root / pobysoPythonSage / src / sageSLZ / sageRunSLZ.sage @ 272
Historique | Voir | Annoter | Télécharger (203,45 ko)
1 |
r""" |
---|---|
2 |
Main SLZ algorithm body in several versions. |
3 |
|
4 |
AUTHORS: |
5 |
- S.T. (2015-10-10): initial version |
6 |
|
7 |
Examples: |
8 |
TODO |
9 |
""" |
10 |
sys.stderr.write("sage Runtime SLZ loading...\n") |
11 |
|
12 |
def srs_compute_lattice_volume(inputFunction, |
13 |
inputLowerBound, |
14 |
inputUpperBound, |
15 |
alpha, |
16 |
degree, |
17 |
precision, |
18 |
emin, |
19 |
emax, |
20 |
targetHardnessToRound, |
21 |
debug = False): |
22 |
""" |
23 |
Changes from V2: |
24 |
Root search is changed: |
25 |
- we compute the resultants in i and in t; |
26 |
- we compute the roots set of each of these resultants; |
27 |
- we combine all the possible pairs between the two sets; |
28 |
- we check these pairs in polynomials for correctness. |
29 |
Changes from V1: |
30 |
1- check for roots as soon as a resultant is computed; |
31 |
2- once a non null resultant is found, check for roots; |
32 |
3- constant resultant == no root. |
33 |
""" |
34 |
|
35 |
if debug: |
36 |
print "Function :", inputFunction |
37 |
print "Lower bound :", inputLowerBound |
38 |
print "Upper bounds :", inputUpperBound |
39 |
print "Alpha :", alpha |
40 |
print "Degree :", degree |
41 |
print "Precision :", precision |
42 |
print "Emin :", emin |
43 |
print "Emax :", emax |
44 |
print "Target hardness-to-round:", targetHardnessToRound |
45 |
|
46 |
## Important constants. |
47 |
### Stretch the interval if no error happens. |
48 |
noErrorIntervalStretch = 1 + 2^(-5) |
49 |
### If no vector validates the Coppersmith condition, shrink the interval |
50 |
# by the following factor. |
51 |
noCoppersmithIntervalShrink = 1/2 |
52 |
### If only (or at least) one vector validates the Coppersmith condition, |
53 |
# shrink the interval by the following factor. |
54 |
oneCoppersmithIntervalShrink = 3/4 |
55 |
#### If only null resultants are found, shrink the interval by the |
56 |
# following factor. |
57 |
onlyNullResultantsShrink = 3/4 |
58 |
## Structures. |
59 |
RRR = RealField(precision) |
60 |
RRIF = RealIntervalField(precision) |
61 |
## Converting input bound into the "right" field. |
62 |
lowerBound = RRR(inputLowerBound) |
63 |
upperBound = RRR(inputUpperBound) |
64 |
## Before going any further, check domain and image binade conditions. |
65 |
print inputFunction(1).n() |
66 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
67 |
if output is None: |
68 |
print "Invalid domain/image binades. Domain:",\ |
69 |
lowerBound, upperBound, "Images:", \ |
70 |
inputFunction(lowerBound), inputFunction(upperBound) |
71 |
raise Exception("Invalid domain/image binades.") |
72 |
lb = output[0] ; ub = output[1] |
73 |
if lb != lowerBound or ub != upperBound: |
74 |
print "lb:", lb, " - ub:", ub |
75 |
print "Invalid domain/image binades. Domain:",\ |
76 |
lowerBound, upperBound, "Images:", \ |
77 |
inputFunction(lowerBound), inputFunction(upperBound) |
78 |
raise Exception("Invalid domain/image binades.") |
79 |
# |
80 |
## Progam initialization |
81 |
### Approximation polynomial accuracy and hardness to round. |
82 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
83 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
84 |
### Significand to integer conversion ratio. |
85 |
toIntegerFactor = 2^(precision-1) |
86 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
87 |
### Variables and rings for polynomials and root searching. |
88 |
i=var('i') |
89 |
t=var('t') |
90 |
inputFunctionVariable = inputFunction.variables()[0] |
91 |
function = inputFunction.subs({inputFunctionVariable:i}) |
92 |
# Polynomial Rings over the integers, for root finding. |
93 |
Zi = ZZ[i] |
94 |
Zt = ZZ[t] |
95 |
Zit = ZZ[i,t] |
96 |
## Number of iterations limit. |
97 |
maxIter = 100000 |
98 |
# |
99 |
## Set the variable name in Sollya. |
100 |
pobyso_name_free_variable_sa_so(str(function.variables()[0])) |
101 |
## Compute the scaled function and the degree, in their Sollya version |
102 |
# once for all. |
103 |
(scaledf, sdlb, sdub, silb, siub) = \ |
104 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
105 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
106 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
107 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
108 |
# |
109 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
110 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
111 |
(unscalingFunction, scalingFunction) = \ |
112 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
113 |
#print scalingFunction, unscalingFunction |
114 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
115 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
116 |
if internalSollyaPrec < 192: |
117 |
internalSollyaPrec = 192 |
118 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
119 |
print "Sollya internal precision:", internalSollyaPrec |
120 |
## Some variables. |
121 |
### General variables |
122 |
lb = sdlb |
123 |
ub = sdub |
124 |
nbw = 0 |
125 |
intervalUlp = ub.ulp() |
126 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
127 |
ic = 0 |
128 |
icAsInt = 0 # Set from ic. |
129 |
solutionsSet = set() |
130 |
tsErrorWidth = [] |
131 |
csErrorVectors = [] |
132 |
csVectorsResultants = [] |
133 |
