root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 277
Historique | Voir | Annoter | Télécharger (128,68 ko)
1 |
r""" |
---|---|
2 |
Sage core functions needed for the implementation of SLZ. |
3 |
|
4 |
AUTHORS: |
5 |
- S.T. (2013-08): initial version |
6 |
|
7 |
Examples: |
8 |
|
9 |
TODO:: |
10 |
""" |
11 |
sys.stderr.write("sageSLZ loading...\n") |
12 |
# |
13 |
import inspect |
14 |
# |
15 |
def slz_compute_binade(number): |
16 |
"""" |
17 |
For a given number, compute the "binade" that is integer m such that |
18 |
2^m <= number < 2^(m+1). If number == 0 return None. |
19 |
""" |
20 |
# Checking the parameter. |
21 |
# The exception construction is used to detect if number is a RealNumber |
22 |
# since not all numbers have |
23 |
# the mro() method. sage.rings.real_mpfr.RealNumber do. |
24 |
try: |
25 |
classTree = [number.__class__] + number.mro() |
26 |
# If the number is not a RealNumber (or offspring thereof) try |
27 |
# to transform it. |
28 |
if not sage.rings.real_mpfr.RealNumber in classTree: |
29 |
numberAsRR = RR(number) |
30 |
else: |
31 |
numberAsRR = number |
32 |
except AttributeError: |
33 |
return None |
34 |
# Zero special case. |
35 |
if numberAsRR == 0: |
36 |
return RR(-infinity) |
37 |
else: |
38 |
realField = numberAsRR.parent() |
39 |
numberLog2 = numberAsRR.abs().log2() |
40 |
floorNumberLog2 = floor(numberLog2) |
41 |
## Do not get caught by rounding of log2() both ways. |
42 |
## When numberLog2 is an integer, compare numberAsRR |
43 |
# with 2^numberLog2. |
44 |
if floorNumberLog2 == numberLog2: |
45 |
if numberAsRR.abs() < realField(2^floorNumberLog2): |
46 |
return floorNumberLog2 - 1 |
47 |
else: |
48 |
return floorNumberLog2 |
49 |
else: |
50 |
return floorNumberLog2 |
51 |
# End slz_compute_binade |
52 |
|
53 |
# |
54 |
def slz_compute_binade_bounds(number, emin, emax=sys.maxint): |
55 |
""" |
56 |
For given "real number", compute the bounds of the binade it belongs to. |
57 |
|
58 |
NOTE:: |
59 |
When number >= 2^(emax+1), we return the "fake" binade |
60 |
[2^(emax+1), +infinity]. Ditto for number <= -2^(emax+1) |
61 |
with interval [-infinity, -2^(emax+1)]. We want to distinguish |
62 |
this case from that of "really" invalid arguments. |
63 |
|
64 |
""" |
65 |
# Check the parameters. |
66 |
# RealNumbers or RealNumber offspring only. |
67 |
# The exception construction is necessary since not all objects have |
68 |
# the mro() method. sage.rings.real_mpfr.RealNumber do. |
69 |
try: |
70 |
classTree = [number.__class__] + number.mro() |
71 |
if not sage.rings.real_mpfr.RealNumber in classTree: |
72 |
return None |
73 |
except AttributeError: |
74 |
return None |
75 |
# Non zero negative integers only for emin. |
76 |
if emin >= 0 or int(emin) != emin: |
77 |
return None |
78 |
# Non zero positive integers only for emax. |
79 |
if emax <= 0 or int(emax) != emax: |
80 |
return None |
81 |
precision = number.precision() |
82 |
RF = RealField(precision) |
83 |
if number == 0: |
84 |
return (RF(0),RF(2^(emin)) - RF(2^(emin-precision))) |
85 |
# A more precise RealField is needed to avoid unwanted rounding effects |
86 |
# when computing number.log2(). |
87 |
RRF = RealField(max(2048, 2 * precision)) |
88 |
# number = 0 special case, the binade bounds are |
89 |
# [0, 2^emin - 2^(emin-precision)] |
90 |
# Begin general case |
91 |
l2 = RRF(number).abs().log2() |
92 |
# Another special one: beyond largest representable -> "Fake" binade. |
93 |
if l2 >= emax + 1: |
94 |
if number > 0: |
95 |
return (RF(2^(emax+1)), RF(+infinity) ) |
96 |
else: |
97 |
return (RF(-infinity), -RF(2^(emax+1))) |
98 |
# Regular case cont'd. |
99 |
offset = int(l2) |
100 |
# number.abs() >= 1. |
101 |
if l2 >= 0: |
102 |
if number >= 0: |
103 |
lb = RF(2^offset) |
104 |
ub = RF(2^(offset + 1) - 2^(-precision+offset+1)) |
105 |
else: #number < 0 |
106 |
lb = -RF(2^(offset + 1) - 2^(-precision+offset+1)) |
107 |
ub = -RF(2^offset) |
108 |
else: # log2 < 0, number.abs() < 1. |
109 |
if l2 < emin: # Denormal |
110 |
# print "Denormal:", l2 |
111 |
if number >= 0: |
112 |
lb = RF(0) |
113 |
ub = RF(2^(emin)) - RF(2^(emin-precision)) |
114 |
else: # number <= 0 |
115 |
lb = - RF(2^(emin)) + RF(2^(emin-precision)) |
116 |
ub = RF(0) |
117 |
elif l2 > emin: # Normal number other than +/-2^emin. |
118 |
if number >= 0: |
119 |
if int(l2) == l2: |
120 |
lb = RF(2^(offset)) |
121 |
ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
122 |
else: |
123 |
lb = RF(2^(offset-1)) |
124 |
ub = RF(2^(offset)) - RF(2^(-precision+offset)) |
125 |
else: # number < 0 |
126 |
if int(l2) == l2: # Binade limit. |
127 |
lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
128 |
ub = -RF(2^(offset)) |
129 |
else: |
130 |
lb = -RF(2^(offset) - 2^(-precision+offset)) |
131 |
ub = -RF(2^(offset-1)) |
132 |
else: # l2== emin, number == +/-2^emin |
133 |
if number >= 0: |
134 |
lb = RF(2^(offset)) |
135 |
ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
136 |
else: # number < 0 |
137 |
lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
138 |
ub = -RF(2^(offset)) |
139 |
return (lb, ub) |
140 |
# End slz_compute_binade_bounds |
141 |
# |
142 |
def slz_compute_coppersmith_reduced_polynomials(inputPolynomial, |
143 |
alpha, |
144 |
N, |
145 |
iBound, |
146 |
tBound, |
147 |
debug = False): |
148 |
""" |
149 |
For a given set of arguments (see below), compute a list |
150 |
of "reduced polynomials" that could be used to compute roots |
151 |
of the inputPolynomial. |
152 |
INPUT: |
153 |
|
154 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
155 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
156 |
- "N" -- the modulus; |
157 |
- "iBound" -- the bound on the first variable; |
158 |
- "tBound" -- the bound on the second variable. |
159 |
|
160 |
OUTPUT: |
161 |
|
162 |
A list of bivariate integer polynomial obtained using the Coppersmith |
163 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
164 |
reduced base that comply with the Coppersmith condition. |
165 |
""" |
166 |
# Arguments check. |
167 |
if iBound == 0 or tBound == 0: |
168 |
return None |
169 |
# End arguments check. |
170 |
nAtAlpha = N^alpha |
171 |
## Building polynomials for matrix. |
172 |
polyRing = inputPolynomial.parent() |
173 |
# Whatever the 2 variables are actually called, we call them |
174 |
# 'i' and 't' in all the variable names. |
175 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
176 |
#print polyVars[0], type(polyVars[0]) |
177 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
178 |
tVariable:tVariable * tBound}) |
179 |
if debug: |
180 |
polynomialsList = \ |
181 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
182 |
alpha, |
183 |
N, |
184 |
iBound, |
185 |
tBound, |
186 |
20) |
187 |
else: |
188 |
polynomialsList = \ |
189 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
190 |
alpha, |
191 |
N, |
192 |
iBound, |
193 |
tBound, |
194 |
0) |
195 |
#print "Polynomials list:", polynomialsList |
196 |
## Building the proto matrix. |
197 |
knownMonomials = [] |
198 |
protoMatrix = [] |
199 |
if debug: |
200 |
for poly in polynomialsList: |
201 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
202 |
knownMonomials, |
203 |
protoMatrix, |
204 |
20) |
205 |
else: |
206 |
for poly in polynomialsList: |
207 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
208 |
knownMonomials, |
209 |
protoMatrix, |
210 |
0) |
211 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
212 |
#print matrixToReduce |
213 |
## Reduction and checking. |
214 |
## S.T. changed 'fp' to None as of Sage 6.6 complying to |
215 |
# error message issued when previous code was used. |
216 |
#reducedMatrix = matrixToReduce.LLL(fp='fp') |
217 |
reducedMatrix = matrixToReduce.LLL(fp=None) |
218 |
isLLLReduced = reducedMatrix.is_LLL_reduced() |
219 |
if not isLLLReduced: |
220 |
return None |
221 |
monomialsCount = len(knownMonomials) |
222 |
monomialsCountSqrt = sqrt(monomialsCount) |
223 |
#print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
224 |
#print reducedMatrix |
225 |
## Check the Coppersmith condition for each row and build the reduced |
226 |
# polynomials. |
227 |
ccReducedPolynomialsList = [] |
228 |
for row in reducedMatrix.rows(): |
229 |
l2Norm = row.norm(2) |
230 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
231 |
#print (l2Norm * monomialsCountSqrt).n() |
232 |
#print l2Norm.n() |
233 |
ccReducedPolynomial = \ |
234 |
slz_compute_reduced_polynomial(row, |
235 |
knownMonomials, |
236 |
iVariable, |
237 |
iBound, |
238 |
tVariable, |
239 |
tBound) |
240 |
if not ccReducedPolynomial is None: |
241 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
242 |
else: |
243 |
#print l2Norm.n() , ">", nAtAlpha |
244 |
pass |
245 |
if len(ccReducedPolynomialsList) < 2: |
246 |
print "Less than 2 Coppersmith condition compliant vectors." |
247 |
return () |
248 |
#print ccReducedPolynomialsList |
249 |
return ccReducedPolynomialsList |
250 |
# End slz_compute_coppersmith_reduced_polynomials |
251 |
# |
252 |
def slz_compute_coppersmith_reduced_polynomials_gram(inputPolynomial, |
253 |
alpha, |
254 |
N, |
255 |
iBound, |
256 |
tBound, |
257 |
debug = False): |
258 |
""" |
259 |
For a given set of arguments (see below), compute a list |
260 |
of "reduced polynomials" that could be used to compute roots |
261 |
of the inputPolynomial. |
262 |
INPUT: |
263 |
|
264 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
265 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
266 |
- "N" -- the modulus; |
267 |
- "iBound" -- the bound on the first variable; |
268 |
- "tBound" -- the bound on the second variable. |
269 |
|
270 |
OUTPUT: |
271 |
|
272 |
A list of bivariate integer polynomial obtained using the Coppersmith |
273 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
274 |
reduced base that comply with the Coppersmith condition. |
275 |
""" |
276 |
# Arguments check. |
277 |
if iBound == 0 or tBound == 0: |
278 |
return None |
279 |
# End arguments check. |
280 |
nAtAlpha = N^alpha |
281 |
## Building polynomials for matrix. |
282 |
polyRing = inputPolynomial.parent() |
283 |
# Whatever the 2 variables are actually called, we call them |
284 |
# 'i' and 't' in all the variable names. |
285 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
286 |
#print polyVars[0], type(polyVars[0]) |
287 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
288 |
tVariable:tVariable * tBound}) |
289 |
if debug: |
290 |
polynomialsList = \ |
291 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
292 |
alpha, |
293 |
N, |
294 |
iBound, |
295 |
tBound, |
296 |
20) |
297 |
else: |
298 |
polynomialsList = \ |
299 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
300 |
alpha, |
301 |
N, |
302 |
iBound, |
303 |
tBound, |
304 |
0) |
305 |
#print "Polynomials list:", polynomialsList |
306 |
## Building the proto matrix. |
307 |
knownMonomials = [] |
308 |
protoMatrix = [] |
309 |
if debug: |
310 |
for poly in polynomialsList: |
311 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
312 |
knownMonomials, |
313 |
protoMatrix, |
314 |
20) |
315 |
else: |
316 |
for poly in polynomialsList: |
317 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
318 |
knownMonomials, |
319 |
protoMatrix, |
320 |
0) |
321 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
322 |
#print matrixToReduce |
323 |
## Reduction and checking. |
324 |
### In this variant we use the Pari LLL_gram reduction function. |
325 |
# It works with the Gram matrix instead of the plain matrix. |
326 |
matrixToReduceTransposed = matrixToReduce.transpose() |
327 |
matrixToReduceGram = matrixToReduce * matrixToReduceTransposed |
328 |
### LLL_gram returns a unimodular transformation matrix such that: |
329 |
# umt.transpose() * matrixToReduce * umt is reduced.. |
330 |
umt = matrixToReduceGram.LLL_gram() |
331 |
#print "Unimodular transformation matrix:" |
332 |
#for row in umt.rows(): |
333 |
# print row |
334 |
### The computed transformation matrix is transposed and applied to the |
335 |
# left side of matrixToReduce. |
336 |
reducedMatrix = umt.transpose() * matrixToReduce |
337 |
#print "Reduced matrix:" |
338 |
#for row in reducedMatrix.rows(): |
339 |
# print row |
340 |
isLLLReduced = reducedMatrix.is_LLL_reduced() |
341 |
#if not isLLLReduced: |
342 |
# return None |
343 |
monomialsCount = len(knownMonomials) |
344 |
monomialsCountSqrt = sqrt(monomialsCount) |
345 |
#print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
346 |
#print reducedMatrix |
347 |
## Check the Coppersmith condition for each row and build the reduced |
348 |
# polynomials. |
349 |
ccReducedPolynomialsList = [] |
350 |
for row in reducedMatrix.rows(): |
351 |
l2Norm = row.norm(2) |
352 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
353 |
#print (l2Norm * monomialsCountSqrt).n() |
354 |
#print l2Norm.n() |
355 |
ccReducedPolynomial = \ |
356 |
slz_compute_reduced_polynomial(row, |
357 |
knownMonomials, |
358 |
iVariable, |
359 |
iBound, |
360 |
tVariable, |
361 |
tBound) |
362 |
if not ccReducedPolynomial is None: |
363 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
364 |
else: |
365 |
#print l2Norm.n() , ">", nAtAlpha |
366 |
pass |
367 |
if len(ccReducedPolynomialsList) < 2: |
368 |
print "Less than 2 Coppersmith condition compliant vectors." |
369 |
return () |
370 |
#print ccReducedPolynomialsList |
371 |
return ccReducedPolynomialsList |
372 |
# End slz_compute_coppersmith_reduced_polynomials_gram |
373 |
# |
374 |
def slz_compute_coppersmith_reduced_polynomials_proj(inputPolynomial, |
375 |
alpha, |
376 |
N, |
377 |
iBound, |
378 |
tBound, |
379 |
debug = False): |
380 |
""" |
381 |
For a given set of arguments (see below), compute a list |
382 |
of "reduced polynomials" that could be used to compute roots |
383 |
of the inputPolynomial. |
384 |
INPUT: |
385 |
|
386 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
387 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
388 |
- "N" -- the modulus; |
389 |
- "iBound" -- the bound on the first variable; |
390 |
- "tBound" -- the bound on the second variable. |
391 |
|
392 |
OUTPUT: |
393 |
|
394 |
A list of bivariate integer polynomial obtained using the Coppersmith |
395 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
396 |
reduced base that comply with the Coppersmith condition. |
397 |
""" |
398 |
#@par Changes from runSLZ-113.sage |
399 |
# LLL reduction is not performed on the matrix itself but rather on the |
400 |
# product of the matrix with a uniform random matrix. |
401 |
# The reduced matrix obtained is discarded but the transformation matrix |
402 |
# obtained is used to multiply the original matrix in order to reduced it. |
403 |
# If a sufficient level of reduction is obtained, we stop here. If not |
404 |
# the product matrix obtained above is LLL reduced. But as it has been |
405 |
# pre-reduced at the above step, reduction is supposed to be much faster. |
406 |
# |
407 |
