root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 76
Historique | Voir | Annoter | Télécharger (13,07 ko)
1 | 61 | storres | def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
---|---|---|---|
2 | 61 | storres | upperBoundSa, approxPrecSa, |
3 | 61 | storres | sollyaPrecSa=None): |
4 | 61 | storres | """ |
5 | 61 | storres | Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
6 | 61 | storres | a polynomial that approximates the function on a an interval starting |
7 | 61 | storres | at lowerBoundSa and finishing at a value that guarantees that the polynomial |
8 | 61 | storres | approximates with the expected precision. |
9 | 61 | storres | The interval upper bound is lowered until the expected approximation |
10 | 61 | storres | precision is reached. |
11 | 61 | storres | The polynomial, the bounds, the center of the interval and the error |
12 | 61 | storres | are returned. |
13 | 61 | storres | """ |
14 | 61 | storres | RRR = lowerBoundSa.parent() |
15 | 61 | storres | #goldenRatioSa = RRR(5.sqrt() / 2 - 1/2) |
16 | 61 | storres | #intervalShrinkConstFactorSa = goldenRatioSa |
17 | 61 | storres | intervalShrinkConstFactorSa = RRR('0.5') |
18 | 61 | storres | absoluteErrorTypeSo = pobyso_absolute_so_so() |
19 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
20 | 61 | storres | currentUpperBoundSa = upperBoundSa |
21 | 61 | storres | currentLowerBoundSa = lowerBoundSa |
22 | 61 | storres | # What we want here is the polynomial without the variable change, |
23 | 61 | storres | # since our actual variable will be x-intervalCenter defined over the |
24 | 61 | storres | # domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
25 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
26 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
27 | 61 | storres | currentRangeSo, |
28 | 61 | storres | absoluteErrorTypeSo) |
29 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
30 | 61 | storres | while maxErrorSa > approxPrecSa: |
31 | 61 | storres | sollya_lib_clear_obj(maxErrorSo) |
32 | 71 | storres | errorRatioSa = 1/(maxErrorSa/approxPrecSa).log2() |
33 | 61 | storres | #print "Error ratio: ", errorRatioSa |
34 | 71 | storres | if errorRatioSa > intervalShrinkConstFactorSa: |
35 | 61 | storres | currentUpperBoundSa = currentLowerBoundSa + \ |
36 | 61 | storres | (currentUpperBoundSa - currentLowerBoundSa) * \ |
37 | 61 | storres | intervalShrinkConstFactorSa |
38 | 61 | storres | else: |
39 | 61 | storres | currentUpperBoundSa = currentLowerBoundSa + \ |
40 | 61 | storres | (currentUpperBoundSa - currentLowerBoundSa) * \ |
41 | 61 | storres | intervalShrinkConstFactorSa |
42 | 71 | storres | currentUpperBoundSa = currentLowerBoundSa + \ |
43 | 71 | storres | (currentUpperBoundSa - currentLowerBoundSa) * \ |
44 | 71 | storres | errorRatioSa |
45 | 71 | storres | #print "Current upper bound:", currentUpperBoundSa |
46 | 61 | storres | sollya_lib_clear_obj(currentRangeSo) |
47 | 61 | storres | sollya_lib_clear_obj(polySo) |
48 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
49 | 61 | storres | currentUpperBoundSa) |
50 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
51 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
52 | 61 | storres | currentRangeSo, |
53 | 61 | storres | absoluteErrorTypeSo) |
54 | 61 | storres | #maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
55 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
56 | 61 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
57 | 61 | storres | return((polySo, currentRangeSo, intervalCenterSo, maxErrorSo)) |
58 | 61 | storres | # End slz_compute_polynomial_and_interval |
59 | 61 | storres | |
60 | 72 | storres | def slz_compute_scaled_function(functionSa, \ |
61 | 72 | storres | variableNameSa, \ |
62 | 72 | storres | lowerBoundSa, \ |
63 | 72 | storres | upperBoundSa, \ |
64 | 72 | storres | floatingPointPrecSa): |
65 | 72 | storres | """ |
66 | 72 | storres | From a function, compute the scaled function whose domain |