floatP = 0 # Taylor polynomial. |
134 |
floatPcv = 0 # Ditto with variable change. |
135 |
intvl = "" # Taylor interval |
136 |
terr = 0 # Taylor error. |
137 |
iterCount = 0 |
138 |
htrnSet = set() |
139 |
### Timers and counters. |
140 |
wallTimeStart = 0 |
141 |
cpuTimeStart = 0 |
142 |
taylCondFailedCount = 0 |
143 |
coppCondFailedCount = 0 |
144 |
resultCondFailedCount = 0 |
145 |
coppCondFailed = False |
146 |
resultCondFailed = False |
147 |
globalResultsList = [] |
148 |
basisConstructionsCount = 0 |
149 |
basisConstructionsFullTime = 0 |
150 |
basisConstructionTime = 0 |
151 |
reductionsCount = 0 |
152 |
reductionsFullTime = 0 |
153 |
reductionTime = 0 |
154 |
resultantsComputationsCount = 0 |
155 |
resultantsComputationsFullTime = 0 |
156 |
resultantsComputationTime = 0 |
157 |
rootsComputationsCount = 0 |
158 |
rootsComputationsFullTime = 0 |
159 |
rootsComputationTime = 0 |
160 |
|
161 |
## Global times are started here. |
162 |
wallTimeStart = walltime() |
163 |
cpuTimeStart = cputime() |
164 |
## Main loop. |
165 |
while True: |
166 |
## Force garbage collection for each iteration. |
167 |
if lb >= sdub: |
168 |
print "Lower bound reached upper bound." |
169 |
break |
170 |
if iterCount == maxIter: |
171 |
print "Reached maxIter. Aborting" |
172 |
break |
173 |
iterCount += 1 |
174 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
175 |
"log2(numbers)." |
176 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
177 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
178 |
degreeSo, |
179 |
lb, |
180 |
ub, |
181 |
polyApproxAccur) |
182 |
### Convert back the data into Sage space. |
183 |
(floatP, floatPcv, intvl, ic, terr) = \ |
184 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
185 |
prceSo[1], prceSo[2], |
186 |
prceSo[3])) |
187 |
intvl = RRIF(intvl) |
188 |
## Clean-up Sollya stuff. |
189 |
for elem in prceSo: |
190 |
sollya_lib_clear_obj(elem) |
191 |
#print floatP, floatPcv, intvl, ic, terr |
192 |
#print floatP |
193 |
#print intvl.endpoints()[0].n(), \ |
194 |
# ic.n(), |
195 |
#intvl.endpoints()[1].n() |
196 |
### Check returned data. |
197 |
#### Is approximation error OK? |
198 |
if terr > polyApproxAccur: |
199 |
exceptionErrorMess = \ |
200 |
"Approximation failed - computed error:" + \ |
201 |
str(terr) + " - target error: " |
202 |
exceptionErrorMess += \ |
203 |
str(polyApproxAccur) + ". Aborting!" |
204 |
raise Exception(exceptionErrorMess) |
205 |
#### Is lower bound OK? |
206 |
if lb != intvl.endpoints()[0]: |
207 |
exceptionErrorMess = "Wrong lower bound:" + \ |
208 |
str(lb) + ". Aborting!" |
209 |
raise Exception(exceptionErrorMess) |
210 |
#### Set upper bound. |
211 |
if ub > intvl.endpoints()[1]: |
212 |
ub = intvl.endpoints()[1] |
213 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
214 |
"log2(numbers)." |
215 |
taylCondFailedCount += 1 |
216 |
#### Is interval not degenerate? |
217 |
if lb >= ub: |
218 |
exceptionErrorMess = "Degenerate interval: " + \ |
219 |
"lowerBound(" + str(lb) +\ |
220 |
")>= upperBound(" + str(ub) + \ |
221 |
"). Aborting!" |
222 |
raise Exception(exceptionErrorMess) |
223 |
#### Is interval center ok? |
224 |
if ic <= lb or ic >= ub: |
225 |
exceptionErrorMess = "Invalid interval center for " + \ |
226 |
str(lb) + ',' + str(ic) + ',' + \ |
227 |
str(ub) + ". Aborting!" |
228 |
raise Exception(exceptionErrorMess) |
229 |
##### Current interval width and reset future interval width. |
230 |
bw = ub - lb |
231 |
nbw = 0 |
232 |
icAsInt = int(ic * toIntegerFactor) |
233 |
#### The following ratio is always >= 1. In case we may want to |
234 |
# enlarge the interval |
235 |
curTaylErrRat = polyApproxAccur / terr |
236 |
### Make the integral transformations. |
237 |
#### Bounds and interval center. |
238 |
intIc = int(ic * toIntegerFactor) |
239 |
intLb = int(lb * toIntegerFactor) - intIc |
240 |
intUb = int(ub * toIntegerFactor) - intIc |
241 |
# |
242 |
#### Polynomials |
243 |
basisConstructionTime = cputime() |
244 |
##### To a polynomial with rational coefficients with rational arguments |
245 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
246 |
##### To a polynomial with rational coefficients with integer arguments |
247 |
ratIntP = \ |
248 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
249 |
##### Ultimately a multivariate polynomial with integer coefficients |
250 |
# with integer arguments. |
251 |
coppersmithTuple = \ |
252 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
253 |
precision, |
254 |
targetHardnessToRound, |
255 |
i, t) |
256 |
#### Recover Coppersmith information. |
257 |
intIntP = coppersmithTuple[0] |
258 |
N = coppersmithTuple[1] |
259 |
nAtAlpha = N^alpha |
260 |
tBound = coppersmithTuple[2] |
261 |
leastCommonMultiple = coppersmithTuple[3] |
262 |
iBound = max(abs(intLb),abs(intUb)) |
263 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
264 |
basisConstructionsCount += 1 |
265 |
reductionTime = cputime() |
266 |
#### Compute the reduced polynomials. |
267 |
ccReducedPolynomialsList = \ |
268 |
slz_compute_coppersmith_reduced_polynomials_with_lattice_volume(intIntP, |
269 |
alpha, |
270 |
N, |
271 |
iBound, |
272 |
tBound) |
273 |
if ccReducedPolynomialsList is None: |
274 |
raise Exception("Reduction failed.") |
275 |
reductionsFullTime += cputime(reductionTime) |
276 |
reductionsCount += 1 |