# Arguments check. |
408 |
if iBound == 0 or tBound == 0: |
409 |
return None |
410 |
# End arguments check. |
411 |
nAtAlpha = N^alpha |
412 |
## Building polynomials for matrix. |
413 |
polyRing = inputPolynomial.parent() |
414 |
# Whatever the 2 variables are actually called, we call them |
415 |
# 'i' and 't' in all the variable names. |
416 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
417 |
#print polyVars[0], type(polyVars[0]) |
418 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
419 |
tVariable:tVariable * tBound}) |
420 |
if debug: |
421 |
polynomialsList = \ |
422 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
423 |
alpha, |
424 |
N, |
425 |
iBound, |
426 |
tBound, |
427 |
20) |
428 |
else: |
429 |
polynomialsList = \ |
430 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
431 |
alpha, |
432 |
N, |
433 |
iBound, |
434 |
tBound, |
435 |
0) |
436 |
#print "Polynomials list:", polynomialsList |
437 |
## Building the proto matrix. |
438 |
knownMonomials = [] |
439 |
protoMatrix = [] |
440 |
if debug: |
441 |
for poly in polynomialsList: |
442 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
443 |
knownMonomials, |
444 |
protoMatrix, |
445 |
20) |
446 |
else: |
447 |
for poly in polynomialsList: |
448 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
449 |
knownMonomials, |
450 |
protoMatrix, |
451 |
0) |
452 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
453 |
#print matrixToReduce |
454 |
## Reduction and checking. |
455 |
### Reduction with projection |
456 |
(reducedMatrixStep1, reductionMatrixStep1) = \ |
457 |
slz_reduce_lll_proj(matrixToReduce,16) |
458 |
#print "Reduced matrix:" |
459 |
#print reducedMatrixStep1 |
460 |
#for row in reducedMatrix.rows(): |
461 |
# print row |
462 |
monomialsCount = len(knownMonomials) |
463 |
monomialsCountSqrt = sqrt(monomialsCount) |
464 |
#print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
465 |
#print reducedMatrix |
466 |
## Check the Coppersmith condition for each row and build the reduced |
467 |
# polynomials. |
468 |
ccReducedPolynomialsList = [] |
469 |
for row in reducedMatrixStep1.rows(): |
470 |
l2Norm = row.norm(2) |
471 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
472 |
#print (l2Norm * monomialsCountSqrt).n() |
473 |
#print l2Norm.n() |
474 |
ccReducedPolynomial = \ |
475 |
slz_compute_reduced_polynomial(row, |
476 |
knownMonomials, |
477 |
iVariable, |
478 |
iBound, |
479 |
tVariable, |
480 |
tBound) |
481 |
if not ccReducedPolynomial is None: |
482 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
483 |
else: |
484 |
#print l2Norm.n() , ">", nAtAlpha |
485 |
pass |
486 |
if len(ccReducedPolynomialsList) < 2: # Insufficient reduction. |
487 |
print "Less than 2 Coppersmith condition compliant vectors." |
488 |
print "Extra reduction starting..." |
489 |
reducedMatrix = reducedMatrixStep1.LLL(algorithm='fpLLL:wrapper') |
490 |
### If uncommented, the following statement avoids performing |
491 |
# an actual LLL reduction. This allows for demonstrating |
492 |
# the behavior of our pseudo-reduction alone. |
493 |
#return () |
494 |
else: |
495 |
print "First step of reduction afforded enough vectors" |
496 |
return ccReducedPolynomialsList |
497 |
#print ccReducedPolynomialsList |
498 |
## Check again the Coppersmith condition for each row and build the reduced |
499 |
# polynomials. |
500 |
ccReducedPolynomialsList = [] |
501 |
for row in reducedMatrix.rows(): |
502 |
l2Norm = row.norm(2) |
503 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
504 |
#print (l2Norm * monomialsCountSqrt).n() |
505 |
#print l2Norm.n() |
506 |
ccReducedPolynomial = \ |
507 |
slz_compute_reduced_polynomial(row, |
508 |
knownMonomials, |
509 |
iVariable, |
510 |
iBound, |
511 |
tVariable, |
512 |
tBound) |
513 |
if not ccReducedPolynomial is None: |
514 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
515 |
else: |
516 |
#print l2Norm.n() , ">", nAtAlpha |
517 |
pass |
518 |
if len(ccReducedPolynomialsList) < 2: # Insufficient reduction. |
519 |
print "Less than 2 Coppersmith condition compliant vectors after extra reduction." |
520 |
return () |
521 |
else: |
522 |
return ccReducedPolynomialsList |
523 |
# End slz_compute_coppersmith_reduced_polynomials_proj |
524 |
# |
525 |
def slz_compute_weak_coppersmith_reduced_polynomials_proj_02(inputPolynomial, |
526 |
alpha, |
527 |
N, |
528 |
iBound, |
529 |
tBound, |
530 |
debug = False): |
531 |
""" |
532 |
For a given set of arguments (see below), compute a list |
533 |
of "reduced polynomials" that could be used to compute roots |
534 |
of the inputPolynomial. |
535 |
INPUT: |
536 |
|
537 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
538 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
539 |
- "N" -- the modulus; |
540 |
- "iBound" -- the bound on the first variable; |
541 |
- "tBound" -- the bound on the second variable. |
542 |
|
543 |
OUTPUT: |
544 |
|
545 |
A list of bivariate integer polynomial obtained using the Coppersmith |
546 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
547 |
reduced base that comply with the weak version of Coppersmith condition. |
548 |
""" |
549 |
#@par Changes from runSLZ-113.sage |
550 |
# LLL reduction is not performed on the matrix itself but rather on the |
551 |
# product of the matrix with a uniform random matrix. |
552 |
# The reduced matrix obtained is discarded but the transformation matrix |
553 |
# obtained is used to multiply the original matrix in order to reduced it. |
554 |
# If a sufficient level of reduction is obtained, we stop here. If not |
555 |
# the product matrix obtained above is LLL reduced. But as it has been |
556 |
# pre-reduced at the above step, reduction is supposed to be much faster. |
557 |
# |
558 |
# Arguments check. |
559 |
if iBound == 0 or tBound == 0: |
560 |
return None |
561 |
# End arguments check. |
562 |
nAtAlpha = N^alpha |
563 |
## Building polynomials for matrix. |
564 |
polyRing = inputPolynomial.parent() |
565 |
# Whatever the 2 variables are actually called, we call them |
566 |
# 'i' and 't' in all the variable names. |
567 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
568 |
#print polyVars[0], type(polyVars[0]) |
569 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
570 |
tVariable:tVariable * tBound}) |
571 |
if debug: |
572 |
polynomialsList = \ |
573 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
574 |
alpha, |
575 |
N, |
576 |
iBound, |
577 |
tBound, |
578 |
20) |
579 |
else: |
580 |
polynomialsList = \ |
581 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
582 |
alpha, |
583 |
N, |
584 |
iBound, |
585 |
tBound, |
586 |
0) |
587 |
#print "Polynomials list:", polynomialsList |
588 |
## Building the proto matrix. |
589 |
knownMonomials = [] |
590 |
protoMatrix = [] |
591 |
if debug: |
592 |
for poly in polynomialsList: |
593 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
594 |
knownMonomials, |
595 |
protoMatrix, |
596 |
20) |
597 |
else: |
598 |
for poly in polynomialsList: |
599 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
600 |
knownMonomials, |
601 |
protoMatrix, |
602 |
0) |
603 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
604 |
#print matrixToReduce |
605 |
## Reduction and checking. |
606 |
### Reduction with projection |
607 |
(reducedMatrixStep1, reductionMatrixStep1) = \ |
608 |
slz_reduce_lll_proj_02(matrixToReduce,16) |
609 |
#print "Reduced matrix:" |
610 |
#print reducedMatrixStep1 |
611 |
#for row in reducedMatrix.rows(): |
612 |
# print row |
613 |
monomialsCount = len(knownMonomials) |
614 |
monomialsCountSqrt = sqrt(monomialsCount) |
615 |
#print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
616 |
#print reducedMatrix |
617 |
## Check the Coppersmith condition for each row and build the reduced |
618 |
# polynomials. |
619 |
ccReducedPolynomialsList = [] |
620 |
for row in reducedMatrixStep1.rows(): |
621 |
l1Norm = row.norm(1) |
622 |
l2Norm = row.norm(2) |
623 |
if l2Norm * monomialsCountSqrt < l1Norm: |
624 |
print "l1norm is smaller than l2norm*sqrt(w)." |
625 |
else: |
626 |
print "l1norm is NOT smaller than l2norm*sqrt(w)." |
627 |
print (l2Norm * monomialsCountSqrt).n(), 'vs ', l1Norm.n() |
628 |
if l1Norm < nAtAlpha: |
629 |
#print l2Norm.n() |
630 |
ccReducedPolynomial = \ |
631 |
slz_compute_reduced_polynomial(row, |
632 |
knownMonomials, |
633 |
iVariable, |
634 |
iBound, |
635 |
tVariable, |
636 |
tBound) |
637 |
if not ccReducedPolynomial is None: |
638 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
639 |
else: |
640 |
#print l2Norm.n() , ">", nAtAlpha |
641 |
pass |
642 |
if len(ccReducedPolynomialsList) < 2: # Insufficient reduction. |
643 |
print "Less than 2 Coppersmith condition compliant vectors." |
644 |
print "Extra reduction starting..." |
645 |
reducedMatrix = reducedMatrixStep1.LLL(algorithm='fpLLL:wrapper') |
646 |
### If uncommented, the following statement avoids performing |
647 |
# an actual LLL reduction. This allows for demonstrating |
648 |
# the behavior of our pseudo-reduction alone. |
649 |
#return () |
650 |
else: |
651 |
print "First step of reduction afforded enough vectors" |
652 |
return ccReducedPolynomialsList |
653 |
#print ccReducedPolynomialsList |
654 |
## Check again the Coppersmith condition for each row and build the reduced |
655 |
# polynomials. |
656 |
ccReducedPolynomialsList = [] |
657 |
for row in reducedMatrix.rows(): |
658 |
l2Norm = row.norm(2) |
659 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
660 |
#print (l2Norm * monomialsCountSqrt).n() |
661 |
#print l2Norm.n() |
662 |
ccReducedPolynomial = \ |
663 |
slz_compute_reduced_polynomial(row, |
664 |
knownMonomials, |
665 |
iVariable, |
666 |
iBound, |
667 |
tVariable, |
668 |
tBound) |
669 |
if not ccReducedPolynomial is None: |
670 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
671 |
else: |
672 |
#print l2Norm.n() , ">", nAtAlpha |
673 |
pass |
674 |
if len(ccReducedPolynomialsList) < 2: # Insufficient reduction. |
675 |
print "Less than 2 Coppersmith condition compliant vectors after extra reduction." |
676 |
return () |
677 |
else: |
678 |
return ccReducedPolynomialsList |
679 |
# End slz_compute_coppersmith_reduced_polynomials_proj_02 |
680 |
# |
681 |
def slz_compute_coppersmith_reduced_polynomials_proj(inputPolynomial, |
682 |
alpha, |
683 |
N, |
684 |
iBound, |
685 |
tBound, |
686 |
debug = False): |
687 |
""" |
688 |
For a given set of arguments (see below), compute a list |
689 |
of "reduced polynomials" that could be used to compute roots |
690 |
of the inputPolynomial. |
691 |
INPUT: |
692 |
|
693 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
694 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
695 |
- "N" -- the modulus; |
696 |
- "iBound" -- the bound on the first variable; |
697 |
- "tBound" -- the bound on the second variable. |
698 |
|
699 |
OUTPUT: |
700 |
|
701 |
A list of bivariate integer polynomial obtained using the Coppersmith |
702 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
703 |
reduced base that comply with the Coppersmith condition. |
704 |
""" |
705 |
#@par Changes from runSLZ-113.sage |
706 |
# LLL reduction is not performed on the matrix itself but rather on the |
707 |
# product of the matrix with a uniform random matrix. |
708 |
# The reduced matrix obtained is discarded but the transformation matrix |
709 |
# obtained is used to multiply the original matrix in order to reduced it. |
710 |
# If a sufficient level of reduction is obtained, we stop here. If not |
711 |
# the product matrix obtained above is LLL reduced. But as it has been |
712 |
# pre-reduced at the above step, reduction is supposed to be much faster. |
713 |
# |
714 |
# Arguments check. |
715 |
if iBound == 0 or tBound == 0: |
716 |
return None |
717 |
# End arguments check. |
718 |
nAtAlpha = N^alpha |
719 |
## Building polynomials for matrix. |
720 |
polyRing = inputPolynomial.parent() |
721 |
# Whatever the 2 variables are actually called, we call them |
722 |
# 'i' and 't' in all the variable names. |
723 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
724 |
#print polyVars[0], type(polyVars[0]) |
725 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
726 |
tVariable:tVariable * tBound}) |
727 |
if debug: |
728 |
polynomialsList = \ |
729 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
730 |
alpha, |
731 |
N, |
732 |
iBound, |
733 |
tBound, |
734 |
20) |
735 |
else: |
736 |
polynomialsList = \ |
737 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
738 |
alpha, |
739 |
N, |
740 |
iBound, |
741 |
tBound, |
742 |
0) |
743 |
#print "Polynomials list:", polynomialsList |
744 |
## Building the proto matrix. |
745 |
knownMonomials = [] |
746 |
protoMatrix = [] |
747 |
if debug: |
748 |
for poly in polynomialsList: |
749 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
750 |
knownMonomials, |
751 |
protoMatrix, |
752 |
20) |
753 |
else: |
754 |
for poly in polynomialsList: |
755 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
756 |
knownMonomials, |
757 |
protoMatrix, |
758 |
0) |
759 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
760 |
#print matrixToReduce |
761 |
## Reduction and checking. |
762 |
### Reduction with projection |
763 |
(reducedMatrixStep1, reductionMatrixStep1) = \ |
764 |
slz_reduce_lll_proj(matrixToReduce,16) |
765 |
#print "Reduced matrix:" |
766 |
#print reducedMatrixStep1 |
767 |
#for row in reducedMatrix.rows(): |
768 |
# print row |
769 |
monomialsCount = len(knownMonomials) |
770 |
monomialsCountSqrt = sqrt(monomialsCount) |
771 |
#print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
772 |
#print reducedMatrix |
773 |
## Check the Coppersmith condition for each row and build the reduced |
774 |
# polynomials. |
775 |
ccReducedPolynomialsList = [] |
776 |
for row in reducedMatrixStep1.rows(): |
777 |
l2Norm = row.norm(2) |
778 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
779 |
#print (l2Norm * monomialsCountSqrt).n() |
780 |
#print l2Norm.n() |
781 |
ccReducedPolynomial = \ |
782 |
slz_compute_reduced_polynomial(row, |
783 |
knownMonomials, |
784 |
iVariable, |
785 |
iBound, |
786 |
tVariable, |
787 |
tBound) |
788 |
if not ccReducedPolynomial is None: |
789 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
790 |
else: |
791 |
#print l2Norm.n() , ">", nAtAlpha |
792 |
pass |
793 |
if len(ccReducedPolynomialsList) < 2: # Insufficient reduction. |
794 |
print "Less than 2 Coppersmith condition compliant vectors." |
795 |
print "Extra reduction starting..." |
796 |
reducedMatrix = reducedMatrixStep1.LLL(algorithm='fpLLL:wrapper') |
797 |
### If uncommented, the following statement avoids performing |
798 |
# an actual LLL reduction. This allows for demonstrating |
799 |
# the behavior of our pseudo-reduction alone. |
800 |
#return () |
801 |
else: |
802 |
print "First step of reduction afforded enough vectors" |
803 |
return ccReducedPolynomialsList |
