root / pobysoPythonSage / src / sageSLZ / sagePolynomialOperations.sage @ 75
Historique | Voir | Annoter | Télécharger (7,45 ko)
1 |
load "/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageMatrixOperations.sage" |
---|---|
2 |
|
3 |
def spo_polynomial_to_matrix(p, pRing, alpha, N, columnWidth=0): |
4 |
""" |
5 |
From a (bivariate) polynomial and some other parameters build a matrix |
6 |
to be reduced by fpLLL. |
7 |
The matrix is such as those found in Boneh-Durphy and Stehlé. |
8 |
|
9 |
p: the (bivariate) polynomial |
10 |
alpha: |
11 |
N: |
12 |
|
13 |
""" |
14 |
pVariables = p.variables() |
15 |
iVariable = pVariables[0] |
16 |
tVaraible = pVariables[1] |
17 |
polynomialAtPower = P(1) |
18 |
currentPolynomial = P(1) |
19 |
pIdegree = p.degree(pVariables[0]) |
20 |
pTdegree = p.degree(pVariables[1]) |
21 |
currentIdegree = currentPolynomial.degree(i) |
22 |
nAtPower = N^alpha |
23 |
# We work from p^0 * N^alpha to p^alpha * N^0 |
24 |
for pPower in xrange(0, alpha + 1): |
25 |
# pPower == 0 is a special case. We introduce all the monomials in |
26 |
# i, those in t and the mixed one necessary to be able to introduce |
27 |
# p and only a one monomial (our (arbitrary) choice is, at this point, |
28 |
# to add i to it's maximum power in p. |
29 |
if pPower == 0: |
30 |
# iter1: power of i |
31 |
# Notice how i^pIdegree is excluded. |
32 |
for iPower in xrange(0, pIdegree): |
33 |
# iter5: power of t. |
34 |
for tPower in xrange(0, pTdegree + 1): |
35 |
if columnWidth != 0: |
36 |
print "->", spo_expression_as_string(iter1, |
37 |
iter5, |
38 |
iter0, |
39 |
alpha) |
40 |
currentExpression = iVariable^iPower * \ |
41 |
tVariable^tPower * nAtPower |
42 |
# polynomialAtPower == 1 here. Next line should be commented out but it does not work! |
43 |
# Some convertion problem? |
44 |
currentPolynomial = pRing(currentExpression) * \ |
45 |
polynomialAtPower |
46 |
pMonomials = currentPolynomial.monomials() |
47 |
pCoefficients = currentPolynomial.coefficients() |
48 |
add_polynomial_coeffs_to_matrix(pMonomials, pCoefficients, knownMonomials, protoMatrixRows, monomialLengthChars) |
49 |
# End iter5. |
50 |
# End for iter1. |
51 |
|
52 |
else: # Next runs (p^1..p^alpha) |
53 |
pass |
54 |
|
55 |
# End spo_polynomial_to_matrix |
56 |
|
57 |
def spo_add_polynomial_coeffs_to_matrix(pMonomials, |
58 |
pCoefficients, |
59 |
knownMonomials, |
60 |
protoMatrixRows, |
61 |
columnWidth=0): |
62 |
""" |
63 |
For a given polynomial (under the form of monomials and coefficents lists), |
64 |
add the coefficients of the protoMatrix (a list of proto rows). |
65 |
Coefficients are added to the protoMatrix row in the order imposed by the |
66 |
monomials discovery list (the knownMonomials list) built as construction |
67 |
goes on. |
68 |
As a bonus data can be printed out for a visual check. |
69 |
pMonomials : the list of the monomials coming form some polynomial; |
70 |
pCoefficients : the list of the corresponding coefficients to add to |
71 |
the protoMatrix in the exact same order as the monomials; |
72 |
knownMonomials : the list of the already knonw monomials; |
73 |
protoMatrixRows: a list of lists, each one holding the coefficients of the |
74 |
monomials |
75 |
columnWith : the width, in characters, of the displayed column ; if 0, |
76 |
do display anything. |
77 |
""" |
78 |
# We have started with the smaller degrees in the first variable. |
79 |
pMonomials.reverse() |
80 |
pCoefficients.reverse() |
81 |
# New empty proto matrix row. |
82 |