277 |
if len(ccReducedPolynomialsList) < 2: |
278 |
print "Nothing to form resultants with." |
279 |
|
280 |
coppCondFailedCount += 1 |
281 |
coppCondFailed = True |
282 |
##### Apply a different shrink factor according to |
283 |
# the number of compliant polynomials. |
284 |
if len(ccReducedPolynomialsList) == 0: |
285 |
ub = lb + bw * noCoppersmithIntervalShrink |
286 |
else: # At least one compliant polynomial. |
287 |
ub = lb + bw * oneCoppersmithIntervalShrink |
288 |
if ub > sdub: |
289 |
ub = sdub |
290 |
if lb == ub: |
291 |
raise Exception("Cant shrink interval \ |
292 |
anymore to get Coppersmith condition.") |
293 |
nbw = 0 |
294 |
continue |
295 |
#### We have at least two polynomials. |
296 |
# Let us try to compute resultants. |
297 |
# For each resultant computed, go for the solutions. |
298 |
##### Build the pairs list. |
299 |
polyPairsList = [] |
300 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
301 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
302 |
len(ccReducedPolynomialsList)): |
303 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
304 |
ccReducedPolynomialsList[polyInnerIndex])) |
305 |
#### Actual root search. |
306 |
rootsSet = set() |
307 |
hasNonNullResultant = False |
308 |
for polyPair in polyPairsList: |
309 |
if hasNonNullResultant: |
310 |
break |
311 |
resultantsComputationTime = cputime() |
312 |
currentResultantI = \ |
313 |
slz_resultant(polyPair[0], |
314 |
polyPair[1], |
315 |
t) |
316 |
resultantsComputationsCount += 1 |
317 |
if currentResultantI is None: |
318 |
resultantsComputationsFullTime += \ |
319 |
cputime(resultantsComputationTime) |
320 |
print "Nul resultant" |
321 |
continue # Next polyPair. |
322 |
currentResultantT = \ |
323 |
slz_resultant(polyPair[0], |
324 |
polyPair[1], |
325 |
i) |
326 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
327 |
resultantsComputationsCount += 1 |
328 |
if currentResultantT is None: |
329 |
print "Nul resultant" |
330 |
continue # Next polyPair. |
331 |
else: |
332 |
hasNonNullResultant = True |
333 |
#### We have a non null resultants pair. From now on, whatever the |
334 |
# root search yields, no extra root search is necessary. |
335 |
#### A constant resultant leads to no root. Root search is done. |
336 |
if currentResultantI.degree() < 1: |
337 |
print "Resultant is constant:", currentResultantI |
338 |
break # Next polyPair and should break. |
339 |
if currentResultantT.degree() < 1: |
340 |
print "Resultant is constant:", currentResultantT |
341 |
break # Next polyPair and should break. |
342 |
#### Actual roots computation. |
343 |
rootsComputationTime = cputime() |
344 |
##### Compute i roots |
345 |
iRootsList = Zi(currentResultantI).roots() |
346 |
rootsComputationsCount += 1 |
347 |
if len(iRootsList) == 0: |
348 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
349 |
print "No roots in \"i\"." |
350 |
break # No roots in i. |
351 |
tRootsList = Zt(currentResultantT).roots() |
352 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
353 |
rootsComputationsCount += 1 |
354 |
if len(tRootsList) == 0: |
355 |
print "No roots in \"t\"." |
356 |
break # No roots in i. |
357 |
##### For each iRoot, get a tRoot and check against the polynomials. |
358 |
for iRoot in iRootsList: |
359 |
####### Roots returned by roots() are (value, multiplicity) |
360 |
# tuples. |
361 |
#print "iRoot:", iRoot |
362 |
for tRoot in tRootsList: |
363 |
###### Use the tRoot against each polynomial, alternatively. |
364 |
if polyPair[0](iRoot[0],tRoot[0]) != 0: |
365 |
continue |
366 |
if polyPair[1](iRoot[0],tRoot[0]) != 0: |
367 |
continue |
368 |
rootsSet.add((iRoot[0], tRoot[0])) |
369 |
# End of roots computation. |
370 |
# End loop for polyPair in polyParsList. Will break at next iteration. |
371 |
# since a non null resultant was found. |
372 |
#### Prepare for results for the current interval.. |
373 |
intervalResultsList = [] |
374 |
intervalResultsList.append((lb, ub)) |
375 |
#### Check roots. |
376 |
rootsResultsList = [] |
377 |
for root in rootsSet: |
378 |
specificRootResultsList = [] |
379 |
failingBounds = [] |
380 |
intIntPdivN = intIntP(root[0], root[1]) / N |
381 |
if int(intIntPdivN) != intIntPdivN: |
382 |
continue # Next root |
383 |
# Root qualifies for modular equation, test it for hardness to round. |
384 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
385 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
386 |
#print scalingFunction |
387 |
scaledHardToRoundCaseAsFloat = \ |
388 |
scalingFunction(hardToRoundCaseAsFloat) |
389 |
print "Candidate HTRNc at x =", \ |
390 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
391 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
392 |
function, |
393 |
2^-(targetHardnessToRound), |
394 |
RRR): |
395 |
print hardToRoundCaseAsFloat, "is HTRN case." |
396 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
397 |
print "Found in interval." |
398 |
else: |
399 |
print "Found out of interval." |
400 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
401 |
# Check the root is in the bounds |
402 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
403 |
print "Root", root, "is out of bounds for modular equation." |
404 |
if abs(root[0]) > iBound: |
405 |
print "root[0]:", root[0] |
406 |
print "i bound:", iBound |
407 |