804 |
#print ccReducedPolynomialsList |
805 |
## Check again the Coppersmith condition for each row and build the reduced |
806 |
# polynomials. |
807 |
ccReducedPolynomialsList = [] |
808 |
for row in reducedMatrix.rows(): |
809 |
l2Norm = row.norm(2) |
810 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
811 |
#print (l2Norm * monomialsCountSqrt).n() |
812 |
#print l2Norm.n() |
813 |
ccReducedPolynomial = \ |
814 |
slz_compute_reduced_polynomial(row, |
815 |
knownMonomials, |
816 |
iVariable, |
817 |
iBound, |
818 |
tVariable, |
819 |
tBound) |
820 |
if not ccReducedPolynomial is None: |
821 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
822 |
else: |
823 |
#print l2Norm.n() , ">", nAtAlpha |
824 |
pass |
825 |
if len(ccReducedPolynomialsList) < 2: # Insufficient reduction. |
826 |
print "Less than 2 Coppersmith condition compliant vectors after extra reduction." |
827 |
return () |
828 |
else: |
829 |
return ccReducedPolynomialsList |
830 |
# End slz_compute_coppersmith_reduced_polynomials_proj |
831 |
def slz_compute_weak_coppersmith_reduced_polynomials_proj(inputPolynomial, |
832 |
alpha, |
833 |
N, |
834 |
iBound, |
835 |
tBound, |
836 |
debug = False): |
837 |
""" |
838 |
For a given set of arguments (see below), compute a list |
839 |
of "reduced polynomials" that could be used to compute roots |
840 |
of the inputPolynomial. |
841 |
INPUT: |
842 |
|
843 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
844 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
845 |
- "N" -- the modulus; |
846 |
- "iBound" -- the bound on the first variable; |
847 |
- "tBound" -- the bound on the second variable. |
848 |
|
849 |
OUTPUT: |
850 |
|
851 |
A list of bivariate integer polynomial obtained using the Coppersmith |
852 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
853 |
reduced base that comply with the weak version of Coppersmith condition. |
854 |
""" |
855 |
#@par Changes from runSLZ-113.sage |
856 |
# LLL reduction is not performed on the matrix itself but rather on the |
857 |
# product of the matrix with a uniform random matrix. |
858 |
# The reduced matrix obtained is discarded but the transformation matrix |
859 |
# obtained is used to multiply the original matrix in order to reduced it. |
860 |
# If a sufficient level of reduction is obtained, we stop here. If not |
861 |
# the product matrix obtained above is LLL reduced. But as it has been |
862 |
# pre-reduced at the above step, reduction is supposed to be much faster. |
863 |
# |
864 |
# Arguments check. |
865 |
if iBound == 0 or tBound == 0: |
866 |
return None |
867 |
# End arguments check. |
868 |
nAtAlpha = N^alpha |
869 |
## Building polynomials for matrix. |
870 |
polyRing = inputPolynomial.parent() |
871 |
# Whatever the 2 variables are actually called, we call them |
872 |
# 'i' and 't' in all the variable names. |
873 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
874 |
#print polyVars[0], type(polyVars[0]) |
875 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
876 |
tVariable:tVariable * tBound}) |
877 |
if debug: |
878 |
polynomialsList = \ |
879 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
880 |
alpha, |
881 |
N, |
882 |
iBound, |
883 |
tBound, |
884 |
20) |
885 |
else: |
886 |
polynomialsList = \ |
887 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
888 |
alpha, |
889 |
N, |
890 |
iBound, |
891 |
tBound, |
892 |
0) |
893 |
#print "Polynomials list:", polynomialsList |
894 |
## Building the proto matrix. |
895 |
knownMonomials = [] |
896 |
protoMatrix = [] |
897 |
if debug: |
898 |
for poly in polynomialsList: |
899 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
900 |
knownMonomials, |
901 |
protoMatrix, |
902 |
20) |
903 |
else: |
904 |
for poly in polynomialsList: |
905 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
906 |
knownMonomials, |
907 |
protoMatrix, |
908 |
0) |
909 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
910 |
#print matrixToReduce |
911 |
## Reduction and checking. |
912 |
### Reduction with projection |
913 |
(reducedMatrixStep1, reductionMatrixStep1) = \ |
914 |
slz_reduce_lll_proj(matrixToReduce,16) |
915 |
#print "Reduced matrix:" |
916 |
#print reducedMatrixStep1 |
917 |
#for row in reducedMatrix.rows(): |
918 |
# print row |
919 |
monomialsCount = len(knownMonomials) |
920 |
monomialsCountSqrt = sqrt(monomialsCount) |
921 |
#print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
922 |
#print reducedMatrix |
923 |
## Check the Coppersmith condition for each row and build the reduced |
924 |
# polynomials. |
925 |
ccReducedPolynomialsList = [] |
926 |
for row in reducedMatrixStep1.rows(): |
927 |
l1Norm = row.norm(1) |
928 |
l2Norm = row.norm(2) |
929 |
if l2Norm * monomialsCountSqrt < l1Norm: |
930 |
print "l1norm is smaller than l2norm*sqrt(w)." |
931 |
else: |
932 |
print "l1norm is NOT smaller than l2norm*sqrt(w)." |
933 |
print (l2Norm * monomialsCountSqrt).n(), 'vs ', l1Norm.n() |
934 |
if l1Norm < nAtAlpha: |
935 |
#print l2Norm.n() |
936 |
ccReducedPolynomial = \ |
937 |
slz_compute_reduced_polynomial(row, |
938 |
knownMonomials, |
939 |
iVariable, |
940 |
iBound, |
941 |
tVariable, |
942 |
tBound) |
943 |
if not ccReducedPolynomial is None: |
944 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
945 |
else: |
946 |
#print l2Norm.n() , ">", nAtAlpha |
947 |
pass |
948 |
if len(ccReducedPolynomialsList) < 2: # Insufficient reduction. |
949 |
print "Less than 2 Coppersmith condition compliant vectors." |
950 |
print "Extra reduction starting..." |
951 |
reducedMatrix = reducedMatrixStep1.LLL(algorithm='fpLLL:wrapper') |
952 |
### If uncommented, the following statement avoids performing |
953 |
# an actual LLL reduction. This allows for demonstrating |
954 |
# the behavior of our pseudo-reduction alone. |
955 |
#return () |
956 |
else: |
957 |
print "First step of reduction afforded enough vectors" |
958 |
return ccReducedPolynomialsList |
959 |
#print ccReducedPolynomialsList |
960 |
## Check again the Coppersmith condition for each row and build the reduced |
961 |
# polynomials. |
962 |
ccReducedPolynomialsList = [] |
963 |
for row in reducedMatrix.rows(): |
964 |
l2Norm = row.norm(2) |
965 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
966 |
#print (l2Norm * monomialsCountSqrt).n() |
967 |
#print l2Norm.n() |
968 |
ccReducedPolynomial = \ |
969 |
slz_compute_reduced_polynomial(row, |
970 |
knownMonomials, |
971 |
iVariable, |
972 |
iBound, |
973 |
tVariable, |
974 |
tBound) |
975 |
if not ccReducedPolynomial is None: |
976 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
977 |
else: |
978 |
#print l2Norm.n() , ">", nAtAlpha |
979 |
pass |
980 |
if len(ccReducedPolynomialsList) < 2: # Insufficient reduction. |
981 |
print "Less than 2 Coppersmith condition compliant vectors after extra reduction." |
982 |
return () |
983 |
else: |
984 |
return ccReducedPolynomialsList |
985 |
# End slz_compute_coppersmith_reduced_polynomials_proj2 |
986 |
# |
987 |
def slz_compute_coppersmith_reduced_polynomials_with_lattice_volume(inputPolynomial, |
988 |
alpha, |
989 |
N, |
990 |
iBound, |
991 |
tBound, |
992 |
debug = False): |
993 |
""" |
994 |
For a given set of arguments (see below), compute a list |
995 |
of "reduced polynomials" that could be used to compute roots |
996 |
of the inputPolynomial. |
997 |
Print the volume of the initial basis as well. |
998 |
INPUT: |
999 |
|
1000 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
1001 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
1002 |
- "N" -- the modulus; |
1003 |
- "iBound" -- the bound on the first variable; |
1004 |
- "tBound" -- the bound on the second variable. |
1005 |
|
1006 |
OUTPUT: |
1007 |
|
1008 |
A list of bivariate integer polynomial obtained using the Coppersmith |
1009 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
1010 |
reduced base that comply with the Coppersmith condition. |
1011 |
""" |
1012 |
# Arguments check. |
1013 |
if iBound == 0 or tBound == 0: |
1014 |
return None |
1015 |
# End arguments check. |
1016 |
nAtAlpha = N^alpha |
1017 |
if debug: |
1018 |
print "N at alpha:", nAtAlpha |
1019 |
## Building polynomials for matrix. |
1020 |
polyRing = inputPolynomial.parent() |
1021 |
# Whatever the 2 variables are actually called, we call them |
1022 |
# 'i' and 't' in all the variable names. |
1023 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
1024 |
#print polyVars[0], type(polyVars[0]) |
1025 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
1026 |
tVariable:tVariable * tBound}) |
1027 |
## polynomialsList = \ |
1028 |
## spo_polynomial_to_polynomials_list_8(initialPolynomial, |
1029 |
## spo_polynomial_to_polynomials_list_5(initialPolynomial, |
1030 |
polynomialsList = \ |
1031 |
spo_polynomial_to_polynomials_list_5(initialPolynomial, |
1032 |
alpha, |
1033 |
N, |
1034 |
iBound, |
1035 |
tBound, |
1036 |
0) |
1037 |
#print "Polynomials list:", polynomialsList |
1038 |
## Building the proto matrix. |
1039 |
knownMonomials = [] |
1040 |
protoMatrix = [] |
1041 |
for poly in polynomialsList: |
1042 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
1043 |
knownMonomials, |
1044 |
protoMatrix, |
1045 |
0) |
1046 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
1047 |
matrixToReduceTranspose = matrixToReduce.transpose() |
1048 |
squareMatrix = matrixToReduce * matrixToReduceTranspose |
1049 |
squareMatDet = det(squareMatrix) |
1050 |
latticeVolume = sqrt(squareMatDet) |
1051 |
print "Lattice volume:", latticeVolume.n() |
1052 |
print "Lattice volume / N:", (latticeVolume/N).n() |
1053 |
#print matrixToReduce |
1054 |
## Reduction and checking. |
1055 |
## S.T. changed 'fp' to None as of Sage 6.6 complying to |
1056 |
# error message issued when previous code was used. |
1057 |
#reducedMatrix = matrixToReduce.LLL(fp='fp') |
1058 |
reductionTimeStart = cputime() |
1059 |
reducedMatrix = matrixToReduce.LLL(fp=None) |
1060 |
reductionTime = cputime(reductionTimeStart) |
1061 |
print "Reduction time:", reductionTime |
1062 |
isLLLReduced = reducedMatrix.is_LLL_reduced() |
1063 |
if not isLLLReduced: |
1064 |
return None |
1065 |
# |
1066 |
if debug: |
1067 |
matrixFile = file('/tmp/reducedMatrix.txt', 'w') |
1068 |
for row in reducedMatrix.rows(): |
1069 |
matrixFile.write(str(row) + "\n") |
1070 |
matrixFile.close() |
1071 |
# |
1072 |
monomialsCount = len(knownMonomials) |
1073 |
monomialsCountSqrt = sqrt(monomialsCount) |
1074 |
#print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
1075 |
#print reducedMatrix |
1076 |
## Check the Coppersmith condition for each row and build the reduced |
1077 |
# polynomials. |
1078 |
ccVectorsCount = 0 |
1079 |
ccReducedPolynomialsList = [] |
1080 |
for row in reducedMatrix.rows(): |
1081 |
l2Norm = row.norm(2) |
1082 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
1083 |
#print (l2Norm * monomialsCountSqrt).n() |
1084 |
#print l2Norm.n() |
1085 |
ccVectorsCount +=1 |
1086 |
ccReducedPolynomial = \ |
1087 |
slz_compute_reduced_polynomial(row, |
1088 |
knownMonomials, |
1089 |
iVariable, |
1090 |
iBound, |
1091 |
tVariable, |
1092 |
tBound) |
1093 |
if not ccReducedPolynomial is None: |
1094 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
1095 |
else: |
1096 |
#print l2Norm.n() , ">", nAtAlpha |
1097 |
pass |
1098 |
if debug: |
1099 |
print ccVectorsCount, "out of ", len(ccReducedPolynomialsList), |
1100 |
print "took Coppersmith text." |
1101 |
if len(ccReducedPolynomialsList) < 2: |
1102 |
print "Less than 2 Coppersmith condition compliant vectors." |
1103 |
return () |
1104 |
if debug: |
1105 |
print "Reduced and Coppersmith compliant polynomials list", ccReducedPolynomialsList |
1106 |
return ccReducedPolynomialsList |
1107 |
# End slz_compute_coppersmith_reduced_polynomials_with_lattice volume |
1108 |
|
1109 |
def slz_compute_initial_lattice_matrix(inputPolynomial, |
1110 |
alpha, |
1111 |
N, |
1112 |
iBound, |
1113 |
tBound, |
1114 |
debug = False): |
1115 |
""" |
1116 |
For a given set of arguments (see below), compute the initial lattice |
1117 |
that could be reduced. |
1118 |
INPUT: |
1119 |
|
1120 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
1121 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
1122 |
- "N" -- the modulus; |
1123 |
- "iBound" -- the bound on the first variable; |
1124 |
- "tBound" -- the bound on the second variable. |
1125 |
|
1126 |
OUTPUT: |
1127 |
|
1128 |
A list of bivariate integer polynomial obtained using the Coppersmith |
1129 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
1130 |
reduced base that comply with the Coppersmith condition. |
1131 |
""" |
1132 |
# Arguments check. |
1133 |
if iBound == 0 or tBound == 0: |
1134 |
return None |
1135 |
# End arguments check. |
1136 |
nAtAlpha = N^alpha |
1137 |
## Building polynomials for matrix. |
1138 |
polyRing = inputPolynomial.parent() |
1139 |
# Whatever the 2 variables are actually called, we call them |
1140 |
# 'i' and 't' in all the variable names. |
1141 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
1142 |
#print polyVars[0], type(polyVars[0]) |
1143 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
1144 |
tVariable:tVariable * tBound}) |
1145 |
polynomialsList = \ |
1146 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
1147 |
alpha, |
1148 |
N, |
1149 |
iBound, |
1150 |
tBound, |
1151 |
0) |
1152 |
#print "Polynomials list:", polynomialsList |
1153 |
## Building the proto matrix. |
1154 |
knownMonomials = [] |
1155 |
protoMatrix = [] |
1156 |
for poly in polynomialsList: |
1157 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
1158 |
knownMonomials, |
1159 |
protoMatrix, |
1160 |
0) |
1161 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
1162 |
if debug: |
1163 |
print "Initial basis polynomials" |
1164 |
for poly in polynomialsList: |
1165 |
print poly |
1166 |
return matrixToReduce |
1167 |
# End slz_compute_initial_lattice_matrix. |
1168 |
|
1169 |
def slz_compute_integer_polynomial_modular_roots(inputPolynomial, |
1170 |
alpha, |
1171 |
N, |
1172 |
iBound, |
1173 |
tBound): |
1174 |
""" |
1175 |
For a given set of arguments (see below), compute the polynomial modular |
1176 |
roots, if any. |
1177 |
|
1178 |
""" |
1179 |
# Arguments check. |
1180 |
if iBound == 0 or tBound == 0: |
1181 |
return set() |
1182 |
# End arguments check. |
1183 |
nAtAlpha = N^alpha |
1184 |
## Building polynomials for matrix. |
1185 |
polyRing = inputPolynomial.parent() |
1186 |
# Whatever the 2 variables are actually called, we call them |
1187 |
# 'i' and 't' in all the variable names. |
1188 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
1189 |
ccReducedPolynomialsList = \ |
1190 |
slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
1191 |
alpha, |
1192 |
N, |
1193 |
iBound, |
1194 |
tBound) |
1195 |
if len(ccReducedPolynomialsList) == 0: |
1196 |
return set() |
1197 |
## Create the valid (poly1 and poly2 are algebraically independent) |
1198 |
# resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
1199 |
# Try to mix and match all the polynomial pairs built from the |
1200 |
# ccReducedPolynomialsList to obtain non zero resultants. |
1201 |
resultantsInITuplesList = [] |
1202 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
1203 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
1204 |
len(ccReducedPolynomialsList)): |
1205 |
# Compute the resultant in resultants in the |
1206 |
# first variable (is it the optimal choice?). |
1207 |
resultantInI = \ |
1208 |
ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
1209 |
ccReducedPolynomialsList[0].parent(str(iVariable))) |
1210 |
#print "Resultant", resultantInI |
1211 |
# Test algebraic independence. |
1212 |
if not resultantInI.is_zero(): |
1213 |
resultantsInITuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
1214 |
ccReducedPolynomialsList[polyInnerIndex], |
1215 |
resultantInI)) |
1216 |
# If no non zero resultant was found: we can't get no algebraically |
1217 |
# independent polynomials pair. Give up! |
1218 |
if len(resultantsInITuplesList) == 0: |
1219 |
return set() |
1220 |
#print resultantsInITuplesList |
1221 |
# Compute the roots. |
1222 |
Zi = ZZ[str(iVariable)] |
1223 |
Zt = ZZ[str(tVariable)] |
1224 |
polynomialRootsSet = set() |
1225 |
# First, solve in the second variable since resultants are in the first |
1226 |
# variable. |
1227 |
for resultantInITuple in resultantsInITuplesList: |
1228 |
tRootsList = Zt(resultantInITuple[2]).roots() |
1229 |
# For each tRoot, compute the corresponding iRoots and check |
1230 |
# them in the input polynomial. |
1231 |
for tRoot in tRootsList: |
1232 |
#print "tRoot:", tRoot |
1233 |
# Roots returned by root() are (value, multiplicity) tuples. |
1234 |
iRootsList = \ |
1235 |
Zi(resultantInITuple[0].subs({resultantInITuple[0].variables()[1]:tRoot[0]})).roots() |
1236 |
print iRootsList |
1237 |
# The iRootsList can be empty, hence the test. |
1238 |
if len(iRootsList) != 0: |
1239 |
for iRoot in iRootsList: |
1240 |
polyEvalModN = inputPolynomial(iRoot[0], tRoot[0]) / N |
1241 |
# polyEvalModN must be an integer. |
1242 |
if polyEvalModN == int(polyEvalModN): |
1243 |
polynomialRootsSet.add((iRoot[0],tRoot[0])) |
1244 |
return polynomialRootsSet |
1245 |
# End slz_compute_integer_polynomial_modular_roots. |
1246 |
# |
1247 |
def slz_compute_integer_polynomial_modular_roots_2(inputPolynomial, |
1248 |
alpha, |
1249 |
N, |
1250 |
iBound, |
1251 |
tBound): |
1252 |
""" |
1253 |
For a given set of arguments (see below), compute the polynomial modular |
1254 |
roots, if any. |
1255 |
This version differs in the way resultants are computed. |
1256 |
""" |
1257 |
# Arguments check. |
1258 |
if iBound == 0 or tBound == 0: |
1259 |
return set() |
1260 |
# End arguments check. |
1261 |
nAtAlpha = N^alpha |
1262 |
## Building polynomials for matrix. |
1263 |
polyRing = inputPolynomial.parent() |
1264 |
# Whatever the 2 variables are actually called, we call them |
1265 |
# 'i' and 't' in all the variable names. |
1266 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
1267 |
#print polyVars[0], type(polyVars[0]) |
1268 |
ccReducedPolynomialsList = \ |
1269 |
slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
1270 |
alpha, |
1271 |
N, |
1272 |
iBound, |
1273 |
tBound) |
1274 |
if len(ccReducedPolynomialsList) == 0: |
1275 |
return set() |
1276 |
## Create the valid (poly1 and poly2 are algebraically independent) |
1277 |
# resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
1278 |
# Try to mix and match all the polynomial pairs built from the |
1279 |
# ccReducedPolynomialsList to obtain non zero resultants. |
1280 |
resultantsInTTuplesList = [] |
1281 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
1282 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
1283 |
len(ccReducedPolynomialsList)): |
1284 |
# Compute the resultant in resultants in the |
1285 |
# first variable (is it the optimal choice?). |
1286 |
resultantInT = \ |
1287 |
ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
1288 |
ccReducedPolynomialsList[0].parent(str(tVariable))) |
1289 |
#print "Resultant", resultantInT |
1290 |
# Test algebraic independence. |
1291 |
if not resultantInT.is_zero(): |
1292 |
resultantsInTTuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
1293 |
ccReducedPolynomialsList[polyInnerIndex], |
1294 |
resultantInT)) |
1295 |
# If no non zero resultant was found: we can't get no algebraically |
1296 |
# independent polynomials pair. Give up! |
1297 |
if len(resultantsInTTuplesList) == 0: |
1298 |
return set() |
1299 |
#print resultantsInITuplesList |
1300 |
# Compute the roots. |
1301 |
Zi = ZZ[str(iVariable)] |
1302 |
Zt = ZZ[str(tVariable)] |
1303 |
polynomialRootsSet = set() |
1304 |
# First, solve in the second variable since resultants are in the first |
1305 |
# variable. |
1306 |
for resultantInTTuple in resultantsInTTuplesList: |
1307 |
iRootsList = Zi(resultantInTTuple[2]).roots() |
1308 |
# For each iRoot, compute the corresponding tRoots and check |
1309 |
# them in the input polynomial. |
1310 |
for iRoot in iRootsList: |
1311 |
#print "iRoot:", iRoot |
1312 |
# Roots returned by root() are (value, multiplicity) tuples. |
1313 |
tRootsList = \ |
1314 |
Zt(resultantInTTuple[0].subs({resultantInTTuple[0].variables()[0]:iRoot[0]})).roots() |
1315 |
print tRootsList |
1316 |
# The tRootsList can be empty, hence the test. |
1317 |
if len(tRootsList) != 0: |
1318 |
for tRoot in tRootsList: |
1319 |
polyEvalModN = inputPolynomial(iRoot[0],tRoot[0]) / N |
1320 |
# polyEvalModN must be an integer. |
1321 |
if polyEvalModN == int(polyEvalModN): |
1322 |
polynomialRootsSet.add((iRoot[0],tRoot[0])) |
1323 |
return polynomialRootsSet |
1324 |
# End slz_compute_integer_polynomial_modular_roots_2. |
1325 |
# |
1326 |
def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
1327 |
upperBoundSa, approxAccurSa, |
1328 |
precSa=None, debug=False): |
1329 |
""" |
1330 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
1331 |
a polynomial that approximates the function on a an interval starting |
1332 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
1333 |
approximates with the expected precision. |
1334 |
The interval upper bound is lowered until the expected approximation |
1335 |
precision is reached. |
1336 |
The polynomial, the bounds, the center of the interval and the error |
1337 |
are returned. |
1338 |
Argument debug is not used. |
1339 |
OUTPUT: |
1340 |
A tuple made of 4 Sollya objects: |
1341 |
- a polynomial; |
1342 |
- an range (an interval, not in the sense of number given as an interval); |
1343 |
- the center of the interval; |
1344 |
- the maximum error in the approximation of the input functionSo by the |
1345 |
output polynomial ; this error <= approxAccurSaS. |
1346 |
|
1347 |
""" |
1348 |
#print"In slz_compute_polynomial_and_interval..." |
1349 |
## Superficial argument check. |
1350 |
if lowerBoundSa > upperBoundSa: |
1351 |
return None |
1352 |
## Change Sollya precision, if requested. |
1353 |
if precSa is None: |
1354 |
precSa = ceil((RR('1.5') * abs(RR(approxAccurSa).log2())) / 64) * 64 |
1355 |
#print "Computed internal precision:", precSa |
1356 |
if precSa < 192: |
1357 |
precSa = 192 |
1358 |
sollyaPrecChanged = False |
1359 |
(initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
1360 |
if precSa > initialSollyaPrecSa: |
1361 |
if precSa <= 2: |
1362 |
print inspect.stack()[0][3], ": precision change <=2 requested." |
1363 |
pobyso_set_prec_sa_so(precSa) |
1364 |
sollyaPrecChanged = True |
1365 |
RRR = lowerBoundSa.parent() |
1366 |
intervalShrinkConstFactorSa = RRR('0.9') |
1367 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
1368 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
1369 |
currentUpperBoundSa = upperBoundSa |
1370 |
currentLowerBoundSa = lowerBoundSa |
1371 |
# What we want here is the polynomial without the variable change, |
1372 |
# since our actual variable will be x-intervalCenter defined over the |
1373 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
1374 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
1375 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
1376 |
currentRangeSo, |
1377 |
absoluteErrorTypeSo) |
1378 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
1379 |
while maxErrorSa > approxAccurSa: |
1380 |
print "++Approximation error:", maxErrorSa.n() |
1381 |
sollya_lib_clear_obj(polySo) |
1382 |
sollya_lib_clear_obj(intervalCenterSo) |
1383 |
sollya_lib_clear_obj(maxErrorSo) |
1384 |
# Very empirical shrinking factor. |
1385 |
shrinkFactorSa = 1 / (maxErrorSa/approxAccurSa).log2().abs() |
1386 |
print "Shrink factor:", \ |
1387 |
shrinkFactorSa.n(), \ |
1388 |
intervalShrinkConstFactorSa |
1389 |
|
1390 |
#errorRatioSa = approxAccurSa/maxErrorSa |
1391 |
#print "Error ratio: ", errorRatioSa |
1392 |
# Make sure interval shrinks. |
1393 |
if shrinkFactorSa > intervalShrinkConstFactorSa: |
1394 |
actualShrinkFactorSa = intervalShrinkConstFactorSa |
1395 |
#print "Fixed" |
1396 |
else: |
1397 |
actualShrinkFactorSa = shrinkFactorSa |
1398 |
#print "Computed",shrinkFactorSa,maxErrorSa |
1399 |
#print shrinkFactorSa, maxErrorSa |
1400 |
#print "Shrink factor", actualShrinkFactorSa |
1401 |
currentUpperBoundSa = currentLowerBoundSa + \ |
1402 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
1403 |
actualShrinkFactorSa |
1404 |
#print "Current upper bound:", currentUpperBoundSa |
1405 |
sollya_lib_clear_obj(currentRangeSo) |
1406 |
# Check what is left with the bounds. |
1407 |
if currentUpperBoundSa <= currentLowerBoundSa or \ |
1408 |
currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
1409 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
1410 |
print "Can't find an interval." |
1411 |
print "Use either or both a higher polynomial degree or a higher", |
1412 |
print "internal precision." |
1413 |
print "Aborting!" |
1414 |
if sollyaPrecChanged: |
1415 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
1416 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
1417 |
return None |
1418 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
1419 |
currentUpperBoundSa) |
1420 |
# print "New interval:", |
1421 |
# pobyso_autoprint(currentRangeSo) |
1422 |
#print "Second Taylor expansion call." |
1423 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
1424 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
1425 |
currentRangeSo, |
1426 |
absoluteErrorTypeSo) |
1427 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
1428 |
#print "Max errorSo:", |
1429 |
#pobyso_autoprint(maxErrorSo) |
1430 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
1431 |
#print "Max errorSa:", maxErrorSa |
1432 |
#print "Sollya prec:", |
1433 |
#pobyso_autoprint(sollya_lib_get_prec(None)) |
1434 |
# End while |
1435 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
1436 |
if sollyaPrecChanged: |
1437 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
1438 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
1439 |
return (polySo, currentRangeSo, intervalCenterSo, maxErrorSo) |
1440 |
# End slz_compute_polynomial_and_interval |
1441 |
|
1442 |
def slz_compute_polynomial_and_interval_01(functionSo, degreeSo, lowerBoundSa, |
1443 |
upperBoundSa, approxAccurSa, |
1444 |
sollyaPrecSa=None, debug=False): |
1445 |
""" |
1446 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
1447 |
a polynomial that approximates the function on a an interval starting |
1448 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
1449 |
approximates with the expected precision. |
1450 |
The interval upper bound is lowered until the expected approximation |
1451 |
precision is reached. |
1452 |
The polynomial, the bounds, the center of the interval and the error |
1453 |
are returned. |
1454 |
OUTPUT: |
1455 |
A tuple made of 4 Sollya objects: |
1456 |
- a polynomial; |
1457 |
- an range (an interval, not in the sense of number given as an interval); |
1458 |
- the center of the interval; |
1459 |
- the maximum error in the approximation of the input functionSo by the |
1460 |
output polynomial ; this error <= approxAccurSaS. |
1461 |
|
1462 |
Changes from version 0 (no number): |
1463 |
- make use of debug argument; |
1464 |
- polynomial coefficients are "shaved". |
1465 |
|
1466 |
""" |
1467 |
#print"In slz_compute_polynomial_and_interval..." |
1468 |
## Superficial argument check. |
1469 |
if lowerBoundSa > upperBoundSa: |
1470 |
print inspect.stack()[0][3], ": lower bound is larger than upper bound. " |
1471 |
return None |
1472 |
## Change Sollya precision, if requested. |
1473 |
(initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
1474 |
sollyaPrecChangedSa = False |
1475 |
if sollyaPrecSa is None: |
1476 |
sollyaPrecSa = initialSollyaPrecSa |
1477 |
else: |
1478 |
if sollyaPrecSa > initialSollyaPrecSa: |
1479 |
if sollyaPrecSa <= 2: |
1480 |
print inspect.stack()[0][3], ": precision change <= 2 requested." |
1481 |
pobyso_set_prec_sa_so(sollyaPrecSa) |
1482 |
sollyaPrecChangedSa = True |
1483 |
## Other initializations and data recovery. |
1484 |
RRR = lowerBoundSa.parent() |
1485 |
intervalShrinkConstFactorSa = RRR('0.9') |
1486 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
1487 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
1488 |
currentUpperBoundSa = upperBoundSa |
1489 |
currentLowerBoundSa = lowerBoundSa |
1490 |
# What we want here is the polynomial without the variable change, |
1491 |
# since our actual variable will be x-intervalCenter defined over the |
1492 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
1493 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
1494 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
1495 |
currentRangeSo, |
1496 |
absoluteErrorTypeSo) |
1497 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
1498 |
while maxErrorSa > approxAccurSa: |
1499 |
print "++Approximation error:", maxErrorSa.n() |
1500 |
sollya_lib_clear_obj(polySo) |
1501 |
sollya_lib_clear_obj(intervalCenterSo) |
1502 |
sollya_lib_clear_obj(maxErrorSo) |
1503 |
# Very empirical shrinking factor. |
1504 |
shrinkFactorSa = 1 / (maxErrorSa/approxAccurSa).log2().abs() |
1505 |
print "Shrink factor:", \ |
1506 |
shrinkFactorSa.n(), \ |
1507 |
intervalShrinkConstFactorSa |
1508 |
|
1509 |
#errorRatioSa = approxAccurSa/maxErrorSa |
1510 |
#print "Error ratio: ", errorRatioSa |
1511 |
# Make sure interval shrinks. |
1512 |
if shrinkFactorSa > intervalShrinkConstFactorSa: |
1513 |
actualShrinkFactorSa = intervalShrinkConstFactorSa |
1514 |
#print "Fixed" |
1515 |
else: |
1516 |
actualShrinkFactorSa = shrinkFactorSa |
1517 |
#print "Computed",shrinkFactorSa,maxErrorSa |
1518 |
#print shrinkFactorSa, maxErrorSa |
1519 |
#print "Shrink factor", actualShrinkFactorSa |
1520 |
currentUpperBoundSa = currentLowerBoundSa + \ |
1521 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
