root / pobysoPythonSage / src / sageSLZ.sage @ 65
Historique | Voir | Annoter | Télécharger (10,53 ko)
1 |
|
---|---|
2 |
def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
3 |
upperBoundSa, approxPrecSa, |
4 |
sollyaPrecSa=None): |
5 |
""" |
6 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
7 |
a polynomial that approximates the function on a an interval starting |
8 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
9 |
approximates with the expected precision. |
10 |
The interval upper bound is lowered until the expected approximation |
11 |
precision is reached. |
12 |
The polynomial, the bounds, the center of the interval and the error |
13 |
are returned. |
14 |
""" |
15 |
RRR = lowerBoundSa.parent() |
16 |
#goldenRatioSa = RRR(5.sqrt() / 2 - 1/2) |
17 |
#intervalShrinkConstFactorSa = goldenRatioSa |
18 |
intervalShrinkConstFactorSa = RRR('0.5') |
19 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
20 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
21 |
currentUpperBoundSa = upperBoundSa |
22 |
currentLowerBoundSa = lowerBoundSa |
23 |
# What we want here is the polynomial without the variable change, |
24 |
# since our actual variable will be x-intervalCenter defined over the |
25 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
26 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
27 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
28 |
currentRangeSo, |
29 |
absoluteErrorTypeSo) |
30 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
31 |
while maxErrorSa > approxPrecSa: |
32 |
sollya_lib_clear_obj(maxErrorSo) |
33 |
errorRatioSa = (approxPrecSa/maxErrorSa).log2() |
34 |
#print "Error ratio: ", errorRatioSa |
35 |
if errorRatioSa < intervalShrinkConstFactorSa: |
36 |
#currentUpperBoundSa = currentLowerBoundSa + (currentUpperBoundSa - currentLowerBoundSa) * errorRatioSa |
37 |
currentUpperBoundSa = currentLowerBoundSa + \ |
38 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
39 |
intervalShrinkConstFactorSa |
40 |
else: |
41 |
currentUpperBoundSa = currentLowerBoundSa + \ |
42 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
43 |
intervalShrinkConstFactorSa |
44 |
#print lowerBoundSa, currentUpperBoundSa |
45 |
sollya_lib_clear_obj(currentRangeSo) |
46 |
sollya_lib_clear_obj(polySo) |
47 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
48 |
currentUpperBoundSa) |
49 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
50 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
51 |
currentRangeSo, |
52 |
absoluteErrorTypeSo) |
53 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
54 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
55 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
56 |
return((polySo, currentRangeSo, intervalCenterSo, maxErrorSo)) |
57 |
# End slz_compute_polynomial_and_interval |
58 |
|
59 |
def slz_get_intervals_and_polynomials(functionSa, variableNameSa, degreeSa, |
60 |
lowerBoundSa, |
61 |
upperBoundSa, floatingPointPrecSa, |
62 |
internalSollyaPrecSa, approxPrecSa): |
63 |
""" |
64 |
Under the assumption that: |
65 |
- functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
66 |
- lowerBound and upperBound belong to the same binade. |
67 |
from a: |
68 |
- function; |
69 |
- a degree |
70 |
- a pair of bounds; |
71 |
- the floating-point precision we work on; |
72 |
- the internal Sollya precision; |
73 |
- the requested approximation error |
74 |
compute a list of tuples made of: |
75 |
- a polynomial approximating the function (a Sollya object); |
76 |
- the range for which the polynomial approximates the function |
77 |
(a Sollya object); |
78 |
- the center of the interval (a Sollya object); |
79 |
- the actual approximation error (a Sage object). |
80 |
The initial interval is, possibly, splitted into smaller intervals. |
81 |
It return a list of tuples, each made of: |
82 |
- a polynomial; |
83 |
- the approximation interval; |
84 |
- the center, x0, of the interval (the polynomial is defined as p(x-x0)); |
85 |
- the corresponding approximation error. |
86 |
""" |
87 |
x = var(variableNameSa) |
88 |
# Scalling the domain -> [1,2[. |
89 |
boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
90 |
domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
91 |
(domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
92 |
slz_interval_scaling_expression(domainBoundsIntervalSa, variableNameSa) |
93 |
print "domainScalingExpression for argument :", domainScalingExpressionSa |
94 |
print "f: ", f |
95 |
ff = f.subs({x : domainScalingExpressionSa}) |
96 |
#ff = f.subs_expr(x==domainScalingExpressionSa) |
97 |
scaledLowerBoundSa = invDomainScalingExpressionSa(lowerBoundSa).n() |
98 |
scaledUpperBoundSa = invDomainScalingExpressionSa(upperBoundSa).n() |
99 |
print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
100 |
# |
101 |
# Scalling the image -> [1,2[. |
102 |