failingBounds.append('i') |
408 |
failingBounds.append(root[0]) |
409 |
failingBounds.append(iBound) |
410 |
if abs(root[1]) > tBound: |
411 |
print "root[1]:", root[1] |
412 |
print "t bound:", tBound |
413 |
failingBounds.append('t') |
414 |
failingBounds.append(root[1]) |
415 |
failingBounds.append(tBound) |
416 |
if len(failingBounds) > 0: |
417 |
specificRootResultsList.append(failingBounds) |
418 |
else: # From slz_is_htrn... |
419 |
print "is not an HTRN case." |
420 |
if len(specificRootResultsList) > 0: |
421 |
rootsResultsList.append(specificRootResultsList) |
422 |
if len(rootsResultsList) > 0: |
423 |
intervalResultsList.append(rootsResultsList) |
424 |
### Check if a non null resultant was found. If not shrink the interval. |
425 |
if not hasNonNullResultant: |
426 |
print "Only null resultants for this reduction, shrinking interval." |
427 |
resultCondFailed = True |
428 |
resultCondFailedCount += 1 |
429 |
### Shrink interval for next iteration. |
430 |
ub = lb + bw * onlyNullResultantsShrink |
431 |
if ub > sdub: |
432 |
ub = sdub |
433 |
nbw = 0 |
434 |
continue |
435 |
#### An intervalResultsList has at least the bounds. |
436 |
globalResultsList.append(intervalResultsList) |
437 |
#### Compute an incremented width for next upper bound, only |
438 |
# if not Coppersmith condition nor resultant condition |
439 |
# failed at the previous run. |
440 |
if not coppCondFailed and not resultCondFailed: |
441 |
nbw = noErrorIntervalStretch * bw |
442 |
else: |
443 |
nbw = bw |
444 |
##### Reset the failure flags. They will be raised |
445 |
# again if needed. |
446 |
coppCondFailed = False |
447 |
resultCondFailed = False |
448 |
#### For next iteration (at end of loop) |
449 |
#print "nbw:", nbw |
450 |
lb = ub |
451 |
ub += nbw |
452 |
if ub > sdub: |
453 |
ub = sdub |
454 |
|
455 |
# End while True |
456 |
## Main loop just ended. |
457 |
globalWallTime = walltime(wallTimeStart) |
458 |
globalCpuTime = cputime(cpuTimeStart) |
459 |
## Output results |
460 |
print ; print "Intervals and HTRNs" ; print |
461 |
for intervalResultsList in globalResultsList: |
462 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
463 |
"," + str(intervalResultsList[0][1]) + "]" |
464 |
print intervalResultString, |
465 |
if len(intervalResultsList) > 1: |
466 |
rootsResultsList = intervalResultsList[1] |
467 |
specificRootResultIndex = 0 |
468 |
for specificRootResultsList in rootsResultsList: |
469 |
if specificRootResultIndex == 0: |
470 |
print "\t", specificRootResultsList[0], |
471 |
else: |
472 |
print " " * len(intervalResultString), "\t", \ |
473 |
specificRootResultsList[0], |
474 |
if len(specificRootResultsList) > 1: |
475 |
print specificRootResultsList[1] |
476 |
specificRootResultIndex += 1 |
477 |
print ; print |
478 |
#print globalResultsList |
479 |
# |
480 |
print "Timers and counters" |
481 |
|
482 |
print "Number of iterations:", iterCount |
483 |
print "Taylor condition failures:", taylCondFailedCount |
484 |
print "Coppersmith condition failures:", coppCondFailedCount |
485 |
print "Resultant condition failures:", resultCondFailedCount |
486 |
print "Iterations count: ", iterCount |
487 |
print "Number of intervals:", len(globalResultsList) |
488 |
print "Number of basis constructions:", basisConstructionsCount |
489 |
print "Total CPU time spent in basis constructions:", \ |
490 |
basisConstructionsFullTime |
491 |
if basisConstructionsCount != 0: |
492 |
print "Average basis construction CPU time:", \ |
493 |
basisConstructionsFullTime/basisConstructionsCount |
494 |
print "Number of reductions:", reductionsCount |
495 |
print "Total CPU time spent in reductions:", reductionsFullTime |
496 |
if reductionsCount != 0: |
497 |
print "Average reduction CPU time:", \ |
498 |
reductionsFullTime/reductionsCount |
499 |
print "Number of resultants computation rounds:", \ |
500 |
resultantsComputationsCount |
501 |
print "Total CPU time spent in resultants computation rounds:", \ |
502 |
resultantsComputationsFullTime |
503 |
if resultantsComputationsCount != 0: |
504 |
print "Average resultants computation round CPU time:", \ |
505 |
resultantsComputationsFullTime/resultantsComputationsCount |
506 |
print "Number of root finding rounds:", rootsComputationsCount |
507 |
print "Total CPU time spent in roots finding rounds:", \ |
508 |
rootsComputationsFullTime |
509 |
if rootsComputationsCount != 0: |
510 |
print "Average roots finding round CPU time:", \ |
511 |
rootsComputationsFullTime/rootsComputationsCount |
512 |
print "Global Wall time:", globalWallTime |
513 |
print "Global CPU time:", globalCpuTime |
514 |
## Output counters |
515 |
# End srs_compute_lattice_volume |
516 |
|
517 |
""" |
518 |
SLZ runtime function. |
519 |
""" |
520 |
|
521 |
def srs_run_SLZ_v01(inputFunction, |
522 |
inputLowerBound, |
523 |
inputUpperBound, |
524 |
alpha, |
525 |
degree, |
526 |
precision, |
527 |
emin, |
528 |
emax, |
529 |
targetHardnessToRound, |
530 |
debug = False): |
531 |
|
532 |
if debug: |
533 |
print "Function :", inputFunction |
534 |
print "Lower bound :", inputLowerBound |
535 |
print "Upper bounds :", inputUpperBound |
536 |
print "Alpha :", alpha |
537 |
print "Degree :", degree |
538 |
print "Precision :", precision |
539 |
print "Emin :", emin |
540 |
print "Emax :", emax |
541 |