1522 |
actualShrinkFactorSa |
1523 |
#print "Current upper bound:", currentUpperBoundSa |
1524 |
sollya_lib_clear_obj(currentRangeSo) |
1525 |
# Check what is left with the bounds. |
1526 |
if currentUpperBoundSa <= currentLowerBoundSa or \ |
1527 |
currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
1528 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
1529 |
print "Can't find an interval." |
1530 |
print "Use either or both a higher polynomial degree or a higher", |
1531 |
print "internal precision." |
1532 |
print "Aborting!" |
1533 |
if sollyaPrecChangedSa: |
1534 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
1535 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
1536 |
return None |
1537 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
1538 |
currentUpperBoundSa) |
1539 |
# print "New interval:", |
1540 |
# pobyso_autoprint(currentRangeSo) |
1541 |
#print "Second Taylor expansion call." |
1542 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
1543 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
1544 |
currentRangeSo, |
1545 |
absoluteErrorTypeSo) |
1546 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
1547 |
#print "Max errorSo:", |
1548 |
#pobyso_autoprint(maxErrorSo) |
1549 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
1550 |
#print "Max errorSa:", maxErrorSa |
1551 |
#print "Sollya prec:", |
1552 |
#pobyso_autoprint(sollya_lib_get_prec(None)) |
1553 |
# End while |
1554 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
1555 |
itpSo = pobyso_constant_from_int_sa_so(floor(sollyaPrecSa/3)) |
1556 |
ftpSo = pobyso_constant_from_int_sa_so(floor(2*sollyaPrecSa/3)) |
1557 |
maxPrecSo = pobyso_constant_from_int_sa_so(sollyaPrecSa) |
1558 |
approxAccurSo = pobyso_constant_sa_so(RR(approxAccurSa)) |
1559 |
if debug: |
1560 |
print inspect.stack()[0][3], "SollyaPrecSa:", sollyaPrecSa |
1561 |
print "About to call polynomial rounding with:" |
1562 |
print "polySo: ", ; pobyso_autoprint(polySo) |
1563 |
print "functionSo: ", ; pobyso_autoprint(functionSo) |
1564 |
print "intervalCenterSo: ", ; pobyso_autoprint(intervalCenterSo) |
1565 |
print "currentRangeSo: ", ; pobyso_autoprint(currentRangeSo) |
1566 |
print "itpSo: ", ; pobyso_autoprint(itpSo) |
1567 |
print "ftpSo: ", ; pobyso_autoprint(ftpSo) |
1568 |
print "maxPrecSo: ", ; pobyso_autoprint(maxPrecSo) |
1569 |
print "approxAccurSo: ", ; pobyso_autoprint(approxAccurSo) |
1570 |
""" |
1571 |
# Naive rounding. |
1572 |
(roundedPolySo, roundedPolyMaxErrSo) = \ |
1573 |
pobyso_polynomial_coefficients_progressive_round_so_so(polySo, |
1574 |
functionSo, |
1575 |
intervalCenterSo, |
1576 |
currentRangeSo, |
1577 |
itpSo, |
1578 |
ftpSo, |
1579 |
maxPrecSo, |
1580 |
approxAccurSo) |
1581 |
""" |
1582 |
# Proved rounding. |
1583 |
(roundedPolySo, roundedPolyMaxErrSo) = \ |
1584 |
pobyso_round_coefficients_progressive_so_so(polySo, |
1585 |
functionSo, |
1586 |
maxPrecSo, |
1587 |
currentRangeSo, |
1588 |
intervalCenterSo, |
1589 |
maxErrorSo, |
1590 |
approxAccurSo, |
1591 |
debug=False) |
1592 |
#### Comment out the two next lines when polynomial rounding is activated. |
1593 |
#roundedPolySo = sollya_lib_copy_obj(polySo) |
1594 |
#roundedPolyMaxErrSo = sollya_lib_copy_obj(maxErrorSo) |
1595 |
sollya_lib_clear_obj(polySo) |
1596 |
sollya_lib_clear_obj(maxErrorSo) |
1597 |
sollya_lib_clear_obj(itpSo) |
1598 |
sollya_lib_clear_obj(ftpSo) |
1599 |
sollya_lib_clear_obj(approxAccurSo) |
1600 |
if sollyaPrecChangedSa: |
1601 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
1602 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
1603 |
if debug: |
1604 |
print "1: ", ; pobyso_autoprint(roundedPolySo) |
1605 |
print "2: ", ; pobyso_autoprint(currentRangeSo) |
1606 |
print "3: ", ; pobyso_autoprint(intervalCenterSo) |
1607 |
print "4: ", ; pobyso_autoprint(roundedPolyMaxErrSo) |
1608 |
return (roundedPolySo, currentRangeSo, intervalCenterSo, roundedPolyMaxErrSo) |
1609 |
# End slz_compute_polynomial_and_interval_01 |
1610 |
|
1611 |
def slz_compute_polynomial_and_interval_02(functionSo, degreeSo, lowerBoundSa, |
1612 |
upperBoundSa, approxAccurSa, |
1613 |
sollyaPrecSa=None, debug=True ): |
1614 |
""" |
1615 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
1616 |
a polynomial that approximates the function on a an interval starting |
1617 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
1618 |
approximates with the expected precision. |
1619 |
The interval upper bound is lowered until the expected approximation |
1620 |
precision is reached. |
1621 |
The polynomial, the bounds, the center of the interval and the error |
1622 |
are returned. |
1623 |
OUTPUT: |
1624 |
A tuple made of 4 Sollya objects: |
1625 |
- a polynomial; |
1626 |
- an range (an interval, not in the sense of number given as an interval); |
1627 |
- the center of the interval; |
1628 |
- the maximum error in the approximation of the input functionSo by the |
1629 |
output polynomial ; this error <= approxAccurSaS. |
1630 |
Changes fom v 01: |
1631 |
extra verbose. |
1632 |
""" |
1633 |
print"In slz_compute_polynomial_and_interval..." |
1634 |
## Superficial argument check. |
1635 |
if lowerBoundSa > upperBoundSa: |
1636 |
return None |
1637 |
## Change Sollya precision, if requested. |
1638 |
sollyaPrecChanged = False |
1639 |
(initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
1640 |
#print "Initial Sollya prec:", initialSollyaPrecSa, type(initialSollyaPrecSa) |
1641 |
if sollyaPrecSa is None: |
1642 |
sollyaPrecSa = initialSollyaPrecSa |
1643 |
else: |
1644 |
if sollyaPrecSa <= 2: |
1645 |
print inspect.stack()[0][3], ": precision change <=2 requested." |
1646 |
pobyso_set_prec_sa_so(sollyaPrecSa) |
1647 |
sollyaPrecChanged = True |
1648 |
RRR = lowerBoundSa.parent() |
1649 |
intervalShrinkConstFactorSa = RRR('0.9') |
1650 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
1651 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
1652 |
currentUpperBoundSa = upperBoundSa |
1653 |
currentLowerBoundSa = lowerBoundSa |
1654 |
#pobyso_autoprint(functionSo) |
1655 |
#pobyso_autoprint(degreeSo) |
1656 |
#pobyso_autoprint(currentRangeSo) |
1657 |
#pobyso_autoprint(absoluteErrorTypeSo) |
1658 |
## What we want here is the polynomial without the variable change, |
1659 |
# since our actual variable will be x-intervalCenter defined over the |
1660 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
1661 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
1662 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
1663 |
currentRangeSo, |
1664 |
absoluteErrorTypeSo) |
1665 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
1666 |
print "...after Taylor expansion." |
1667 |
while maxErrorSa > approxAccurSa: |
1668 |
print "++Approximation error:", maxErrorSa.n() |
1669 |
sollya_lib_clear_obj(polySo) |
1670 |
sollya_lib_clear_obj(intervalCenterSo) |
1671 |
sollya_lib_clear_obj(maxErrorSo) |
1672 |
# Very empirical shrinking factor. |
1673 |
shrinkFactorSa = 1 / (maxErrorSa/approxAccurSa).log2().abs() |
1674 |
print "Shrink factor:", \ |
1675 |
shrinkFactorSa.n(), \ |
1676 |
intervalShrinkConstFactorSa |
1677 |
|
1678 |
#errorRatioSa = approxAccurSa/maxErrorSa |
1679 |
#print "Error ratio: ", errorRatioSa |
1680 |
# Make sure interval shrinks. |
1681 |
if shrinkFactorSa > intervalShrinkConstFactorSa: |
1682 |
actualShrinkFactorSa = intervalShrinkConstFactorSa |
1683 |
#print "Fixed" |
1684 |
else: |
1685 |
actualShrinkFactorSa = shrinkFactorSa |
1686 |
#print "Computed",shrinkFactorSa,maxErrorSa |
1687 |
#print shrinkFactorSa, maxErrorSa |
1688 |
#print "Shrink factor", actualShrinkFactorSa |
1689 |
currentUpperBoundSa = currentLowerBoundSa + \ |
1690 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
1691 |
actualShrinkFactorSa |
1692 |
#print "Current upper bound:", currentUpperBoundSa |
1693 |
sollya_lib_clear_obj(currentRangeSo) |
1694 |
# Check what is left with the bounds. |
1695 |
if currentUpperBoundSa <= currentLowerBoundSa or \ |
1696 |
currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
1697 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
1698 |
print "Can't find an interval." |
1699 |
print "Use either or both a higher polynomial degree or a higher", |
1700 |
print "internal precision." |
1701 |
print "Aborting!" |
1702 |
if sollyaPrecChanged: |
1703 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
1704 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
1705 |
return None |
1706 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
1707 |
currentUpperBoundSa) |
1708 |
# print "New interval:", |
1709 |
# pobyso_autoprint(currentRangeSo) |
1710 |
#print "Second Taylor expansion call." |
1711 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
1712 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
1713 |
currentRangeSo, |
1714 |
absoluteErrorTypeSo) |
1715 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
1716 |
#print "Max errorSo:", |
1717 |
#pobyso_autoprint(maxErrorSo) |
1718 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
1719 |
#print "Max errorSa:", maxErrorSa |
1720 |
#print "Sollya prec:", |
1721 |
#pobyso_autoprint(sollya_lib_get_prec(None)) |
1722 |
# End while |
1723 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
1724 |
itpSo = pobyso_constant_from_int_sa_so(floor(sollyaPrecSa/3)) |
1725 |
ftpSo = pobyso_constant_from_int_sa_so(floor(2*sollyaPrecSa/3)) |
1726 |
maxPrecSo = pobyso_constant_from_int_sa_so(sollyaPrecSa) |
1727 |
approxAccurSo = pobyso_constant_sa_so(RR(approxAccurSa)) |
1728 |
print "About to call polynomial rounding with:" |
1729 |
print "polySo: ", ; pobyso_autoprint(polySo) |
1730 |
print "functionSo: ", ; pobyso_autoprint(functionSo) |
1731 |
print "intervalCenterSo: ", ; pobyso_autoprint(intervalCenterSo) |
1732 |
print "currentRangeSo: ", ; pobyso_autoprint(currentRangeSo) |
1733 |
print "itpSo: ", ; pobyso_autoprint(itpSo) |
1734 |
print "ftpSo: ", ; pobyso_autoprint(ftpSo) |
1735 |
print "maxPrecSo: ", ; pobyso_autoprint(maxPrecSo) |
1736 |
print "approxAccurSo: ", ; pobyso_autoprint(approxAccurSo) |
1737 |
(roundedPolySo, roundedPolyMaxErrSo) = \ |
1738 |
pobyso_round_coefficients_progressive_so_so(polySo, |
1739 |
functionSo, |
1740 |
maxPrecSo, |
1741 |
currentRangeSo, |
1742 |
intervalCenterSo, |
1743 |
maxErrorSo, |
1744 |
approxAccurSo, |
1745 |
debug = True) |
1746 |
|
1747 |
sollya_lib_clear_obj(polySo) |
1748 |
sollya_lib_clear_obj(maxErrorSo) |
1749 |
sollya_lib_clear_obj(itpSo) |
1750 |
sollya_lib_clear_obj(ftpSo) |
1751 |
sollya_lib_clear_obj(approxAccurSo) |
1752 |
if sollyaPrecChanged: |
1753 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
1754 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
1755 |
print "1: ", ; pobyso_autoprint(roundedPolySo) |
1756 |
print "2: ", ; pobyso_autoprint(currentRangeSo) |
1757 |
print "3: ", ; pobyso_autoprint(intervalCenterSo) |
1758 |
print "4: ", ; pobyso_autoprint(roundedPolyMaxErrSo) |
1759 |
return (roundedPolySo, currentRangeSo, intervalCenterSo, roundedPolyMaxErrSo) |
1760 |
# End slz_compute_polynomial_and_interval_02 |
1761 |
|
1762 |
def slz_compute_reduced_polynomial(matrixRow, |
1763 |
knownMonomials, |
1764 |
var1, |
1765 |
var1Bound, |
1766 |
var2, |
1767 |
var2Bound): |
1768 |
""" |
1769 |
Compute a polynomial from a single reduced matrix row. |
1770 |
This function was introduced in order to avoid the computation of the |
1771 |
all the polynomials from the full matrix (even those built from rows |
1772 |
that do no verify the Coppersmith condition) as this may involves |
1773 |
expensive operations over (large) integers. |
1774 |
""" |
1775 |
## Check arguments. |
1776 |
if len(knownMonomials) == 0: |
1777 |
return None |
1778 |
# varNounds can be zero since 0^0 returns 1. |
1779 |
if (var1Bound < 0) or (var2Bound < 0): |
1780 |
return None |
1781 |
## Initialisations. |
1782 |
polynomialRing = knownMonomials[0].parent() |
1783 |
currentPolynomial = polynomialRing(0) |
1784 |
# TODO: use zip instead of indices. |
1785 |
for colIndex in xrange(0, len(knownMonomials)): |
1786 |
currentCoefficient = matrixRow[colIndex] |
1787 |
if currentCoefficient != 0: |
1788 |
#print "Current coefficient:", currentCoefficient |
1789 |
currentMonomial = knownMonomials[colIndex] |
1790 |
#print "Monomial as multivariate polynomial:", \ |
1791 |
#currentMonomial, type(currentMonomial) |
1792 |
degreeInVar1 = currentMonomial.degree(var1) |
1793 |
#print "Degree in var1", var1, ":", degreeInVar1 |
1794 |
degreeInVar2 = currentMonomial.degree(var2) |
1795 |
#print "Degree in var2", var2, ":", degreeInVar2 |
1796 |
if degreeInVar1 > 0: |
1797 |
currentCoefficient = \ |
1798 |
currentCoefficient / (var1Bound^degreeInVar1) |
1799 |
#print "varBound1 in degree:", var1Bound^degreeInVar1 |
1800 |
#print "Current coefficient(1)", currentCoefficient |
1801 |
if degreeInVar2 > 0: |
1802 |
currentCoefficient = \ |
1803 |
currentCoefficient / (var2Bound^degreeInVar2) |
1804 |
#print "Current coefficient(2)", currentCoefficient |
1805 |
#print "Current reduced monomial:", (currentCoefficient * \ |
1806 |
# currentMonomial) |
1807 |
currentPolynomial += (currentCoefficient * currentMonomial) |
1808 |
#print "Current polynomial:", currentPolynomial |
1809 |
# End if |
1810 |
# End for colIndex. |
1811 |
#print "Type of the current polynomial:", type(currentPolynomial) |
1812 |
return(currentPolynomial) |
1813 |
# End slz_compute_reduced_polynomial |
1814 |
# |
1815 |
def slz_compute_reduced_polynomials(reducedMatrix, |
1816 |
knownMonomials, |
1817 |
var1, |
1818 |
var1Bound, |
1819 |
var2, |
1820 |
var2Bound): |
1821 |
""" |
1822 |
Legacy function, use slz_compute_reduced_polynomials_list |
1823 |
""" |
1824 |
return(slz_compute_reduced_polynomials_list(reducedMatrix, |
1825 |
knownMonomials, |
1826 |
var1, |
1827 |
var1Bound, |
1828 |
var2, |
1829 |
var2Bound) |
1830 |
) |
1831 |
# |
1832 |
def slz_compute_reduced_polynomials_list(reducedMatrix, |
1833 |
knownMonomials, |
1834 |
var1, |
1835 |
var1Bound, |
1836 |
var2, |
1837 |
var2Bound): |
1838 |
""" |
1839 |
From a reduced matrix, holding the coefficients, from a monomials list, |
1840 |
from the bounds of each variable, compute the corresponding polynomials |
1841 |
scaled back by dividing by the "right" powers of the variables bounds. |
1842 |
|
1843 |
The elements in knownMonomials must be of the "right" polynomial type. |
1844 |
They set the polynomial type of the output polynomials in list. |
1845 |
@param reducedMatrix: the reduced matrix as output from LLL; |
1846 |
@param kwnonMonomials: the ordered list of the monomials used to |
1847 |
build the polynomials; |
1848 |
@param var1: the first variable (of the "right" type); |
1849 |
@param var1Bound: the first variable bound; |
1850 |
@param var2: the second variable (of the "right" type); |
1851 |
@param var2Bound: the second variable bound. |
1852 |
@return: a list of polynomials obtained with the reduced coefficients |
