root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 71
Historique | Voir | Annoter | Télécharger (10,61 ko)
1 |
|
---|---|
2 |
def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
3 |
upperBoundSa, approxPrecSa, |
4 |
sollyaPrecSa=None): |
5 |
""" |
6 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
7 |
a polynomial that approximates the function on a an interval starting |
8 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
9 |
approximates with the expected precision. |
10 |
The interval upper bound is lowered until the expected approximation |
11 |
precision is reached. |
12 |
The polynomial, the bounds, the center of the interval and the error |
13 |
are returned. |
14 |
""" |
15 |
RRR = lowerBoundSa.parent() |
16 |
#goldenRatioSa = RRR(5.sqrt() / 2 - 1/2) |
17 |
#intervalShrinkConstFactorSa = goldenRatioSa |
18 |
intervalShrinkConstFactorSa = RRR('0.5') |
19 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
20 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
21 |
currentUpperBoundSa = upperBoundSa |
22 |
currentLowerBoundSa = lowerBoundSa |
23 |
# What we want here is the polynomial without the variable change, |
24 |
# since our actual variable will be x-intervalCenter defined over the |
25 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
26 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
27 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
28 |
currentRangeSo, |
29 |
absoluteErrorTypeSo) |
30 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
31 |
while maxErrorSa > approxPrecSa: |
32 |
sollya_lib_clear_obj(maxErrorSo) |
33 |
errorRatioSa = 1/(maxErrorSa/approxPrecSa).log2() |
34 |
#print "Error ratio: ", errorRatioSa |
35 |
if errorRatioSa > intervalShrinkConstFactorSa: |
36 |
currentUpperBoundSa = currentLowerBoundSa + \ |
37 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
38 |
intervalShrinkConstFactorSa |
39 |
else: |
40 |
currentUpperBoundSa = currentLowerBoundSa + \ |
41 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
42 |
intervalShrinkConstFactorSa |
43 |
currentUpperBoundSa = currentLowerBoundSa + \ |
44 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
45 |
errorRatioSa |
46 |
#print "Current upper bound:", currentUpperBoundSa |
47 |
sollya_lib_clear_obj(currentRangeSo) |
48 |
sollya_lib_clear_obj(polySo) |
49 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
50 |
currentUpperBoundSa) |
51 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
52 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
53 |
currentRangeSo, |
54 |
absoluteErrorTypeSo) |
55 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
56 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
57 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
58 |
return((polySo, currentRangeSo, intervalCenterSo, maxErrorSo)) |
59 |
# End slz_compute_polynomial_and_interval |
60 |
|
61 |
def slz_get_intervals_and_polynomials(functionSa, variableNameSa, degreeSa, |
62 |
lowerBoundSa, |
63 |
upperBoundSa, floatingPointPrecSa, |
64 |
internalSollyaPrecSa, approxPrecSa): |
65 |
""" |
66 |
Under the assumption that: |
67 |
- functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
68 |
- lowerBound and upperBound belong to the same binade. |
69 |
from a: |
70 |
- function; |
71 |
- a degree |
72 |
- a pair of bounds; |
73 |
- the floating-point precision we work on; |
74 |
- the internal Sollya precision; |
75 |
- the requested approximation error |
76 |
compute a list of tuples made of: |
77 |
- a polynomial approximating the function (a Sollya object); |
78 |
- the range for which the polynomial approximates the function |
79 |
(a Sollya object); |
80 |
- the center of the interval (a Sollya object); |
81 |
- the actual approximation error (a Sage object). |
82 |
The initial interval is, possibly, splitted into smaller intervals. |
83 |
It return a list of tuples, each made of: |
84 |
- a polynomial; |
85 |
- the approximation interval; |
86 |
- the center, x0, of the interval (the polynomial is defined as p(x-x0)); |
87 |
- the corresponding approximation error. |
88 |
""" |
89 |
x = var(variableNameSa) |
90 |
# Scalling the domain -> [1,2[. |
91 |
boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
92 |
domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
93 |
(domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
94 |
slz_interval_scaling_expression(domainBoundsIntervalSa, variableNameSa) |
95 |
print "domainScalingExpression for argument :", domainScalingExpressionSa |
96 |
print "f: ", f |
97 |
ff = f.subs({x : domainScalingExpressionSa}) |
98 |
#ff = f.subs_expr(x==domainScalingExpressionSa) |
99 |
scaledLowerBoundSa = invDomainScalingExpressionSa(lowerBoundSa).n() |
100 |
scaledUpperBoundSa = invDomainScalingExpressionSa(upperBoundSa).n() |
101 |
print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
102 |
# |
103 |
# Scalling the image -> [1,2[. |
104 |