flbSa = f(lowerBoundSa).n() |
103 |
fubSa = f(upperBoundSa).n() |
104 |
if flbSa <= fubSa: # Increasing |
105 |
imageBinadeBottomSa = floor(flbSa.log2()) |
106 |
else: # Decreasing |
107 |
imageBinadeBottomSa = floor(fubSa.log2()) |
108 |
print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
109 |
imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
110 |
(imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
111 |
slz_interval_scaling_expression(imageBoundsIntervalSa, variableNameSa) |
112 |
iis = invImageScalingExpressionSa.function(x) |
113 |
fff = iis.subs({x:ff}) |
114 |
print "fff:", fff, |
115 |
print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
116 |
# |
117 |
resultArray = [] |
118 |
# |
119 |
print "Approximation precision: ", RR(approxPrecSa) |
120 |
# Prepare the arguments for the Taylor expansion computation with Sollya. |
121 |
functionSo = pobyso_parse_string_sa_so(fff._assume_str()) |
122 |
degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
123 |
scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
124 |
scaledUpperBoundSa) |
125 |
# Compute the first Taylor expansion. |
126 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
127 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
128 |
scaledLowerBoundSa, scaledUpperBoundSa, |
129 |
approxPrecSa, internalSollyaPrecSa) |
130 |
# Change variable stuff |
131 |
changeVarExpressionSo = sollya_lib_build_function_sub( |
132 |
sollya_lib_build_function_free_variable(), |
133 |
sollya_lib_copy_obj(intervalCenterSo)) |
134 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
135 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, intervalCenterSo,\ |
136 |
maxErrorSo)) |
137 |
realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
138 |
upperBoundSa.parent().precision())) |
139 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
140 |
# Compute the other expansions. |
141 |
while boundsSa.endpoints()[1] < scaledUpperBoundSa: |
142 |
currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
143 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
144 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
145 |
currentScaledLowerBoundSa, |
146 |
scaledUpperBoundSa, approxPrecSa, |
147 |
internalSollyaPrecSa) |
148 |
# Change variable stuff |
149 |
changeVarExpressionSo = sollya_lib_build_function_sub( |
150 |
sollya_lib_build_function_free_variable(), |
151 |
sollya_lib_copy_obj(intervalCenterSo)) |
152 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
153 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
154 |
intervalCenterSo, maxErrorSo)) |
155 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
156 |
sollya_lib_clear_obj(functionSo) |
157 |
sollya_lib_clear_obj(degreeSo) |
158 |
sollya_lib_clear_obj(scaledBoundsSo) |
159 |
return(resultArray) |
160 |
# End slz_get_intervals_and_polynomials |
161 |
|
162 |
def slz_interval_scaling_expression(boundsInterval, varName): |
163 |
""" |
164 |
Compute the scaling expression to map an interval that span only |
165 |
a binade to [1, 2) and the inverse expression as well. |
166 |
Not very sure that the transformation makes sense for negative numbers. |
167 |
""" |
168 |
# The scaling offset is only used for negative numbers. |
169 |
if abs(boundsInterval.endpoints()[0]) < 1: |
170 |
if boundsInterval.endpoints()[0] >= 0: |
171 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
172 |
invScalingCoeff = 1/scalingCoeff |
173 |
return((scalingCoeff * eval(varName), |
174 |
invScalingCoeff * eval(varName))) |
175 |
else: |
176 |
scalingCoeff = \ |
177 |
2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
178 |
scalingOffset = -3 * scalingCoeff |
179 |
return((scalingCoeff * eval(varName) + scalingOffset, |
180 |
1/scalingCoeff * eval(varName) + 3)) |
181 |
else: |
182 |
if boundsInterval.endpoints()[0] >= 0: |
183 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
184 |
scalingOffset = 0 |
185 |
return((scalingCoeff * eval(varName), |
186 |
1/scalingCoeff * eval(varName))) |
187 |
else: |
188 |
scalingCoeff = \ |
189 |
2^(floor((-boundsInterval.endpoints()[1]).log2())) |
190 |
scalingOffset = -3 * scalingCoeff |
191 |
#scalingOffset = 0 |
192 |
return((scalingCoeff * eval(varName) + scalingOffset, |
193 |
1/scalingCoeff * eval(varName) + 3)) |
194 |
|
195 |
|
196 |
def slz_polynomial_and_interval_to_sage(polyRangeCenterErrorSo): |
197 |
polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
198 |
polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
199 |
intervalSa = \ |
200 |
pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
201 |
centerSa = \ |
202 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
203 |
errorSa = \ |
204 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
205 |
return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
206 |
# End slz_polynomial_and_interval_to_sage |
207 |
|
208 |
print "sageSLZ loaded..." |