1853 |
and scaled down with the bounds |
1854 |
""" |
1855 |
|
1856 |
# TODO: check input arguments. |
1857 |
reducedPolynomials = [] |
1858 |
#print "type var1:", type(var1), " - type var2:", type(var2) |
1859 |
for matrixRow in reducedMatrix.rows(): |
1860 |
currentPolynomial = 0 |
1861 |
for colIndex in xrange(0, len(knownMonomials)): |
1862 |
currentCoefficient = matrixRow[colIndex] |
1863 |
if currentCoefficient != 0: |
1864 |
#print "Current coefficient:", currentCoefficient |
1865 |
currentMonomial = knownMonomials[colIndex] |
1866 |
parentRing = currentMonomial.parent() |
1867 |
#print "Monomial as multivariate polynomial:", \ |
1868 |
#currentMonomial, type(currentMonomial) |
1869 |
degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
1870 |
#print "Degree in var", var1, ":", degreeInVar1 |
1871 |
degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
1872 |
#print "Degree in var", var2, ":", degreeInVar2 |
1873 |
if degreeInVar1 > 0: |
1874 |
currentCoefficient /= var1Bound^degreeInVar1 |
1875 |
#print "varBound1 in degree:", var1Bound^degreeInVar1 |
1876 |
#print "Current coefficient(1)", currentCoefficient |
1877 |
if degreeInVar2 > 0: |
1878 |
currentCoefficient /= var2Bound^degreeInVar2 |
1879 |
#print "Current coefficient(2)", currentCoefficient |
1880 |
#print "Current reduced monomial:", (currentCoefficient * \ |
1881 |
# currentMonomial) |
1882 |
currentPolynomial += (currentCoefficient * currentMonomial) |
1883 |
#if degreeInVar1 == 0 and degreeInVar2 == 0: |
1884 |
#print "!!!! constant term !!!!" |
1885 |
#print "Current polynomial:", currentPolynomial |
1886 |
# End if |
1887 |
# End for colIndex. |
1888 |
#print "Type of the current polynomial:", type(currentPolynomial) |
1889 |
reducedPolynomials.append(currentPolynomial) |
1890 |
return reducedPolynomials |
1891 |
# End slz_compute_reduced_polynomials_list. |
1892 |
|
1893 |
def slz_compute_reduced_polynomials_list_from_rows(rowsList, |
1894 |
knownMonomials, |
1895 |
var1, |
1896 |
var1Bound, |
1897 |
var2, |
1898 |
var2Bound): |
1899 |
""" |
1900 |
From a list of rows, holding the coefficients, from a monomials list, |
1901 |
from the bounds of each variable, compute the corresponding polynomials |
1902 |
scaled back by dividing by the "right" powers of the variables bounds. |
1903 |
|
1904 |
The elements in knownMonomials must be of the "right" polynomial type. |
1905 |
They set the polynomial type of the output polynomials in list. |
1906 |
@param rowsList: the reduced matrix as output from LLL; |
1907 |
@param kwnonMonomials: the ordered list of the monomials used to |
1908 |
build the polynomials; |
1909 |
@param var1: the first variable (of the "right" type); |
1910 |
@param var1Bound: the first variable bound; |
1911 |
@param var2: the second variable (of the "right" type); |
1912 |
@param var2Bound: the second variable bound. |
1913 |
@return: a list of polynomials obtained with the reduced coefficients |
1914 |
and scaled down with the bounds |
1915 |
""" |
1916 |
|
1917 |
# TODO: check input arguments. |
1918 |
reducedPolynomials = [] |
1919 |
#print "type var1:", type(var1), " - type var2:", type(var2) |
1920 |
for matrixRow in rowsList: |
1921 |
currentPolynomial = 0 |
1922 |
for colIndex in xrange(0, len(knownMonomials)): |
1923 |
currentCoefficient = matrixRow[colIndex] |
1924 |
if currentCoefficient != 0: |
1925 |
#print "Current coefficient:", currentCoefficient |
1926 |
currentMonomial = knownMonomials[colIndex] |
1927 |
parentRing = currentMonomial.parent() |
1928 |
#print "Monomial as multivariate polynomial:", \ |
1929 |
#currentMonomial, type(currentMonomial) |
1930 |
degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
1931 |
#print "Degree in var", var1, ":", degreeInVar1 |
1932 |
degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
1933 |
#print "Degree in var", var2, ":", degreeInVar2 |
1934 |
if degreeInVar1 > 0: |
1935 |
currentCoefficient /= var1Bound^degreeInVar1 |
1936 |
#print "varBound1 in degree:", var1Bound^degreeInVar1 |
1937 |
#print "Current coefficient(1)", currentCoefficient |
1938 |
if degreeInVar2 > 0: |
1939 |
currentCoefficient /= var2Bound^degreeInVar2 |
1940 |
#print "Current coefficient(2)", currentCoefficient |
1941 |
#print "Current reduced monomial:", (currentCoefficient * \ |
1942 |
# currentMonomial) |
1943 |
currentPolynomial += (currentCoefficient * currentMonomial) |
1944 |
#if degreeInVar1 == 0 and degreeInVar2 == 0: |
1945 |
#print "!!!! constant term !!!!" |
1946 |
#print "Current polynomial:", currentPolynomial |
1947 |
# End if |
1948 |
# End for colIndex. |
1949 |
#print "Type of the current polynomial:", type(currentPolynomial) |
1950 |
reducedPolynomials.append(currentPolynomial) |
1951 |
return reducedPolynomials |
1952 |
# End slz_compute_reduced_polynomials_list_from_rows. |
1953 |
# |
1954 |
def slz_compute_scaled_function(functionSa, |
1955 |
lowerBoundSa, |
1956 |
upperBoundSa, |
1957 |
floatingPointPrecSa, |
1958 |
debug=False): |
1959 |
""" |
1960 |
From a function, compute the scaled function whose domain |
1961 |
is included in [1, 2) and whose image is also included in [1,2). |
1962 |
Return a tuple: |
1963 |
[0]: the scaled function |
1964 |
[1]: the scaled domain lower bound |
1965 |
[2]: the scaled domain upper bound |
1966 |
[3]: the scaled image lower bound |
1967 |
[4]: the scaled image upper bound |
1968 |
""" |
1969 |
## The variable can be called anything. |
1970 |
x = functionSa.variables()[0] |
1971 |
# Scalling the domain -> [1,2[. |
1972 |
boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
1973 |
domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
1974 |
(invDomainScalingExpressionSa, domainScalingExpressionSa) = \ |
1975 |
slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
1976 |
if debug: |
1977 |
print "domainScalingExpression for argument :", \ |
1978 |
invDomainScalingExpressionSa |
1979 |
print "function: ", functionSa |
1980 |
ff = functionSa.subs({x : domainScalingExpressionSa}) |
1981 |
## Bless expression as a function. |
1982 |
ff = ff.function(x) |
1983 |
#ff = f.subs_expr(x==domainScalingExpressionSa) |
1984 |
#domainScalingFunction(x) = invDomainScalingExpressionSa |
1985 |
domainScalingFunction = invDomainScalingExpressionSa.function(x) |
1986 |
scaledLowerBoundSa = \ |
1987 |
domainScalingFunction(lowerBoundSa).n(prec=floatingPointPrecSa) |
1988 |
scaledUpperBoundSa = \ |
1989 |
domainScalingFunction(upperBoundSa).n(prec=floatingPointPrecSa) |
1990 |
if debug: |
1991 |
print 'ff:', ff, "- Domain:", scaledLowerBoundSa, \ |
1992 |
scaledUpperBoundSa |
1993 |
## If both bounds are negative, swap them. |
1994 |
if lowerBoundSa < 0 and upperBoundSa < 0: |
1995 |
scaledLowerBoundSa, scaledUpperBoundSa = \ |
1996 |
scaledUpperBoundSa,scaledLowerBoundSa |
1997 |
# |
1998 |
# Scalling the image -> [1,2[. |
1999 |
flbSa = ff(scaledLowerBoundSa).n(prec=floatingPointPrecSa) |
2000 |
fubSa = ff(scaledUpperBoundSa).n(prec=floatingPointPrecSa) |
2001 |
if flbSa <= fubSa: # Increasing |
2002 |
imageBinadeBottomSa = floor(flbSa.log2()) |
2003 |
else: # Decreasing |
2004 |
imageBinadeBottomSa = floor(fubSa.log2()) |
2005 |
if debug: |
2006 |
print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
2007 |
imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
2008 |
(invImageScalingExpressionSa,imageScalingExpressionSa) = \ |
2009 |
slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
2010 |
if debug: |
2011 |
print "imageScalingExpression for argument :", \ |
2012 |
invImageScalingExpressionSa |
2013 |
iis = invImageScalingExpressionSa.function(x) |
2014 |
fff = iis.subs({x:ff}) |
2015 |
if debug: |
2016 |
print "fff:", fff, |
2017 |
print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
2018 |
return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
2019 |
fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
2020 |
# End slz_compute_scaled_function |
2021 |
|
2022 |
def slz_fix_bounds_for_binades(lowerBound, |
2023 |
upperBound, |
2024 |
func = None, |
2025 |
domainDirection = -1, |
2026 |
imageDirection = -1): |
2027 |
""" |
2028 |
Assuming the function is increasing or decreasing over the |
2029 |
[lowerBound, upperBound] interval, return a lower bound lb and |
2030 |
an upper bound ub such that: |
2031 |
- lb and ub belong to the same binade; |
2032 |
- func(lb) and func(ub) belong to the same binade. |
2033 |
domainDirection indicate how bounds move to fit into the same binade: |
2034 |
- a negative value move the upper bound down; |
2035 |
- a positive value move the lower bound up. |
2036 |
imageDirection indicate how bounds move in order to have their image |
2037 |
fit into the same binade, variation of the function is also condidered. |
2038 |
For an increasing function: |
2039 |
- negative value moves the upper bound down (and its image value as well); |
2040 |
- a positive values moves the lower bound up (and its image value as well); |
2041 |
For a decreasing function it is the other way round. |
2042 |
""" |
2043 |
## Arguments check |
2044 |
if lowerBound > upperBound: |
2045 |
return None |
2046 |
if lowerBound == upperBound: |
2047 |
return (lowerBound, upperBound) |
2048 |
if func is None: |
2049 |
return None |
2050 |
# |
2051 |
#varFunc = func.variables()[0] |
2052 |
lb = lowerBound |
2053 |
ub = upperBound |
2054 |
lbBinade = slz_compute_binade(lb) |
2055 |
ubBinade = slz_compute_binade(ub) |
2056 |
## Domain binade. |
2057 |
while lbBinade != ubBinade: |
2058 |
newIntervalWidth = (ub - lb) / 2 |
2059 |
if domainDirection < 0: |
2060 |
ub = lb + newIntervalWidth |
2061 |
ubBinade = slz_compute_binade(ub) |
2062 |
else: |
2063 |
lb = lb + newIntervalWidth |
2064 |
lbBinade = slz_compute_binade(lb) |
2065 |
#print "sfbfb: lower bound:", lb.str(truncate=False) |
2066 |
#print "sfbfb: upper bound:", ub.str(truncate=False) |
2067 |
## At this point, both bounds belond to the same binade. |
2068 |
## Image binade. |
2069 |
if lb == ub: |
2070 |
return (lb, ub) |
2071 |
lbImg = func(lb) |
2072 |
ubImg = func(ub) |
2073 |
funcIsInc = ((ubImg - lbImg) >= 0) |
2074 |
lbImgBinade = slz_compute_binade(lbImg) |
2075 |
ubImgBinade = slz_compute_binade(ubImg) |
2076 |
while lbImgBinade != ubImgBinade: |
2077 |
newIntervalWidth = (ub - lb) / 2 |
2078 |
if imageDirection < 0: |
2079 |
if funcIsInc: |
2080 |
ub = lb + newIntervalWidth |
2081 |
ubImgBinade = slz_compute_binade(func(ub)) |
2082 |
#print ubImgBinade |
2083 |
else: |
2084 |
lb = lb + newIntervalWidth |
2085 |
lbImgBinade = slz_compute_binade(func(lb)) |
2086 |
#print lbImgBinade |
2087 |
else: |
2088 |
if funcIsInc: |
2089 |
lb = lb + newIntervalWidth |
2090 |
lbImgBinade = slz_compute_binade(func(lb)) |
2091 |
#print lbImgBinade |
2092 |
else: |
2093 |
ub = lb + newIntervalWidth |
2094 |
ubImgBinade = slz_compute_binade(func(ub)) |
2095 |
#print ubImgBinade |
2096 |
# End while lbImgBinade != ubImgBinade: |
2097 |
return (lb, ub) |
2098 |
# End slz_fix_bounds_for_binades. |
2099 |
|
2100 |
def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
2101 |
# Create a polynomial over the rationals. |
2102 |
ratPolynomialRing = QQ[str(polyOfFloat.variables()[0])] |
2103 |
return(ratPolynomialRing(polyOfFloat)) |
2104 |
# End slz_float_poly_of_float_to_rat_poly_of_rat. |
2105 |
|
2106 |
def slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(polyOfFloat): |
2107 |
""" |
2108 |
Create a polynomial over the rationals where all denominators are |
2109 |
powers of two. |
2110 |
""" |
2111 |
polyVariable = polyOfFloat.variables()[0] |
2112 |
RPR = QQ[str(polyVariable)] |
2113 |
polyCoeffs = polyOfFloat.coefficients() |
2114 |
#print polyCoeffs |
2115 |
polyExponents = polyOfFloat.exponents() |
2116 |
#print polyExponents |
2117 |
polyDenomPtwoCoeffs = [] |
2118 |
for coeff in polyCoeffs: |
2119 |
polyDenomPtwoCoeffs.append(sno_float_to_rat_pow_of_two_denom(coeff)) |
2120 |
#print "Converted coefficient:", sno_float_to_rat_pow_of_two_denom(coeff), |
2121 |
#print type(sno_float_to_rat_pow_of_two_denom(coeff)) |
2122 |
ratPoly = RPR(0) |
2123 |
#print type(ratPoly) |
2124 |
## !!! CAUTION !!! Do not use the RPR(coeff * polyVariagle^exponent) |
2125 |
# The coefficient becomes plainly wrong when exponent == 0. |
2126 |
# No clue as to why. |
2127 |
for coeff, exponent in zip(polyDenomPtwoCoeffs, polyExponents): |
2128 |
ratPoly += coeff * RPR(polyVariable^exponent) |
2129 |
return ratPoly |
2130 |
# End slz_float_poly_of_float_to_rat_poly_of_rat. |
2131 |
|
2132 |
def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
2133 |
lowerBoundSa, |
2134 |
upperBoundSa, |
2135 |
floatingPointPrecSa, |
2136 |
internalSollyaPrecSa, |
2137 |
approxAccurSa): |
2138 |
""" |
2139 |
Under the assumption that: |
2140 |
- functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
2141 |
- lowerBound and upperBound belong to the same binade. |
2142 |
from a: |
2143 |
- function; |
2144 |
- a degree |
2145 |
- a pair of bounds; |
2146 |
- the floating-point precision we work on; |
2147 |
- the internal Sollya precision; |
2148 |
- the requested approximation error |
2149 |
The initial interval is, possibly, splitted into smaller intervals. |
2150 |
It return a list of tuples, each made of: |
2151 |
- a first polynomial (without the changed variable f(x) = p(x-x0)); |
2152 |
- a second polynomial (with a changed variable f(x) = q(x)) |
2153 |
- the approximation interval; |
2154 |
- the center, x0, of the interval; |
2155 |
- the corresponding approximation error. |
2156 |
TODO: fix endless looping for some parameters sets. |
2157 |
""" |
2158 |
resultArray = [] |
2159 |
# Set Sollya to the necessary internal precision. |
2160 |
sollyaPrecChangedSa = False |
2161 |
(initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
2162 |
if internalSollyaPrecSa > initialSollyaPrecSa: |
2163 |
if internalSollyaPrecSa <= 2: |
2164 |
print inspect.stack()[0][3], ": precision change <=2 requested." |
2165 |
pobyso_set_prec_sa_so(internalSollyaPrecSa) |
2166 |
sollyaPrecChangedSa = True |
2167 |
# |
2168 |
x = functionSa.variables()[0] # Actual variable name can be anything. |
2169 |
# Scaled function: [1=,2] -> [1,2]. |
2170 |
(fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
2171 |
scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
2172 |
slz_compute_scaled_function(functionSa, \ |
2173 |
lowerBoundSa, \ |
2174 |
upperBoundSa, \ |
2175 |
floatingPointPrecSa) |
2176 |
# In case bounds were in the negative real one may need to |
2177 |
# switch scaled bounds. |
2178 |
if scaledLowerBoundSa > scaledUpperBoundSa: |
2179 |
scaledLowerBoundSa, scaledUpperBoundSa = \ |
2180 |
scaledUpperBoundSa, scaledLowerBoundSa |
2181 |
#print "Switching!" |
2182 |
print "Approximation accuracy: ", RR(approxAccurSa) |
2183 |
# Prepare the arguments for the Taylor expansion computation with Sollya. |
2184 |
functionSo = \ |
2185 |
