 79 | storres | polynomialRing = QQ[str(polyOfFloat.variables()[0])] |
112 | 79 | storres | return(polynomialRing(polyOfFloat)) |
113 | 79 | storres | # End slz_float_poly_of_float_to_rat_poly_of_rat |
114 | 79 | storres | |
115 | 80 | storres | def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
116 | 63 | storres | lowerBoundSa, |
117 | 60 | storres | upperBoundSa, floatingPointPrecSa, |
118 | 64 | storres | internalSollyaPrecSa, approxPrecSa): |
119 | 60 | storres | """ |
120 | 60 | storres | Under the assumption that: |
121 | 60 | storres | - functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
122 | 60 | storres | - lowerBound and upperBound belong to the same binade. |
123 | 60 | storres | from a: |
124 | 60 | storres | - function; |
125 | 60 | storres | - a degree |
126 | 60 | storres | - a pair of bounds; |
127 | 60 | storres | - the floating-point precision we work on; |
128 | 60 | storres | - the internal Sollya precision; |
129 | 64 | storres | - the requested approximation error |
130 | 61 | storres | The initial interval is, possibly, splitted into smaller intervals. |
131 | 61 | storres | It return a list of tuples, each made of: |
132 | 72 | storres | - a first polynomial (without the changed variable f(x) = p(x-x0)); |
133 | 79 | storres | - a second polynomial (with a changed variable f(x) = q(x)) |
134 | 61 | storres | - the approximation interval; |
135 | 72 | storres | - the center, x0, of the interval; |
136 | 61 | storres | - the corresponding approximation error. |
137 | 60 | storres | """ |
138 | 80 | storres | x = functionSa.variables()[0] # Actual variable name can be anything. |
139 | 80 | storres | (fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
140 | 80 | storres | scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
141 | 80 | storres | slz_compute_scaled_function(functionSa, \ |
142 | 80 | storres | lowerBoundSa, \ |
143 | 80 | storres | upperBoundSa, \ |
144 | 80 | storres | floatingPointPrecSa) |
145 | 60 | storres | # |
146 | 60 | storres | resultArray = [] |
147 | 60 | storres | # |
148 | 60 | storres | print "Approximation precision: ", RR(approxPrecSa) |
149 | 61 | storres | # Prepare the arguments for the Taylor expansion computation with Sollya. |
150 | 62 | storres | functionSo = pobyso_parse_string_sa_so(fff._assume_str()) |
151 | 60 | storres | degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
152 | 61 | storres | scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
153 | 61 | storres | scaledUpperBoundSa) |
154 | 61 | storres | # Compute the first Taylor expansion. |
155 | 60 | storres | (polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
156 | 60 | storres | slz_compute_polynomial_and_interval(functionSo, degreeSo, |
157 | 60 | storres | scaledLowerBoundSa, scaledUpperBoundSa, |
158 | 60 | storres | approxPrecSa, internalSollyaPrecSa) |
159 | 64 | storres | # Change variable stuff |
160 | 62 | storres | changeVarExpressionSo = sollya_lib_build_function_sub( |
161 | 62 | storres | sollya_lib_build_function_free_variable(), |
162 | 62 | storres | sollya_lib_copy_obj(intervalCenterSo)) |
163 | 62 | storres | polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
164 | 64 | storres | resultArray.append((polySo, polyVarChangedSo, boundsSo, intervalCenterSo,\ |
165 | 64 | storres | maxErrorSo)) |
166 | 60 | storres | realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
167 | 60 | storres | upperBoundSa.parent().precision())) |
168 | 61 | storres | boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
169 | 61 | storres | # Compute the other expansions. |
170 | 60 | storres | while boundsSa.endpoints()[1] < scaledUpperBoundSa: |
171 | 60 | storres | currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
172 | 60 | storres | (polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
173 | 60 | storres | slz_compute_polynomial_and_interval(functionSo, degreeSo, |
174 | 60 | storres | currentScaledLowerBoundSa, |
175 | 60 | storres | scaledUpperBoundSa, approxPrecSa, |
176 | 60 | storres | internalSollyaPrecSa) |
177 | 64 | storres | # Change variable stuff |