flbSa = f(lowerBoundSa).n() |
105 |
fubSa = f(upperBoundSa).n() |
106 |
if flbSa <= fubSa: # Increasing |
107 |
imageBinadeBottomSa = floor(flbSa.log2()) |
108 |
else: # Decreasing |
109 |
imageBinadeBottomSa = floor(fubSa.log2()) |
110 |
print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
111 |
imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
112 |
(imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
113 |
slz_interval_scaling_expression(imageBoundsIntervalSa, variableNameSa) |
114 |
iis = invImageScalingExpressionSa.function(x) |
115 |
fff = iis.subs({x:ff}) |
116 |
print "fff:", fff, |
117 |
print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
118 |
# |
119 |
resultArray = [] |
120 |
# |
121 |
print "Approximation precision: ", RR(approxPrecSa) |
122 |
# Prepare the arguments for the Taylor expansion computation with Sollya. |
123 |
functionSo = pobyso_parse_string_sa_so(fff._assume_str()) |
124 |
degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
125 |
scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
126 |
scaledUpperBoundSa) |
127 |
# Compute the first Taylor expansion. |
128 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
129 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
130 |
scaledLowerBoundSa, scaledUpperBoundSa, |
131 |
approxPrecSa, internalSollyaPrecSa) |
132 |
# Change variable stuff |
133 |
changeVarExpressionSo = sollya_lib_build_function_sub( |
134 |
sollya_lib_build_function_free_variable(), |
135 |
sollya_lib_copy_obj(intervalCenterSo)) |
136 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
137 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, intervalCenterSo,\ |
138 |
maxErrorSo)) |
139 |
realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
140 |
upperBoundSa.parent().precision())) |
141 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
142 |
# Compute the other expansions. |
143 |
while boundsSa.endpoints()[1] < scaledUpperBoundSa: |
144 |
currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
145 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
146 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
147 |
currentScaledLowerBoundSa, |
148 |
scaledUpperBoundSa, approxPrecSa, |
149 |
internalSollyaPrecSa) |
150 |
# Change variable stuff |
151 |
changeVarExpressionSo = sollya_lib_build_function_sub( |
152 |
sollya_lib_build_function_free_variable(), |
153 |
sollya_lib_copy_obj(intervalCenterSo)) |
154 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
155 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
156 |
intervalCenterSo, maxErrorSo)) |
157 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
158 |
sollya_lib_clear_obj(functionSo) |
159 |
sollya_lib_clear_obj(degreeSo) |
160 |
sollya_lib_clear_obj(scaledBoundsSo) |
161 |
return(resultArray) |
162 |
# End slz_get_intervals_and_polynomials |
163 |
|
164 |
def slz_interval_scaling_expression(boundsInterval, varName): |
165 |
""" |
166 |
Compute the scaling expression to map an interval that span only |
167 |
a binade to [1, 2) and the inverse expression as well. |
168 |
Not very sure that the transformation makes sense for negative numbers. |
169 |
""" |
170 |
# The scaling offset is only used for negative numbers. |
171 |
if abs(boundsInterval.endpoints()[0]) < 1: |
172 |
if boundsInterval.endpoints()[0] >= 0: |
173 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
174 |
invScalingCoeff = 1/scalingCoeff |
175 |
return((scalingCoeff * eval(varName), |
176 |
invScalingCoeff * eval(varName))) |
177 |
else: |
178 |
scalingCoeff = \ |
179 |
2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
180 |
scalingOffset = -3 * scalingCoeff |
181 |
return((scalingCoeff * eval(varName) + scalingOffset, |
182 |
1/scalingCoeff * eval(varName) + 3)) |
183 |
else: |
184 |
if boundsInterval.endpoints()[0] >= 0: |
185 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
186 |
scalingOffset = 0 |
187 |
return((scalingCoeff * eval(varName), |
188 |
1/scalingCoeff * eval(varName))) |
189 |
else: |
190 |
scalingCoeff = \ |
191 |
2^(floor((-boundsInterval.endpoints()[1]).log2())) |
192 |
scalingOffset = -3 * scalingCoeff |
193 |
#scalingOffset = 0 |
194 |
return((scalingCoeff * eval(varName) + scalingOffset, |
195 |
1/scalingCoeff * eval(varName) + 3)) |
196 |
|
197 |
|
198 |
def slz_polynomial_and_interval_to_sage(polyRangeCenterErrorSo): |
199 |
polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
200 |
polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
201 |
intervalSa = \ |
202 |
pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
203 |
centerSa = \ |
204 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
205 |
errorSa = \ |
206 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
207 |
return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
208 |
# End slz_polynomial_and_interval_to_sage |
209 |
|
210 |
print "sageSLZ loaded..." |