print "Target hardness-to-round:", targetHardnessToRound |
542 |
|
543 |
## Important constants. |
544 |
### Stretch the interval if no error happens. |
545 |
noErrorIntervalStretch = 1 + 2^(-5) |
546 |
### If no vector validates the Coppersmith condition, shrink the interval |
547 |
# by the following factor. |
548 |
noCoppersmithIntervalShrink = 1/2 |
549 |
### If only (or at least) one vector validates the Coppersmith condition, |
550 |
# shrink the interval by the following factor. |
551 |
oneCoppersmithIntervalShrink = 3/4 |
552 |
#### If only null resultants are found, shrink the interval by the |
553 |
# following factor. |
554 |
onlyNullResultantsShrink = 3/4 |
555 |
## Structures. |
556 |
RRR = RealField(precision) |
557 |
RRIF = RealIntervalField(precision) |
558 |
## Converting input bound into the "right" field. |
559 |
lowerBound = RRR(inputLowerBound) |
560 |
upperBound = RRR(inputUpperBound) |
561 |
## Before going any further, check domain and image binade conditions. |
562 |
print inputFunction(1).n() |
563 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
564 |
if output is None: |
565 |
print "Invalid domain/image binades. Domain:",\ |
566 |
lowerBound, upperBound, "Images:", \ |
567 |
inputFunction(lowerBound), inputFunction(upperBound) |
568 |
raise Exception("Invalid domain/image binades.") |
569 |
lb = output[0] ; ub = output[1] |
570 |
if lb is None or lb != lowerBound or ub != upperBound: |
571 |
print "lb:", lb, " - ub:", ub |
572 |
print "Invalid domain/image binades. Domain:",\ |
573 |
lowerBound, upperBound, "Images:", \ |
574 |
inputFunction(lowerBound), inputFunction(upperBound) |
575 |
raise Exception("Invalid domain/image binades.") |
576 |
# |
577 |
## Progam initialization |
578 |
### Approximation polynomial accuracy and hardness to round. |
579 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
580 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
581 |
### Significand to integer conversion ratio. |
582 |
toIntegerFactor = 2^(precision-1) |
583 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
584 |
### Variables and rings for polynomials and root searching. |
585 |
i=var('i') |
586 |
t=var('t') |
587 |
inputFunctionVariable = inputFunction.variables()[0] |
588 |
function = inputFunction.subs({inputFunctionVariable:i}) |
589 |
# Polynomial Rings over the integers, for root finding. |
590 |
Zi = ZZ[i] |
591 |
Zt = ZZ[t] |
592 |
Zit = ZZ[i,t] |
593 |
## Number of iterations limit. |
594 |
maxIter = 100000 |
595 |
# |
596 |
## Set the variable name in Sollya. |
597 |
pobyso_name_free_variable_sa_so(str(function.variables()[0])) |
598 |
## Compute the scaled function and the degree, in their Sollya version |
599 |
# once for all. |
600 |
(scaledf, sdlb, sdub, silb, siub) = \ |
601 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
602 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
603 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
604 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
605 |
# |
606 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
607 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
608 |
(unscalingFunction, scalingFunction) = \ |
609 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
610 |
#print scalingFunction, unscalingFunction |
611 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
612 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
613 |
if internalSollyaPrec < 192: |
614 |
internalSollyaPrec = 192 |
615 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
616 |
print "Sollya internal precision:", internalSollyaPrec |
617 |
## Some variables. |
618 |
### General variables |
619 |
lb = sdlb |
620 |
ub = sdub |
621 |
nbw = 0 |
622 |
intervalUlp = ub.ulp() |
623 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
624 |
ic = 0 |
625 |
icAsInt = 0 # Set from ic. |
626 |
solutionsSet = set() |
627 |
tsErrorWidth = [] |
628 |
csErrorVectors = [] |
629 |
csVectorsResultants = [] |
630 |
floatP = 0 # Taylor polynomial. |
631 |
floatPcv = 0 # Ditto with variable change. |
632 |
intvl = "" # Taylor interval |
633 |
terr = 0 # Taylor error. |
634 |
iterCount = 0 |
635 |
htrnSet = set() |
636 |
### Timers and counters. |
637 |
wallTimeStart = 0 |
638 |
cpuTimeStart = 0 |
639 |
taylCondFailedCount = 0 |
640 |
coppCondFailedCount = 0 |
641 |
resultCondFailedCount = 0 |
642 |
coppCondFailed = False |
643 |
resultCondFailed = False |
644 |
globalResultsList = [] |
645 |
basisConstructionsCount = 0 |
646 |
basisConstructionsFullTime = 0 |
647 |
basisConstructionTime = 0 |
648 |
reductionsCount = 0 |
649 |
reductionsFullTime = 0 |
650 |
reductionTime = 0 |
651 |
resultantsComputationsCount = 0 |
652 |
resultantsComputationsFullTime = 0 |
653 |
resultantsComputationTime = 0 |
654 |
rootsComputationsCount = 0 |
655 |
rootsComputationsFullTime = 0 |
656 |
rootsComputationTime = 0 |
657 |
|
658 |
## Global times are started here. |
659 |
wallTimeStart = walltime() |
660 |
cpuTimeStart = cputime() |
661 |
## Main loop. |
662 |
while True: |
663 |
if lb >= sdub: |
664 |
print "Lower bound reached upper bound." |
665 |
break |
666 |
if iterCount == maxIter: |
667 |
print "Reached maxIter. Aborting" |
668 |
break |
669 |
iterCount += 1 |
670 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
671 |
"log2(numbers)." |
672 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