67 | 72 | storres | is included in [1, 2) and whose image is also included in [1,2). |
68 | 72 | storres | Return a tuple: |
69 | 72 | storres | [0]: the scaled function |
70 | 72 | storres | [1]: the scaled domain lower bound |
71 | 72 | storres | [2]: the scaled domain upper bound |
72 | 72 | storres | [3]: the scaled image lower bound |
73 | 72 | storres | [4]: the scaled image upper bound |
74 | 72 | storres | """ |
75 | 72 | storres | x = var(variableNameSa) |
76 | 72 | storres | # Scalling the domain -> [1,2[. |
77 | 72 | storres | boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
78 | 72 | storres | domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
79 | 72 | storres | (domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
80 | 72 | storres | slz_interval_scaling_expression(domainBoundsIntervalSa, variableNameSa) |
81 | 72 | storres | print "domainScalingExpression for argument :", domainScalingExpressionSa |
82 | 72 | storres | print "f: ", f |
83 | 72 | storres | ff = f.subs({x : domainScalingExpressionSa}) |
84 | 72 | storres | #ff = f.subs_expr(x==domainScalingExpressionSa) |
85 | 72 | storres | scaledLowerBoundSa = invDomainScalingExpressionSa(lowerBoundSa).n() |
86 | 72 | storres | scaledUpperBoundSa = invDomainScalingExpressionSa(upperBoundSa).n() |
87 | 72 | storres | print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
88 | 72 | storres | # |
89 | 72 | storres | # Scalling the image -> [1,2[. |
90 | 72 | storres | flbSa = f(lowerBoundSa).n() |
91 | 72 | storres | fubSa = f(upperBoundSa).n() |
92 | 72 | storres | if flbSa <= fubSa: # Increasing |
93 | 72 | storres | imageBinadeBottomSa = floor(flbSa.log2()) |
94 | 72 | storres | else: # Decreasing |
95 | 72 | storres | imageBinadeBottomSa = floor(fubSa.log2()) |
96 | 72 | storres | print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
97 | 72 | storres | imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
98 | 72 | storres | (imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
99 | 72 | storres | slz_interval_scaling_expression(imageBoundsIntervalSa, variableNameSa) |
100 | 72 | storres | iis = invImageScalingExpressionSa.function(x) |
101 | 72 | storres | fff = iis.subs({x:ff}) |
102 | 72 | storres | print "fff:", fff, |
103 | 72 | storres | print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
104 | 72 | storres | return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
105 | 72 | storres | fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
106 | 72 | storres | |
107 | 63 | storres | def slz_get_intervals_and_polynomials(functionSa, variableNameSa, degreeSa, |
108 | 63 | storres | lowerBoundSa, |
109 | 60 | storres | upperBoundSa, floatingPointPrecSa, |
110 | 64 | storres | internalSollyaPrecSa, approxPrecSa): |
111 | 60 | storres | """ |
112 | 60 | storres | Under the assumption that: |
113 | 60 | storres | - functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
114 | 60 | storres | - lowerBound and upperBound belong to the same binade. |
115 | 60 | storres | from a: |
116 | 60 | storres | - function; |
117 | 60 | storres | - a degree |
118 | 60 | storres | - a pair of bounds; |
119 | 60 | storres | - the floating-point precision we work on; |
120 | 60 | storres | - the internal Sollya precision; |
121 | 64 | storres | - the requested approximation error |
122 | 61 | storres | The initial interval is, possibly, splitted into smaller intervals. |
123 | 61 | storres | It return a list of tuples, each made of: |
124 | 72 | storres | - a first polynomial (without the changed variable f(x) = p(x-x0)); |
125 | 72 | storres | - a second polynomila (with a changed variable f(x) = q(x)) |
126 | 61 | storres | - the approximation interval; |
127 | 72 | storres | - the center, x0, of the interval; |
128 | 61 | storres | - the corresponding approximation error. |
129 | 60 | storres | """ |
130 | 63 | storres | x = var(variableNameSa) |
131 | 60 | storres | # Scalling the domain -> [1,2[. |
132 | 62 | storres | boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