protoMatrixRowCoefficients = [] |
83 |
# We work according to the order of the already known monomials |
84 |
# No known monomials yet: add the pMonomials to knownMonomials |
85 |
# and add the coefficients to the proto matrix row. |
86 |
if len(knownMonomials) == 0: |
87 |
for pmIdx in xrange(0, len(pMonomials)): |
88 |
knownMonomials.append(pMonomials[pmIdx]) |
89 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
90 |
if columnWidth != 0: |
91 |
monomialAsString = str(pCoefficients[pmIdx]) + " " + \ |
92 |
str(pMonomials[pmIdx]) |
93 |
print monomialAsString, " " * \ |
94 |
(columnWidth - len(monomialAsString)), |
95 |
# There are some known monomials. We search for them in pMonomials and |
96 |
# add their coefficients to the proto matrix row. |
97 |
else: |
98 |
for knownMonomialIndex in xrange(0,len(knownMonomials)): |
99 |
# We lazily use an exception here since pMonomials.index() function |
100 |
# may fail throwing the ValueError exception. |
101 |
try: |
102 |
indexInPmonomials = \ |
103 |
pMonomials.index(knownMonomials[knownMonomialIndex]) |
104 |
if columnWidth != 0: |
105 |
monomialAsString = str(pCoefficients[indexInPmonomials]) + \ |
106 |
" " + str(knownMonomials[knownMonomialIndex]) |
107 |
print monomialAsString, " " * \ |
108 |
(columnWidth - len(monomialAsString)), |
109 |
# Add the coefficient to the proto matrix row and delete the \ |
110 |
# known monomial from the current pMonomial list |
111 |
#(and the corresponding coefficient as well). |
112 |
protoMatrixRowCoefficients.append(pCoefficients[indexInPmonomials]) |
113 |
del pMonomials[indexInPmonomials] |
114 |
del pCoefficients[indexInPmonomials] |
115 |
# The knownMonomials element is not in pMonomials |
116 |
except ValueError: |
117 |
protoMatrixRowCoefficients.append(0) |
118 |
if columnWidth != 0: |
119 |
monomialAsString = "0" + " "+ \ |
120 |
str(knownMonomials[knownMonomialIndex]) |
121 |
print monomialAsString, " " * \ |
122 |
(columnWidth - len(monomialAsString)), |
123 |
# End for knownMonomialKey loop. |
124 |
# We now append the remaining monomials of pMonomials to knownMonomials |
125 |
# and the corresponding coefficients to proto matrix row. |
126 |
for pmIdx in xrange(0, len(pMonomials)): |
127 |
knownMonomials.append(pMonomials[pmIdx]) |
128 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
129 |
if columnWidth != 0: |
130 |
monomialAsString = str(pCoefficients[pmIdx]) + " " \ |
131 |
+ str(pMonomials[pmIdx]) |
132 |
print monomialAsString, " " * \ |
133 |
(columnWidth - len(monomialAsString)), |
134 |
# End for pmIdx loop. |
135 |
# Add the new list row elements to the proto matrix. |
136 |
protoMatrixRows.append(protoMatrixRowCoefficients) |
137 |
if columnWidth != 0: |
138 |
|
139 |
# End spo_add_polynomial_coeffs_to_matrix |
140 |
|
141 |
def spo_expression_as_string(powI, powT, powP, alpha): |
142 |
expressionAsString ="" |
143 |
if powI != 0: |
144 |
expressionAsString += "i^" + str(powI) |
145 |
if powT != 0: |
146 |
if len(expressionAsString) != 0: |
147 |
expressionAsString += " * " |
148 |
expressionAsString += "t^" + str(powT) |
149 |
if powP != 0: |
150 |
if len(expressionAsString) != 0: |
151 |
expressionAsString += " * " |
152 |
expressionAsString += "p^" + str(powP) |
153 |
if (alpha - powP) != 0 : |
154 |
if len(expressionAsString) != 0: |
155 |
expressionAsString += " * " |
156 |
expressionAsString += "N^" + str(alpha - powP) |
157 |
return(expressionAsString) |
158 |
# End spo_expression_as_string. |