673 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
674 |
degreeSo, |
675 |
lb, |
676 |
ub, |
677 |
polyApproxAccur) |
678 |
### Convert back the data into Sage space. |
679 |
(floatP, floatPcv, intvl, ic, terr) = \ |
680 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
681 |
prceSo[1], prceSo[2], |
682 |
prceSo[3])) |
683 |
intvl = RRIF(intvl) |
684 |
## Clean-up Sollya stuff. |
685 |
for elem in prceSo: |
686 |
sollya_lib_clear_obj(elem) |
687 |
#print floatP, floatPcv, intvl, ic, terr |
688 |
#print floatP |
689 |
#print intvl.endpoints()[0].n(), \ |
690 |
# ic.n(), |
691 |
#intvl.endpoints()[1].n() |
692 |
### Check returned data. |
693 |
#### Is approximation error OK? |
694 |
if terr > polyApproxAccur: |
695 |
exceptionErrorMess = \ |
696 |
"Approximation failed - computed error:" + \ |
697 |
str(terr) + " - target error: " |
698 |
exceptionErrorMess += \ |
699 |
str(polyApproxAccur) + ". Aborting!" |
700 |
raise Exception(exceptionErrorMess) |
701 |
#### Is lower bound OK? |
702 |
if lb != intvl.endpoints()[0]: |
703 |
exceptionErrorMess = "Wrong lower bound:" + \ |
704 |
str(lb) + ". Aborting!" |
705 |
raise Exception(exceptionErrorMess) |
706 |
#### Set upper bound. |
707 |
if ub > intvl.endpoints()[1]: |
708 |
ub = intvl.endpoints()[1] |
709 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
710 |
"log2(numbers)." |
711 |
taylCondFailedCount += 1 |
712 |
#### Is interval not degenerate? |
713 |
if lb >= ub: |
714 |
exceptionErrorMess = "Degenerate interval: " + \ |
715 |
"lowerBound(" + str(lb) +\ |
716 |
")>= upperBound(" + str(ub) + \ |
717 |
"). Aborting!" |
718 |
raise Exception(exceptionErrorMess) |
719 |
#### Is interval center ok? |
720 |
if ic <= lb or ic >= ub: |
721 |
exceptionErrorMess = "Invalid interval center for " + \ |
722 |
str(lb) + ',' + str(ic) + ',' + \ |
723 |
str(ub) + ". Aborting!" |
724 |
raise Exception(exceptionErrorMess) |
725 |
##### Current interval width and reset future interval width. |
726 |
bw = ub - lb |
727 |
nbw = 0 |
728 |
icAsInt = int(ic * toIntegerFactor) |
729 |
#### The following ratio is always >= 1. In case we may want to |
730 |
# enlarge the interval |
731 |
curTaylErrRat = polyApproxAccur / terr |
732 |
## Make the integral transformations. |
733 |
### First for interval center and bounds. |
734 |
intIc = int(ic * toIntegerFactor) |
735 |
intLb = int(lb * toIntegerFactor) - intIc |
736 |
intUb = int(ub * toIntegerFactor) - intIc |
737 |
# |
738 |
#### For polynomials |
739 |
basisConstructionTime = cputime() |
740 |
##### To a polynomial with rational coefficients with rational arguments |
741 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
742 |
##### To a polynomial with rational coefficients with integer arguments |
743 |
ratIntP = \ |
744 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
745 |
##### Ultimately a polynomial with integer coefficients with integer |
746 |
# arguments. |
747 |
coppersmithTuple = \ |
748 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
749 |
precision, |
750 |
targetHardnessToRound, |
751 |
i, t) |
752 |
#### Recover Coppersmith information. |
753 |
intIntP = coppersmithTuple[0] |
754 |
N = coppersmithTuple[1] |
755 |
nAtAlpha = N^alpha |
756 |
tBound = coppersmithTuple[2] |
757 |
leastCommonMultiple = coppersmithTuple[3] |
758 |
iBound = max(abs(intLb),abs(intUb)) |
759 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
760 |
basisConstructionsCount += 1 |
761 |
reductionTime = cputime() |
762 |
# Compute the reduced polynomials. |
763 |
ccReducedPolynomialsList = \ |
764 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
765 |
alpha, |
766 |
N, |
767 |
iBound, |
768 |
tBound) |
769 |
if ccReducedPolynomialsList is None: |
770 |
raise Exception("Reduction failed.") |
771 |
reductionsFullTime += cputime(reductionTime) |
772 |
reductionsCount += 1 |
773 |
if len(ccReducedPolynomialsList) < 2: |
774 |
print "Nothing to form resultants with." |
775 |
|
776 |
coppCondFailedCount += 1 |
777 |
coppCondFailed = True |
778 |
##### Apply a different shrink factor according to |
779 |
# the number of compliant polynomials. |
780 |
if len(ccReducedPolynomialsList) == 0: |
781 |
ub = lb + bw * noCoppersmithIntervalShrink |
782 |
else: # At least one compliant polynomial. |
783 |
ub = lb + bw * oneCoppersmithIntervalShrink |
784 |
if ub > sdub: |
785 |
ub = sdub |
786 |
if lb == ub: |
787 |
raise Exception("Cant shrink interval \ |
788 |
anymore to get Coppersmith condition.") |
789 |
nbw = 0 |
790 |
continue |
791 |
#### We have at least two polynomials. |
792 |
# Let us try to compute resultants. |
793 |
resultantsComputationTime = cputime() |
794 |
resultantsInTTuplesList = [] |
795 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
796 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
797 |
len(ccReducedPolynomialsList)): |
798 |
resultantTuple = \ |
799 |
slz_resultant_tuple(ccReducedPolynomialsList[polyOuterIndex], |
800 |
ccReducedPolynomialsList[polyInnerIndex], |
801 |
t) |
802 |
if len(resultantTuple) > 2: |
803 |
#print resultantTuple[2] |
804 |
resultantsInTTuplesList.append(resultantTuple) |
805 |
else: |
806 |
print "No non nul resultant" |
807 |
print len(resultantsInTTuplesList), "resultant(s) in t tuple(s) created." |
808 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