133 | 62 | storres | domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
134 | 62 | storres | (domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
135 | 63 | storres | slz_interval_scaling_expression(domainBoundsIntervalSa, variableNameSa) |
136 | 62 | storres | print "domainScalingExpression for argument :", domainScalingExpressionSa |
137 | 63 | storres | print "f: ", f |
138 | 64 | storres | ff = f.subs({x : domainScalingExpressionSa}) |
139 | 64 | storres | #ff = f.subs_expr(x==domainScalingExpressionSa) |
140 | 62 | storres | scaledLowerBoundSa = invDomainScalingExpressionSa(lowerBoundSa).n() |
141 | 62 | storres | scaledUpperBoundSa = invDomainScalingExpressionSa(upperBoundSa).n() |
142 | 60 | storres | print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
143 | 60 | storres | # |
144 | 60 | storres | # Scalling the image -> [1,2[. |
145 | 62 | storres | flbSa = f(lowerBoundSa).n() |
146 | 62 | storres | fubSa = f(upperBoundSa).n() |
147 | 62 | storres | if flbSa <= fubSa: # Increasing |
148 | 62 | storres | imageBinadeBottomSa = floor(flbSa.log2()) |
149 | 60 | storres | else: # Decreasing |
150 | 62 | storres | imageBinadeBottomSa = floor(fubSa.log2()) |
151 | 62 | storres | print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
152 | 62 | storres | imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
153 | 62 | storres | (imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
154 | 63 | storres | slz_interval_scaling_expression(imageBoundsIntervalSa, variableNameSa) |
155 | 63 | storres | iis = invImageScalingExpressionSa.function(x) |
156 | 63 | storres | fff = iis.subs({x:ff}) |
157 | 62 | storres | print "fff:", fff, |
158 | 62 | storres | print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
159 | 60 | storres | # |
160 | 60 | storres | resultArray = [] |
161 | 60 | storres | # |
162 | 60 | storres | print "Approximation precision: ", RR(approxPrecSa) |
163 | 61 | storres | # Prepare the arguments for the Taylor expansion computation with Sollya. |
164 | 62 | storres | functionSo = pobyso_parse_string_sa_so(fff._assume_str()) |
165 | 60 | storres | degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
166 | 61 | storres | scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
167 | 61 | storres | scaledUpperBoundSa) |
168 | 61 | storres | # Compute the first Taylor expansion. |
169 | 60 | storres | (polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
170 | 60 | storres | slz_compute_polynomial_and_interval(functionSo, degreeSo, |
171 | 60 | storres | scaledLowerBoundSa, scaledUpperBoundSa, |
172 | 60 | storres | approxPrecSa, internalSollyaPrecSa) |
173 | 64 | storres | # Change variable stuff |
174 | 62 | storres | changeVarExpressionSo = sollya_lib_build_function_sub( |
175 | 62 | storres | sollya_lib_build_function_free_variable(), |
176 | 62 | storres | sollya_lib_copy_obj(intervalCenterSo)) |
177 | 62 | storres | polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
178 | 64 | storres | resultArray.append((polySo, polyVarChangedSo, boundsSo, intervalCenterSo,\ |
179 | 64 | storres | maxErrorSo)) |
180 | 60 | storres | realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
181 | 60 | storres | upperBoundSa.parent().precision())) |
182 | 61 | storres | boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
183 | 61 | storres | # Compute the other expansions. |
184 | 60 | storres | while boundsSa.endpoints()[1] < scaledUpperBoundSa: |
185 | 60 | storres | currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
186 | 60 | storres | (polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
187 | 60 | storres | slz_compute_polynomial_and_interval(functionSo, degreeSo, |
188 | 60 | storres | currentScaledLowerBoundSa, |
189 | 60 | storres | scaledUpperBoundSa, approxPrecSa, |
190 | 60 | storres | internalSollyaPrecSa) |
191 | 64 | storres | # Change variable stuff |
192 | 64 | storres | changeVarExpressionSo = sollya_lib_build_function_sub( |
193 | 64 | storres | sollya_lib_build_function_free_variable(), |
194 | 64 | storres | sollya_lib_copy_obj(intervalCenterSo)) |