pobyso_parse_string_sa_so(fff._assume_str().replace('_SAGE_VAR_', '')) |
2186 |
degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
2187 |
scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
2188 |
scaledUpperBoundSa) |
2189 |
|
2190 |
realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
2191 |
upperBoundSa.parent().precision())) |
2192 |
currentScaledLowerBoundSa = scaledLowerBoundSa |
2193 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
2194 |
while True: |
2195 |
## Compute the first Taylor expansion. |
2196 |
print "Computing a Taylor expansion..." |
2197 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
2198 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
2199 |
currentScaledLowerBoundSa, |
2200 |
currentScaledUpperBoundSa, |
2201 |
approxAccurSa, internalSollyaPrecSa) |
2202 |
print "...done." |
2203 |
## If slz_compute_polynomial_and_interval fails, it returns None. |
2204 |
# This value goes to the first variable: polySo. Other variables are |
2205 |
# not assigned and should not be tested. |
2206 |
if polySo is None: |
2207 |
print "slz_get_intervals_and_polynomials: Aborting and returning None!" |
2208 |
if precChangedSa: |
2209 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
2210 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
2211 |
sollya_lib_clear_obj(functionSo) |
2212 |
sollya_lib_clear_obj(degreeSo) |
2213 |
sollya_lib_clear_obj(scaledBoundsSo) |
2214 |
return None |
2215 |
## Add to the result array. |
2216 |
### Change variable stuff in Sollya x -> x0-x. |
2217 |
changeVarExpressionSo = \ |
2218 |
sollya_lib_build_function_sub( \ |
2219 |
sollya_lib_build_function_free_variable(), |
2220 |
sollya_lib_copy_obj(intervalCenterSo)) |
2221 |
polyVarChangedSo = \ |
2222 |
sollya_lib_evaluate(polySo, changeVarExpressionSo) |
2223 |
#### Get rid of the variable change Sollya stuff. |
2224 |
sollya_lib_clear_obj(changeVarExpressionSo) |
2225 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, |
2226 |
intervalCenterSo, maxErrorSo)) |
2227 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
2228 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
2229 |
print "Computed approximation error:", errorSa.n(digits=10) |
2230 |
# If the error and interval are OK a the first try, just return. |
2231 |
if (boundsSa.endpoints()[1] >= scaledUpperBoundSa) and \ |
2232 |
(errorSa <= approxAccurSa): |
2233 |
if sollyaPrecChangedSa: |
2234 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
2235 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
2236 |
sollya_lib_clear_obj(functionSo) |
2237 |
sollya_lib_clear_obj(degreeSo) |
2238 |
sollya_lib_clear_obj(scaledBoundsSo) |
2239 |
#print "Approximation error:", errorSa |
2240 |
return resultArray |
2241 |
## The returned interval upper bound does not reach the requested upper |
2242 |
# upper bound: compute the next upper bound. |
2243 |
## The following ratio is always >= 1. If errorSa, we may want to |
2244 |
# enlarge the interval |
2245 |
currentErrorRatio = approxAccurSa / errorSa |
2246 |
## --|--------------------------------------------------------------|-- |
2247 |
# --|--------------------|-------------------------------------------- |
2248 |
# --|----------------------------|------------------------------------ |
2249 |
## Starting point for the next upper bound. |
2250 |
boundsWidthSa = boundsSa.endpoints()[1] - boundsSa.endpoints()[0] |
2251 |
# Compute the increment. |
2252 |
newBoundsWidthSa = \ |
2253 |
((currentErrorRatio.log() / 10) + 1) * boundsWidthSa |
2254 |
currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
2255 |
currentScaledUpperBoundSa = boundsSa.endpoints()[1] + newBoundsWidthSa |
2256 |
# Take into account the original interval upper bound. |
2257 |
if currentScaledUpperBoundSa > scaledUpperBoundSa: |
2258 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
2259 |
if currentScaledUpperBoundSa == currentScaledLowerBoundSa: |
2260 |
print "Can't shrink the interval anymore!" |
2261 |
print "You should consider increasing the Sollya internal precision" |
2262 |
print "or the polynomial degree." |
2263 |
print "Giving up!" |
2264 |
if precChangedSa: |
2265 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
2266 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
2267 |
sollya_lib_clear_obj(functionSo) |
2268 |
sollya_lib_clear_obj(degreeSo) |
2269 |
sollya_lib_clear_obj(scaledBoundsSo) |
2270 |
return None |
2271 |
# Compute the other expansions. |
2272 |
# Test for insufficient precision. |
2273 |
# End slz_get_intervals_and_polynomials |
2274 |
|
2275 |
def slz_interval_scaling_expression(boundsInterval, expVar): |
2276 |
""" |
2277 |
Compute the scaling expression to map an interval that spans at most |
2278 |
a single binade into [1, 2) and the inverse expression as well. |
2279 |
If the interval spans more than one binade, result is wrong since |
2280 |
scaling is only based on the lower bound. |
2281 |
Not very sure that the transformation makes sense for negative numbers. |
2282 |
""" |
2283 |
# The "one of the bounds is 0" special case. Here we consider |
2284 |
# the interval as the subnormals binade. |
2285 |
if boundsInterval.endpoints()[0] == 0 or boundsInterval.endpoints()[1] == 0: |
2286 |
# The upper bound is (or should be) positive. |
2287 |
if boundsInterval.endpoints()[0] == 0: |
2288 |
if boundsInterval.endpoints()[1] == 0: |
2289 |
return None |
2290 |
binade = slz_compute_binade(boundsInterval.endpoints()[1]) |
2291 |
l2 = boundsInterval.endpoints()[1].abs().log2() |
2292 |
# The upper bound is a power of two |
2293 |
if binade == l2: |
2294 |
scalingCoeff = 2^(-binade) |
2295 |
invScalingCoeff = 2^(binade) |
2296 |
scalingOffset = 1 |
2297 |
return \ |
2298 |
((scalingCoeff * expVar + scalingOffset).function(expVar), |
2299 |
((expVar - scalingOffset) * invScalingCoeff).function(expVar)) |
2300 |
else: |
2301 |
scalingCoeff = 2^(-binade-1) |
2302 |
invScalingCoeff = 2^(binade+1) |
2303 |
scalingOffset = 1 |
2304 |
return((scalingCoeff * expVar + scalingOffset),\ |
2305 |
((expVar - scalingOffset) * invScalingCoeff)) |
2306 |
# The lower bound is (or should be) negative. |
2307 |
if boundsInterval.endpoints()[1] == 0: |
2308 |
if boundsInterval.endpoints()[0] == 0: |
2309 |
return None |
2310 |
binade = slz_compute_binade(boundsInterval.endpoints()[0]) |
2311 |
l2 = boundsInterval.endpoints()[0].abs().log2() |
2312 |
# The upper bound is a power of two |
2313 |
if binade == l2: |
2314 |
scalingCoeff = -2^(-binade) |
2315 |
invScalingCoeff = -2^(binade) |
2316 |
scalingOffset = 1 |
2317 |
return((scalingCoeff * expVar + scalingOffset),\ |
2318 |
((expVar - scalingOffset) * invScalingCoeff)) |
2319 |
else: |
2320 |
scalingCoeff = -2^(-binade-1) |
2321 |
invScalingCoeff = -2^(binade+1) |
2322 |
scalingOffset = 1 |
2323 |
return((scalingCoeff * expVar + scalingOffset),\ |
2324 |
((expVar - scalingOffset) * invScalingCoeff)) |
2325 |
# General case |
2326 |
lbBinade = slz_compute_binade(boundsInterval.endpoints()[0]) |
2327 |
ubBinade = slz_compute_binade(boundsInterval.endpoints()[1]) |
2328 |
# We allow for a single exception in binade spanning is when the |
2329 |
# "outward bound" is a power of 2 and its binade is that of the |
2330 |
# "inner bound" + 1. |
2331 |
if boundsInterval.endpoints()[0] > 0: |
2332 |
ubL2 = boundsInterval.endpoints()[1].abs().log2() |
2333 |
if lbBinade != ubBinade: |
2334 |
print "Different binades." |
2335 |
if ubL2 != ubBinade: |
2336 |
print "Not a power of 2." |
2337 |
return None |
2338 |
elif abs(ubBinade - lbBinade) > 1: |
2339 |
print "Too large span:", abs(ubBinade - lbBinade) |
2340 |
return None |
2341 |
else: |
2342 |
lbL2 = boundsInterval.endpoints()[0].abs().log2() |
2343 |
if lbBinade != ubBinade: |
2344 |
print "Different binades." |
2345 |
if lbL2 != lbBinade: |
2346 |
print "Not a power of 2." |
2347 |
return None |
2348 |
elif abs(ubBinade - lbBinade) > 1: |
2349 |
print "Too large span:", abs(ubBinade - lbBinade) |
2350 |
return None |
2351 |
#print "Lower bound binade:", binade |
2352 |
if boundsInterval.endpoints()[0] > 0: |
2353 |
return \ |
2354 |
((2^(-lbBinade) * expVar).function(expVar), |
2355 |
(2^(lbBinade) * expVar).function(expVar)) |
2356 |
else: |
2357 |
return \ |
2358 |
((-(2^(-ubBinade)) * expVar).function(expVar), |
2359 |
(-(2^(ubBinade)) * expVar).function(expVar)) |
2360 |
""" |
2361 |
# Code sent to attic. Should be the base for a |
2362 |
# "slz_interval_translate_expression" rather than scale. |
2363 |
# Extra control and special cases code added in |
2364 |
# slz_interval_scaling_expression could (should ?) be added to |
2365 |
# this new function. |
2366 |
# The scaling offset is only used for negative numbers. |
2367 |
# When the absolute value of the lower bound is < 0. |
2368 |
if abs(boundsInterval.endpoints()[0]) < 1: |
2369 |
if boundsInterval.endpoints()[0] >= 0: |
2370 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
2371 |
invScalingCoeff = 1/scalingCoeff |
2372 |
return((scalingCoeff * expVar, |
2373 |
invScalingCoeff * expVar)) |
2374 |
else: |
2375 |
scalingCoeff = \ |
2376 |
2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
2377 |
scalingOffset = -3 * scalingCoeff |
2378 |
return((scalingCoeff * expVar + scalingOffset, |
2379 |
1/scalingCoeff * expVar + 3)) |
2380 |
else: |
2381 |
if boundsInterval.endpoints()[0] >= 0: |
2382 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
2383 |
scalingOffset = 0 |
2384 |
return((scalingCoeff * expVar, |
2385 |
1/scalingCoeff * expVar)) |
2386 |
else: |
2387 |
scalingCoeff = \ |
2388 |
2^(floor((-boundsInterval.endpoints()[1]).log2())) |
2389 |
scalingOffset = -3 * scalingCoeff |
2390 |
#scalingOffset = 0 |
2391 |
return((scalingCoeff * expVar + scalingOffset, |
2392 |
1/scalingCoeff * expVar + 3)) |
2393 |
""" |
2394 |
# End slz_interval_scaling_expression |
2395 |
|
2396 |
def slz_interval_and_polynomial_to_sage(polyRangeCenterErrorSo): |
2397 |
""" |
2398 |
Compute the Sage version of the Taylor polynomial and it's |
2399 |
companion data (interval, center...) |
2400 |
The input parameter is a five elements tuple: |
2401 |
- [0]: the polyomial (without variable change), as polynomial over a |
2402 |
real ring; |
2403 |
- [1]: the polyomial (with variable change done in Sollya), as polynomial |
2404 |
over a real ring; |
2405 |
- [2]: the interval (as Sollya range); |
2406 |
- [3]: the interval center; |
2407 |
- [4]: the approximation error. |
2408 |
|
2409 |
The function returns a 5 elements tuple: formed with all the |
2410 |
input elements converted into their Sollya counterpart. |
2411 |
""" |
2412 |
#print "Sollya polynomial to convert:", |
2413 |
#pobyso_autoprint(polyRangeCenterErrorSo) |
2414 |
polynomialSa = pobyso_float_poly_so_sa(polyRangeCenterErrorSo[0]) |
2415 |
#print "Polynomial after first conversion: ", pobyso_autoprint(polyRangeCenterErrorSo[1]) |
2416 |
polynomialChangedVarSa = pobyso_float_poly_so_sa(polyRangeCenterErrorSo[1]) |
2417 |
intervalSa = \ |
2418 |
pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
2419 |
centerSa = \ |
2420 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
2421 |
errorSa = \ |
2422 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
2423 |
return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
2424 |
# End slz_interval_and_polynomial_to_sage |
2425 |
|
2426 |
def slz_is_htrn(argument, |
2427 |
function, |
2428 |
targetAccuracy, |
2429 |
targetRF = None, |
2430 |
targetPlusOnePrecRF = None, |
2431 |
quasiExactRF = None): |
2432 |
""" |
2433 |
Check if an element (argument) of the domain of function (function) |
2434 |
yields a HTRN case (rounding to next) for the target precision |
2435 |
(as impersonated by targetRF) for a given accuracy (targetAccuracy). |
2436 |
|
2437 |
The strategy is: |
2438 |
- compute the image at high (quasi-exact) precision; |
2439 |
- round it to nearest to precision; |
2440 |
- round it to exactly to (precision+1), the computed number has two |
2441 |
midpoint neighbors; |
2442 |
- check the distance between these neighbors and the quasi-exact value; |
2443 |
- if none of them is closer than the targetAccuracy, return False, |
2444 |
- else return true. |
2445 |
- Powers of two are a special case when comparing the midpoint in |
2446 |
the 0 direction.. |
2447 |
""" |
2448 |
## Arguments filtering. |
2449 |
## TODO: filter the first argument for consistence. |
2450 |
if targetRF is None: |
2451 |
targetRF = argument.parent() |
2452 |
## Ditto for the real field holding the midpoints. |
2453 |
if targetPlusOnePrecRF is None: |
2454 |
targetPlusOnePrecRF = RealField(targetRF.prec()+1) |
2455 |
## If no quasiExactField is provided, create a high accuracy RealField. |
2456 |
if quasiExactRF is None: |
2457 |
quasiExactRF = RealField(1536) |
2458 |
function = function.function(function.variables()[0]) |
2459 |
exactArgument = quasiExactRF(argument) |
2460 |
quasiExactValue = function(exactArgument) |
2461 |
roundedValue = targetRF(quasiExactValue) |
2462 |
roundedValuePrecPlusOne = targetPlusOnePrecRF(roundedValue) |
2463 |
# Upper midpoint. |
2464 |
roundedValuePrecPlusOneNext = roundedValuePrecPlusOne.nextabove() |
2465 |
# Lower midpoint. |
2466 |
roundedValuePrecPlusOnePrev = roundedValuePrecPlusOne.nextbelow() |
2467 |
binade = slz_compute_binade(roundedValue) |
2468 |
binadeCorrectedTargetAccuracy = targetAccuracy * 2^binade |
2469 |
#print "Argument:", argument |
2470 |
#print "f(x):", roundedValue, binade, floor(binade), ceil(binade) |
2471 |
#print "Binade:", binade |
2472 |
#print "binadeCorrectedTargetAccuracy:", \ |
2473 |
#binadeCorrectedTargetAccuracy.n(prec=100) |
2474 |
#print "binadeCorrectedTargetAccuracy:", \ |
2475 |
# binadeCorrectedTargetAccuracy.n(prec=100).str(base=2) |
2476 |
#print "Upper midpoint:", \ |
2477 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2478 |
#print "Rounded value :", \ |
2479 |
# roundedValuePrecPlusOne.n(prec=targetPlusOnePrecRF.prec()).str(base=2), \ |
2480 |
# roundedValuePrecPlusOne.ulp().n(prec=2).str(base=2) |
2481 |
#print "QuasiEx value :", quasiExactValue.n(prec=250).str(base=2) |
2482 |
#print "Lower midpoint:", \ |
2483 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2484 |
## Make quasiExactValue = 0 a special case to move it out of the way. |
2485 |
if quasiExactValue == 0: |
2486 |
return False |
2487 |
## Begining of the general case : check with the midpoint of |
2488 |
# greatest absolute value. |
2489 |
if quasiExactValue > 0: |
2490 |
if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) <\ |
2491 |
binadeCorrectedTargetAccuracy: |
2492 |
#print "Too close to the upper midpoint: ", \ |
2493 |
#abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100) |
2494 |
#print argument.n().str(base=16, \ |
2495 |
# no_sci=False) |
2496 |
#print "Lower midpoint:", \ |
2497 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2498 |
#print "Value :", \ |
2499 |