809 |
resultantsComputationsCount += 1 |
810 |
if len(resultantsInTTuplesList) == 0: |
811 |
print "Only null resultants, shrinking interval." |
812 |
resultCondFailed = True |
813 |
resultCondFailedCount += 1 |
814 |
### Shrink interval for next iteration. |
815 |
ub = lb + bw * onlyNullResultantsShrink |
816 |
if ub > sdub: |
817 |
ub = sdub |
818 |
nbw = 0 |
819 |
continue |
820 |
#### Compute roots. |
821 |
rootsComputationTime = cputime() |
822 |
reducedPolynomialsRootsSet = set() |
823 |
##### Solve in the second variable since resultants are in the first |
824 |
# variable. |
825 |
for resultantInTTuple in resultantsInTTuplesList: |
826 |
currentResultant = resultantInTTuple[2] |
827 |
##### If the resultant degree is not at least 1, there are no roots. |
828 |
if currentResultant.degree() < 1: |
829 |
print "Resultant is constant:", currentResultant |
830 |
continue # Next resultantInTTuple |
831 |
##### Compute i roots |
832 |
iRootsList = Zi(currentResultant).roots() |
833 |
##### For each iRoot, compute the corresponding tRoots and check |
834 |
# them in the input polynomial. |
835 |
for iRoot in iRootsList: |
836 |
####### Roots returned by roots() are (value, multiplicity) |
837 |
# tuples. |
838 |
#print "iRoot:", iRoot |
839 |
###### Use the tRoot against each polynomial, alternatively. |
840 |
for indexInTuple in range(0,2): |
841 |
currentPolynomial = resultantInTTuple[indexInTuple] |
842 |
####### If the polynomial is univariate, just drop it. |
843 |
if len(currentPolynomial.variables()) < 2: |
844 |
print " Current polynomial is not in two variables." |
845 |
continue # Next indexInTuple |
846 |
tRootsList = \ |
847 |
Zt(currentPolynomial.subs({currentPolynomial.variables()[0]:iRoot[0]})).roots() |
848 |
####### The tRootsList can be empty, hence the test. |
849 |
if len(tRootsList) == 0: |
850 |
print " No t root." |
851 |
continue # Next indexInTuple |
852 |
for tRoot in tRootsList: |
853 |
reducedPolynomialsRootsSet.add((iRoot[0], tRoot[0])) |
854 |
# End of roots computation |
855 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
856 |
rootsComputationsCount += 1 |
857 |
##### Prepare for results. |
858 |
intervalResultsList = [] |
859 |
intervalResultsList.append((lb, ub)) |
860 |
#### Check roots. |
861 |
rootsResultsList = [] |
862 |
for root in reducedPolynomialsRootsSet: |
863 |
specificRootResultsList = [] |
864 |
failingBounds = [] |
865 |
intIntPdivN = intIntP(root[0], root[1]) / N |
866 |
if int(intIntPdivN) != intIntPdivN: |
867 |
continue # Next root |
868 |
# Root qualifies for modular equation, test it for hardness to round. |
869 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
870 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
871 |
#print scalingFunction |
872 |
scaledHardToRoundCaseAsFloat = \ |
873 |
scalingFunction(hardToRoundCaseAsFloat) |
874 |
print "Candidate HTRNc at x =", \ |
875 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
876 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
877 |
function, |
878 |
2^-(targetHardnessToRound), |
879 |
RRR): |
880 |
print hardToRoundCaseAsFloat, "is HTRN case." |
881 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
882 |
print "Found in interval." |
883 |
else: |
884 |
print "Found out of interval." |
885 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
886 |
# Check the root is in the bounds |
887 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
888 |
print "Root", root, "is out of bounds." |
889 |
if abs(root[0]) > iBound: |
890 |
print "root[0]:", root[0] |
891 |
print "i bound:", iBound |
892 |
failingBounds.append('i') |
893 |
failingBounds.append(root[0]) |
894 |
failingBounds.append(iBound) |
895 |
if abs(root[1]) > tBound: |
896 |
print "root[1]:", root[1] |
897 |
print "t bound:", tBound |
898 |
failingBounds.append('t') |
899 |
failingBounds.append(root[1]) |
900 |
failingBounds.append(tBound) |
901 |
if len(failingBounds) > 0: |
902 |
specificRootResultsList.append(failingBounds) |
903 |
else: # From slz_is_htrn... |
904 |
print "is not an HTRN case." |
905 |
if len(specificRootResultsList) > 0: |
906 |
rootsResultsList.append(specificRootResultsList) |
907 |
if len(rootsResultsList) > 0: |
908 |
intervalResultsList.append(rootsResultsList) |
909 |
#### An intervalResultsList has at least the bounds. |
910 |
globalResultsList.append(intervalResultsList) |
911 |
#### Compute an incremented width for next upper bound, only |
912 |
# if not Coppersmith condition nor resultant condition |
913 |
# failed at the previous run. |
914 |
if not coppCondFailed and not resultCondFailed: |
915 |
nbw = noErrorIntervalStretch * bw |
916 |
else: |
917 |
nbw = bw |
918 |
##### Reset the failure flags. They will be raised |
919 |
# again if needed. |
920 |
coppCondFailed = False |
921 |
resultCondFailed = False |
922 |
#### For next iteration (at end of loop) |
923 |
#print "nbw:", nbw |
924 |
lb = ub |
925 |
ub += nbw |
926 |
if ub > sdub: |
927 |
ub = sdub |
928 |
|
929 |
# End while True |
930 |
## Main loop just ended. |
931 |
globalWallTime = walltime(wallTimeStart) |
932 |
globalCpuTime = cputime(cpuTimeStart) |
933 |
## Output results |
934 |
print ; print "Intervals and HTRNs" ; print |
935 |
for intervalResultsList in globalResultsList: |