178 | 64 | storres | changeVarExpressionSo = sollya_lib_build_function_sub( |
179 | 64 | storres | sollya_lib_build_function_free_variable(), |
180 | 64 | storres | sollya_lib_copy_obj(intervalCenterSo)) |
181 | 64 | storres | polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
182 | 64 | storres | resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
183 | 64 | storres | intervalCenterSo, maxErrorSo)) |
184 | 61 | storres | boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
185 | 60 | storres | sollya_lib_clear_obj(functionSo) |
186 | 60 | storres | sollya_lib_clear_obj(degreeSo) |
187 | 60 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
188 | 60 | storres | return(resultArray) |
189 | 60 | storres | # End slz_get_intervals_and_polynomials |
190 | 60 | storres | |
191 | 80 | storres | def slz_interval_scaling_expression(boundsInterval, expVar): |
192 | 61 | storres | """ |
193 | 61 | storres | Compute the scaling expression to map an interval that span only |
194 | 62 | storres | a binade to [1, 2) and the inverse expression as well. |
195 | 62 | storres | Not very sure that the transformation makes sense for negative numbers. |
196 | 61 | storres | """ |
197 | 62 | storres | # The scaling offset is only used for negative numbers. |
198 | 61 | storres | if abs(boundsInterval.endpoints()[0]) < 1: |
199 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
200 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
201 | 62 | storres | invScalingCoeff = 1/scalingCoeff |
202 | 80 | storres | return((scalingCoeff * expVar, |
203 | 80 | storres | invScalingCoeff * expVar)) |
204 | 60 | storres | else: |
205 | 62 | storres | scalingCoeff = \ |
206 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
207 | 62 | storres | scalingOffset = -3 * scalingCoeff |
208 | 80 | storres | return((scalingCoeff * expVar + scalingOffset, |
209 | 80 | storres | 1/scalingCoeff * expVar + 3)) |
210 | 61 | storres | else: |
211 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
212 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
213 | 61 | storres | scalingOffset = 0 |
214 | 80 | storres | return((scalingCoeff * expVar, |
215 | 80 | storres | 1/scalingCoeff * expVar)) |
216 | 61 | storres | else: |
217 | 62 | storres | scalingCoeff = \ |
218 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[1]).log2())) |
219 | 62 | storres | scalingOffset = -3 * scalingCoeff |
220 | 62 | storres | #scalingOffset = 0 |
221 | 80 | storres | return((scalingCoeff * expVar + scalingOffset, |
222 | 80 | storres | 1/scalingCoeff * expVar + 3)) |
223 | 61 | storres | |
224 | 61 | storres | |
225 | 60 | storres | def slz_polynomial_and_interval_to_sage(polyRangeCenterErrorSo): |
226 | 72 | storres | """ |
227 | 72 | storres | Compute the Sage version of the Taylor polynomial and it's |
228 | 72 | storres | companion data (interval, center...) |
229 | 72 | storres | The input parameter is a five elements tuple: |
230 | 79 | storres | - [0]: the polyomial (without variable change), as polynomial over a |
231 | 79 | storres | real ring; |
232 | 79 | storres | - [1]: the polyomial (with variable change done in Sollya), as polynomial |
233 | 79 | storres | over a real ring; |
234 | 72 | storres | - [2]: the interval (as Sollya range); |
235 | 72 | storres | - [3]: the interval center; |
236 | 72 | storres | - [4]: the approximation error. |
237 | 72 | storres | |
238 | 72 | storres | The function return a 5 elements tuple: formed with all the |
239 | 72 | storres | input elements converted into their Sollya counterpart. |
240 | 72 | storres | """ |
241 | 60 | storres | polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
242 | 64 | storres | polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
243 | 60 | storres | intervalSa = \ |
244 | 64 | storres | pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
245 | 60 | storres | centerSa = \ |
246 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
247 | 60 | storres | errorSa = \ |
248 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