# quasiExactValue.n(prec=200).str(base=2) |
2500 |
#print "Upper midpoint:", \ |
2501 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2502 |
return True |
2503 |
else: # quasiExactValue < 0, the 0 case has been previously filtered out. |
2504 |
if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) < \ |
2505 |
binadeCorrectedTargetAccuracy: |
2506 |
#print "Too close to the upper midpoint: ", \ |
2507 |
# abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100) |
2508 |
#print argument.n().str(base=16, \ |
2509 |
# no_sci=False) |
2510 |
#print "Lower midpoint:", \ |
2511 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2512 |
#print "Value :", \ |
2513 |
# quasiExactValue.n(prec=200).str(base=2) |
2514 |
#print "Upper midpoint:", \ |
2515 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2516 |
|
2517 |
return True |
2518 |
#2345678901234567890123456789012345678901234567890123456789012345678901234567890 |
2519 |
## For the midpoint of smaller absolute value, |
2520 |
# split cases with the powers of 2. |
2521 |
if sno_abs_is_power_of_two(roundedValue): |
2522 |
if quasiExactValue > 0: |
2523 |
if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) <\ |
2524 |
binadeCorrectedTargetAccuracy / 2: |
2525 |
#print "Lower midpoint:", \ |
2526 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2527 |
#print "Value :", \ |
2528 |
# quasiExactValue.n(prec=200).str(base=2) |
2529 |
#print "Upper midpoint:", \ |
2530 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2531 |
|
2532 |
return True |
2533 |
else: |
2534 |
if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) < \ |
2535 |
binadeCorrectedTargetAccuracy / 2: |
2536 |
#print "Lower midpoint:", \ |
2537 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2538 |
#print "Value :", |
2539 |
# quasiExactValue.n(prec=200).str(base=2) |
2540 |
#print "Upper midpoint:", |
2541 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2542 |
|
2543 |
return True |
2544 |
#2345678901234567890123456789012345678901234567890123456789012345678901234567890 |
2545 |
else: ## Not a power of 2, regular comparison with the midpoint of |
2546 |
# smaller absolute value. |
2547 |
if quasiExactValue > 0: |
2548 |
if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) < \ |
2549 |
binadeCorrectedTargetAccuracy: |
2550 |
#print "Lower midpoint:", \ |
2551 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2552 |
#print "Value :", \ |
2553 |
# quasiExactValue.n(prec=200).str(base=2) |
2554 |
#print "Upper midpoint:", \ |
2555 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2556 |
|
2557 |
return True |
2558 |
else: # quasiExactValue <= 0 |
2559 |
if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) < \ |
2560 |
binadeCorrectedTargetAccuracy: |
2561 |
#print "Lower midpoint:", \ |
2562 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2563 |
#print "Value :", \ |
2564 |
# quasiExactValue.n(prec=200).str(base=2) |
2565 |
#print "Upper midpoint:", \ |
2566 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
2567 |
|
2568 |
return True |
2569 |
#print "distance to the upper midpoint:", \ |
2570 |
# abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100).str(base=2) |
2571 |
#print "distance to the lower midpoint:", \ |
2572 |
# abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue).n(prec=100).str(base=2) |
2573 |
return False |
2574 |
# End slz_is_htrn |
2575 |
# |
2576 |
def slz_pm1(): |
2577 |
""" |
2578 |
Compute a uniform RV in {-1, 1} (not zero). |
2579 |
""" |
2580 |
## function getrandbits(N) generates a long int with N random bits. |
2581 |
# Here it generates either 0 or 1. The multiplication by 2 and the |
2582 |
# subtraction of 1 make that: |
2583 |
# if getranbits(1) == 0 -> O * 2 - 1 = -1 |
2584 |
# else -> 1 * 1 - 1 = 1. |
2585 |
return getrandbits(1) * 2-1 |
2586 |
# End slz_pm1. |
2587 |
# |
2588 |
def slz_random_proj_pm1(r, c): |
2589 |
""" |
2590 |
r x c matrix with \pm 1 ({-1, 1}) coefficients |
2591 |
""" |
2592 |
M = matrix(r, c) |
2593 |
for i in range(0, r): |
2594 |
for j in range (0, c): |
2595 |
M[i,j] = slz_pm1() |
2596 |
return M |
2597 |
# End random_proj_pm1. |
2598 |
# |
2599 |
def slz_random_proj_uniform(n, r, c): |
2600 |
""" |
2601 |
r x c integer matrix with uniform n-bit integer elements. |
2602 |
""" |
2603 |
M = matrix(r, c) |
2604 |
for i in range(0, r): |
2605 |
for j in range (0, c): |
2606 |
M[i,j] = slz_uniform(n) |
2607 |
return M |
2608 |
# End slz_random_proj_uniform. |
2609 |
# |
2610 |
def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
2611 |
precision, |
2612 |
targetHardnessToRound, |
2613 |
variable1, |
2614 |
variable2): |
2615 |
""" |
2616 |
Creates a new multivariate polynomial with integer coefficients for use |
2617 |
with the Coppersmith method. |
2618 |
A the same time it computes : |
2619 |
- 2^K (N); |
2620 |
- 2^k (bound on the second variable) |
2621 |
- lcm |
2622 |
|
2623 |
:param ratPolyOfInt: a polynomial with rational coefficients and integer |
2624 |
variables. |
2625 |
:param precision: the precision of the floating-point coefficients. |
2626 |
:param targetHardnessToRound: the hardness to round we want to check. |
2627 |
:param variable1: the first variable of the polynomial (an expression). |
2628 |
:param variable2: the second variable of the polynomial (an expression). |
2629 |
|
2630 |
:returns: a 4 elements tuple: |
2631 |
- the polynomial; |
2632 |
- the modulus (N); |
2633 |
- the t bound; |
2634 |
- the lcm used to compute the integral coefficients and the |
2635 |
module. |
2636 |
""" |
2637 |
# Create a new integer polynomial ring. |
2638 |
IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
2639 |
# Coefficients are issued in the increasing power order. |
2640 |
ratPolyCoefficients = ratPolyOfInt.coefficients() |
2641 |
# Print the reversed list for debugging. |
2642 |
|
2643 |
#print "Rational polynomial coefficients:", ratPolyCoefficients[::-1] |
2644 |
# Build the list of number we compute the lcm of. |
2645 |
coefficientDenominators = sro_denominators(ratPolyCoefficients) |
2646 |
#print "Coefficient denominators:", coefficientDenominators |
2647 |
coefficientDenominators.append(2^precision) |
2648 |
coefficientDenominators.append(2^(targetHardnessToRound)) |
2649 |
leastCommonMultiple = lcm(coefficientDenominators) |
2650 |
# Compute the expression corresponding to the new polynomial |
2651 |
coefficientNumerators = sro_numerators(ratPolyCoefficients) |
2652 |
#print coefficientNumerators |
2653 |
polynomialExpression = 0 |
2654 |
power = 0 |
2655 |
# Iterate over two lists at the same time, stop when the shorter |
2656 |
# (is this case coefficientsNumerators) is |
2657 |
# exhausted. Both lists are ordered in the order of increasing powers |
2658 |
# of variable1. |
2659 |
for numerator, denominator in \ |
2660 |
zip(coefficientNumerators, coefficientDenominators): |
2661 |
multiplicator = leastCommonMultiple / denominator |
2662 |
newCoefficient = numerator * multiplicator |
2663 |
polynomialExpression += newCoefficient * variable1^power |
2664 |
power +=1 |
2665 |
polynomialExpression += - variable2 |
2666 |
return (IP(polynomialExpression), |
2667 |
leastCommonMultiple / 2^precision, # 2^K aka N. |
2668 |
#leastCommonMultiple / 2^(targetHardnessToRound + 1), # tBound |
2669 |
leastCommonMultiple / 2^(targetHardnessToRound), # tBound |
2670 |
leastCommonMultiple) # If we want to make test computations. |
2671 |
|
2672 |
# End slz_rat_poly_of_int_to_poly_for_coppersmith |
2673 |
|
2674 |
def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
2675 |
precision): |
2676 |
""" |
2677 |
Makes a variable substitution into the input polynomial so that the output |
2678 |
polynomial can take integer arguments. |
2679 |
All variables of the input polynomial "have precision p". That is to say |
2680 |
that they are rationals with denominator == 2^(precision - 1): |
2681 |
x = y/2^(precision - 1). |
2682 |
We "incorporate" these denominators into the coefficients with, |
2683 |
respectively, the "right" power. |
2684 |
""" |
2685 |
polynomialField = ratPolyOfRat.parent() |
2686 |
polynomialVariable = ratPolyOfRat.variables()[0] |
2687 |
#print "The polynomial field is:", polynomialField |
2688 |
return \ |
2689 |
polynomialField(ratPolyOfRat.subs({polynomialVariable : \ |
2690 |
polynomialVariable/2^(precision-1)})) |
2691 |
|
2692 |
# End slz_rat_poly_of_rat_to_rat_poly_of_int |
2693 |
|
2694 |
def slz_reduce_and_test_base(matrixToReduce, |
2695 |
nAtAlpha, |
2696 |
monomialsCountSqrt): |
2697 |
""" |
2698 |
Reduces the basis, tests the Coppersmith condition and returns |
2699 |
a list of rows that comply with the condition. |
2700 |
""" |
2701 |
ccComplientRowsList = [] |
2702 |
reducedMatrix = matrixToReduce.LLL(None) |
2703 |
if not reducedMatrix.is_LLL_reduced(): |
2704 |
raise Exception("reducedMatrix is not actually reduced. Aborting!") |
2705 |
else: |
2706 |
print "reducedMatrix is actually reduced." |
2707 |
print "N^alpha:", nAtAlpha.n() |
2708 |
rowIndex = 0 |
2709 |
for row in reducedMatrix.rows(): |
2710 |
l2Norm = row.norm(2) |
2711 |
print "L_2 norm for vector # ", rowIndex, "= ", RR(l2Norm), "*", \ |
2712 |
monomialsCountSqrt.n(), ". Is vector OK?", |
2713 |
if (l2Norm * monomialsCountSqrt < nAtAlpha): |
2714 |
ccComplientRowsList.append(row) |
2715 |
print "True" |
2716 |
else: |
2717 |
print "False" |
2718 |
# End for |
2719 |
return ccComplientRowsList |
2720 |
# End slz_reduce_and_test_base |
2721 |
|
2722 |
def slz_reduce_lll_proj(matToReduce, n): |
2723 |
""" |
2724 |
Compute the transformation matrix that realizes an LLL reduction on |
2725 |
the random uniform projected matrix. |
2726 |
Return both the initial matrix "reduced" by the transformation matrix and |
2727 |
the transformation matrix itself. |
2728 |
""" |
2729 |
## Compute the projected matrix. |
2730 |
""" |
2731 |
# Random matrix elements {-2^(n-1),...,0,...,2^(n-1)-1}. |
2732 |
matProjector = slz_random_proj_uniform(n, |
2733 |
matToReduce.ncols(), |
2734 |
matToReduce.nrows()) |
2735 |
""" |
2736 |
# Random matrix elements in {-1,0,1}. |
2737 |
matProjector = slz_random_proj_pm1(matToReduce.ncols(), |
2738 |
matToReduce.nrows()) |
2739 |
matProjected = matToReduce * matProjector |
2740 |
## Build the argument matrix for LLL in such a way that the transformation |
2741 |
# matrix is also returned. This matrix is obtained at almost no extra |
2742 |
# cost. An identity matrix must be appended to |
2743 |
# the left of the initial matrix. The transformation matrix will |
2744 |
# will be recovered at the same location from the returned matrix . |
2745 |
idMat = identity_matrix(matProjected.nrows()) |
2746 |
augmentedMatToReduce = idMat.augment(matProjected) |
2747 |
reducedProjMat = \ |
2748 |
augmentedMatToReduce.LLL(algorithm='fpLLL:wrapper') |
2749 |
## Recover the transformation matrix (the left part of the reduced matrix). |
2750 |
# We discard the reduced matrix itself. |
2751 |
transMat = reducedProjMat.submatrix(0, |
2752 |
0, |
2753 |
reducedProjMat.nrows(), |
2754 |
reducedProjMat.nrows()) |
2755 |
## Return the initial matrix "reduced" and the transformation matrix tuple. |
2756 |
return (transMat * matToReduce, transMat) |
2757 |
# End slz_reduce_lll_proj. |
2758 |
# |
2759 |
def slz_reduce_lll_proj_02(matToReduce, n): |
2760 |
""" |
2761 |
Compute the transformation matrix that realizes an LLL reduction on |
2762 |
the random uniform projected matrix. |
2763 |
Return both the initial matrix "reduced" by the transformation matrix and |
2764 |
the transformation matrix itself. |
2765 |
""" |
2766 |
## Compute the projected matrix. |
2767 |
""" |
2768 |
# Random matrix elements {-2^(n-1),...,0,...,2^(n-1)-1}. |
2769 |
matProjector = slz_random_proj_uniform(n, |
2770 |
matToReduce.ncols(), |
2771 |
matToReduce.nrows()) |
2772 |
""" |
2773 |
# Random matrix elements in {-8,0,7} -> 4. |
2774 |
matProjector = slz_random_proj_uniform(matToReduce.ncols(), |
2775 |
matToReduce.nrows(), |
2776 |
4) |
2777 |
matProjected = matToReduce * matProjector |
2778 |
## Build the argument matrix for LLL in such a way that the transformation |
2779 |
# matrix is also returned. This matrix is obtained at almost no extra |
2780 |
# cost. An identity matrix must be appended to |
2781 |
# the left of the initial matrix. The transformation matrix will |
2782 |
# will be recovered at the same location from the returned matrix . |
2783 |
idMat = identity_matrix(matProjected.nrows()) |
2784 |
augmentedMatToReduce = idMat.augment(matProjected) |
2785 |
reducedProjMat = \ |
2786 |
augmentedMatToReduce.LLL(algorithm='fpLLL:wrapper') |
2787 |
## Recover the transformation matrix (the left part of the reduced matrix). |
2788 |
# We discard the reduced matrix itself. |
2789 |
transMat = reducedProjMat.submatrix(0, |
2790 |
0, |
2791 |
reducedProjMat.nrows(), |
2792 |
reducedProjMat.nrows()) |
2793 |
## Return the initial matrix "reduced" and the transformation matrix tuple. |
2794 |
return (transMat * matToReduce, transMat) |
2795 |
# End slz_reduce_lll_proj_02. |
2796 |
# |
2797 |
def slz_resultant(poly1, poly2, elimVar, debug = False): |
2798 |
""" |
2799 |
Compute the resultant for two polynomials for a given variable |
2800 |
and return the (poly1, poly2, resultant) if the resultant |
2801 |
is not 0. |
2802 |
Return () otherwise. |
2803 |
""" |
2804 |
polynomialRing0 = poly1.parent() |
2805 |
resultantInElimVar = poly1.resultant(poly2,polynomialRing0(elimVar)) |
2806 |
if resultantInElimVar is None: |
2807 |
if debug: |
2808 |
print poly1 |
2809 |
print poly2 |
2810 |
print "have GCD = ", poly1.gcd(poly2) |
2811 |
return None |
2812 |
if resultantInElimVar.is_zero(): |
2813 |
if debug: |
2814 |
print poly1 |
2815 |
print poly2 |
2816 |
print "have GCD = ", poly1.gcd(poly2) |
2817 |
return None |
2818 |
else: |
2819 |
if debug: |
2820 |
print poly1 |
2821 |
print poly2 |
2822 |
print "have resultant in t = ", resultantInElimVar |
2823 |
return resultantInElimVar |
2824 |
# End slz_resultant. |
2825 |
# |
2826 |
def slz_resultant_tuple(poly1, poly2, elimVar): |
2827 |
""" |
2828 |
Compute the resultant for two polynomials for a given variable |
2829 |
and return the (poly1, poly2, resultant) if the resultant |
2830 |
is not 0. |
2831 |
Return () otherwise. |
2832 |
""" |
2833 |
polynomialRing0 = poly1.parent() |
2834 |
resultantInElimVar = poly1.resultant(poly2,polynomialRing0(elimVar)) |
2835 |
if resultantInElimVar.is_zero(): |
2836 |
return () |
2837 |
else: |
2838 |
return (poly1, poly2, resultantInElimVar) |
2839 |
# End slz_resultant_tuple. |
2840 |
# |
2841 |
def slz_uniform(n): |
2842 |
""" |
2843 |
Compute a uniform RV in [-2^(n-1), 2^(n-1)-1] (zero is included). |
2844 |
""" |
2845 |
## function getrandbits(n) generates a long int with n random bits. |
2846 |
return getrandbits(n) - 2^(n-1) |
2847 |
# End slz_uniform. |
2848 |
# |
2849 |
sys.stderr.write("\t...sageSLZ loaded\n") |
2850 |
|