195 | 64 | storres | polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
196 | 64 | storres | resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
197 | 64 | storres | intervalCenterSo, maxErrorSo)) |
198 | 61 | storres | boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
199 | 60 | storres | sollya_lib_clear_obj(functionSo) |
200 | 60 | storres | sollya_lib_clear_obj(degreeSo) |
201 | 60 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
202 | 60 | storres | return(resultArray) |
203 | 60 | storres | # End slz_get_intervals_and_polynomials |
204 | 60 | storres | |
205 | 61 | storres | def slz_interval_scaling_expression(boundsInterval, varName): |
206 | 61 | storres | """ |
207 | 61 | storres | Compute the scaling expression to map an interval that span only |
208 | 62 | storres | a binade to [1, 2) and the inverse expression as well. |
209 | 62 | storres | Not very sure that the transformation makes sense for negative numbers. |
210 | 61 | storres | """ |
211 | 62 | storres | # The scaling offset is only used for negative numbers. |
212 | 61 | storres | if abs(boundsInterval.endpoints()[0]) < 1: |
213 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
214 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
215 | 62 | storres | invScalingCoeff = 1/scalingCoeff |
216 | 62 | storres | return((scalingCoeff * eval(varName), |
217 | 62 | storres | invScalingCoeff * eval(varName))) |
218 | 60 | storres | else: |
219 | 62 | storres | scalingCoeff = \ |
220 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
221 | 62 | storres | scalingOffset = -3 * scalingCoeff |
222 | 62 | storres | return((scalingCoeff * eval(varName) + scalingOffset, |
223 | 62 | storres | 1/scalingCoeff * eval(varName) + 3)) |
224 | 61 | storres | else: |
225 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
226 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
227 | 61 | storres | scalingOffset = 0 |
228 | 62 | storres | return((scalingCoeff * eval(varName), |
229 | 62 | storres | 1/scalingCoeff * eval(varName))) |
230 | 61 | storres | else: |
231 | 62 | storres | scalingCoeff = \ |
232 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[1]).log2())) |
233 | 62 | storres | scalingOffset = -3 * scalingCoeff |
234 | 62 | storres | #scalingOffset = 0 |
235 | 62 | storres | return((scalingCoeff * eval(varName) + scalingOffset, |
236 | 62 | storres | 1/scalingCoeff * eval(varName) + 3)) |
237 | 61 | storres | |
238 | 61 | storres | |
239 | 60 | storres | def slz_polynomial_and_interval_to_sage(polyRangeCenterErrorSo): |
240 | 72 | storres | """ |
241 | 72 | storres | Compute the Sage version of the Taylor polynomial and it's |
242 | 72 | storres | companion data (interval, center...) |
243 | 72 | storres | The input parameter is a five elements tuple: |
244 | 72 | storres | - [0]: the polyomial (without variable change); |
245 | 72 | storres | - [1]: the polyomial (with variable change done in Sollya); |
246 | 72 | storres | - [2]: the interval (as Sollya range); |
247 | 72 | storres | - [3]: the interval center; |
248 | 72 | storres | - [4]: the approximation error. |
249 | 72 | storres | |
250 | 72 | storres | The function return a 5 elements tuple: formed with all the |
251 | 72 | storres | input elements converted into their Sollya counterpart. |
252 | 72 | storres | """ |
253 | 60 | storres | polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
254 | 64 | storres | polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
255 | 60 | storres | intervalSa = \ |
256 | 64 | storres | pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
257 | 60 | storres | centerSa = \ |
258 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
259 | 60 | storres | errorSa = \ |
260 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
261 | 64 | storres | return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
262 | 60 | storres | # End slz_polynomial_and_interval_to_sage |
263 | 62 | storres | |
264 | 62 | storres | print "sageSLZ loaded..." |