249 | 64 | storres | return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
250 | 60 | storres | # End slz_polynomial_and_interval_to_sage |
251 | 62 | storres | |
252 | 80 | storres | def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
253 | 80 | storres | precision, |
254 | 80 | storres | targetHardnessToRound, |
255 | 80 | storres | variable1, |
256 | 80 | storres | variable2): |
257 | 80 | storres | """ |
258 | 80 | storres | Creates a new polynomial with integer coefficients for use with the |
259 | 80 | storres | Coppersmith method. |
260 | 80 | storres | A the same time it computes : |
261 | 80 | storres | - 2^K (N); |
262 | 80 | storres | - 2^k |
263 | 80 | storres | - lcm |
264 | 80 | storres | """ |
265 | 80 | storres | # Create a new integer polynomial ring. |
266 | 80 | storres | IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
267 | 80 | storres | # Coefficients are issued in the increasing power order. |
268 | 80 | storres | ratPolyCoefficients = ratPolyOfInt.coefficients() |
269 | 80 | storres | # Build the list of number we compute the lcmm of. |
270 | 80 | storres | coefficientDenominators = sro_denominators(ratPolyCoefficients) |
271 | 80 | storres | coefficientDenominators.append(2^precision) |
272 | 80 | storres | coefficientDenominators.append(2^(targetHardnessToRound + 1)) |
273 | 80 | storres | leastCommonMultiple = sro_lcmm(coefficientDenominators) |
274 | 80 | storres | # Compute the lcm |
275 | 80 | storres | leastCommonMultiple = sro_lcmm(coefficientDenominators) |
276 | 80 | storres | # Compute the expression corresponding to the new polynomial |
277 | 80 | storres | coefficientNumerators = sro_numerators(ratPolyCoefficients) |
278 | 80 | storres | print coefficientNumerators |
279 | 80 | storres | polynomialExpression = 0 |
280 | 80 | storres | power = 0 |
281 | 80 | storres | # Iterate over two lists at the same time, stop when the shorter is |
282 | 80 | storres | # exhausted. |
283 | 80 | storres | for numerator, denominator in \ |
284 | 80 | storres | zip(coefficientNumerators, coefficientDenominators): |
285 | 80 | storres | multiplicator = leastCommonMultiple / denominator |
286 | 80 | storres | newCoefficient = numerator * multiplicator |
287 | 80 | storres | polynomialExpression += newCoefficient * variable1^power |
288 | 80 | storres | power +=1 |
289 | 80 | storres | polynomialExpression += - variable2 |
290 | 80 | storres | return (IP(polynomialExpression), |
291 | 80 | storres | leastCommonMultiple / 2^precision, # 2^K or N. |
292 | 80 | storres | leastCommonMultiple / 2 ^(targetHardnessToRound + 1), # tBound |
293 | 80 | storres | leastCommonMultiple) |
294 | 80 | storres | |
295 | 80 | storres | # End slz_ratPoly_of_int_to_poly_for_coppersmith |
296 | 79 | storres | |
297 | 79 | storres | def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
298 | 79 | storres | precision): |
299 | 79 | storres | """ |
300 | 79 | storres | Makes a variable substitution into the input polynomial so that the output |
301 | 79 | storres | polynomial can take integer arguments. |
302 | 79 | storres | All variables of the input polynomial "have precision p". That is to say |
303 | 79 | storres | that they are rationals with denominator == 2^precision: x = y/2^precision |
304 | 79 | storres | We "incorporate" these denominators into the coefficients with, |
305 | 79 | storres | respectively, the "right" power. |
306 | 79 | storres | """ |
307 | 79 | storres | polynomialField = ratPolyOfRat.parent() |
308 | 79 | storres | polynomialVariable = rationalPolynomial.variables()[0] |
309 | 79 | storres | print "The polynomial field is:", polynomialField |
310 | 79 | storres | return \ |
311 | 79 | storres | polynomialField(rationalPolynomial.subs({polynomialVariable : \ |
312 | 79 | storres | polynomialVariable/2^(precision-1)})) |
313 | 79 | storres | |
314 | 79 | storres | # Return a tuple: |
315 | 79 | storres | # - the bivariate integer polynomial in (i,j); |
316 | 79 | storres | # - 2^K |
317 | 79 | storres | # End slz_rat_poly_of_rat_to_rat_poly_of_int |
318 | 79 | storres | |
319 | 62 | storres | print "sageSLZ loaded..." |