936 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
937 |
"," + str(intervalResultsList[0][1]) + "]" |
938 |
print intervalResultString, |
939 |
if len(intervalResultsList) > 1: |
940 |
rootsResultsList = intervalResultsList[1] |
941 |
specificRootResultIndex = 0 |
942 |
for specificRootResultsList in rootsResultsList: |
943 |
if specificRootResultIndex == 0: |
944 |
print "\t", specificRootResultsList[0], |
945 |
else: |
946 |
print " " * len(intervalResultString), "\t", \ |
947 |
specificRootResultsList[0], |
948 |
if len(specificRootResultsList) > 1: |
949 |
print specificRootResultsList[1] |
950 |
specificRootResultIndex += 1 |
951 |
print ; print |
952 |
#print globalResultsList |
953 |
# |
954 |
print "Timers and counters" |
955 |
|
956 |
print "Number of iterations:", iterCount |
957 |
print "Taylor condition failures:", taylCondFailedCount |
958 |
print "Coppersmith condition failures:", coppCondFailedCount |
959 |
print "Resultant condition failures:", resultCondFailedCount |
960 |
print "Iterations count: ", iterCount |
961 |
print "Number of intervals:", len(globalResultsList) |
962 |
print "Number of basis constructions:", basisConstructionsCount |
963 |
print "Total CPU time spent in basis constructions:", \ |
964 |
basisConstructionsFullTime |
965 |
if basisConstructionsCount != 0: |
966 |
print "Average basis construction CPU time:", \ |
967 |
basisConstructionsFullTime/basisConstructionsCount |
968 |
print "Number of reductions:", reductionsCount |
969 |
print "Total CPU time spent in reductions:", reductionsFullTime |
970 |
if reductionsCount != 0: |
971 |
print "Average reduction CPU time:", \ |
972 |
reductionsFullTime/reductionsCount |
973 |
print "Number of resultants computation rounds:", \ |
974 |
resultantsComputationsCount |
975 |
print "Total CPU time spent in resultants computation rounds:", \ |
976 |
resultantsComputationsFullTime |
977 |
if resultantsComputationsCount != 0: |
978 |
print "Average resultants computation round CPU time:", \ |
979 |
resultantsComputationsFullTime/resultantsComputationsCount |
980 |
print "Number of root finding rounds:", rootsComputationsCount |
981 |
print "Total CPU time spent in roots finding rounds:", \ |
982 |
rootsComputationsFullTime |
983 |
if rootsComputationsCount != 0: |
984 |
print "Average roots finding round CPU time:", \ |
985 |
rootsComputationsFullTime/rootsComputationsCount |
986 |
print "Global Wall time:", globalWallTime |
987 |
print "Global CPU time:", globalCpuTime |
988 |
## Output counters |
989 |
# End srs_runSLZ-v01 |
990 |
|
991 |
def srs_run_SLZ_v02(inputFunction, |
992 |
inputLowerBound, |
993 |
inputUpperBound, |
994 |
alpha, |
995 |
degree, |
996 |
precision, |
997 |
emin, |
998 |
emax, |
999 |
targetHardnessToRound, |
1000 |
debug = False): |
1001 |
""" |
1002 |
Changes from V1: |
1003 |
1- check for roots as soon as a resultant is computed; |
1004 |
2- once a non null resultant is found, check for roots; |
1005 |
3- constant resultant == no root. |
1006 |
""" |
1007 |
|
1008 |
if debug: |
1009 |
print "Function :", inputFunction |
1010 |
print "Lower bound :", inputLowerBound |
1011 |
print "Upper bounds :", inputUpperBound |
1012 |
print "Alpha :", alpha |
1013 |
print "Degree :", degree |
1014 |
print "Precision :", precision |
1015 |
print "Emin :", emin |
1016 |
print "Emax :", emax |
1017 |
print "Target hardness-to-round:", targetHardnessToRound |
1018 |
|
1019 |
## Important constants. |
1020 |
### Stretch the interval if no error happens. |
1021 |
noErrorIntervalStretch = 1 + 2^(-5) |
1022 |
### If no vector validates the Coppersmith condition, shrink the interval |
1023 |
# by the following factor. |
1024 |
noCoppersmithIntervalShrink = 1/2 |
1025 |
### If only (or at least) one vector validates the Coppersmith condition, |
1026 |
# shrink the interval by the following factor. |
1027 |
oneCoppersmithIntervalShrink = 3/4 |
1028 |
#### If only null resultants are found, shrink the interval by the |
1029 |
# following factor. |
1030 |
onlyNullResultantsShrink = 3/4 |
1031 |
## Structures. |
1032 |
RRR = RealField(precision) |
1033 |
RRIF = RealIntervalField(precision) |
1034 |
## Converting input bound into the "right" field. |
1035 |
lowerBound = RRR(inputLowerBound) |
1036 |
upperBound = RRR(inputUpperBound) |
1037 |
## Before going any further, check domain and image binade conditions. |
1038 |
print inputFunction(1).n() |
1039 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
1040 |
if output is None: |
1041 |
print "Invalid domain/image binades. Domain:",\ |
1042 |
lowerBound, upperBound, "Images:", \ |
1043 |
inputFunction(lowerBound), inputFunction(upperBound) |
1044 |
raise Exception("Invalid domain/image binades.") |
1045 |
lb = output[0] ; ub = output[1] |
1046 |
if lb != lowerBound or ub != upperBound: |
1047 |
print "lb:", lb, " - ub:", ub |
1048 |
print "Invalid domain/image binades. Domain:",\ |
1049 |
lowerBound, upperBound, "Images:", \ |
1050 |
inputFunction(lowerBound), inputFunction(upperBound) |
1051 |
raise Exception("Invalid domain/image binades.") |
1052 |
# |
1053 |
## Progam initialization |
1054 |
### Approximation polynomial accuracy and hardness to round. |
1055 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
1056 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
1057 |
### Significand to integer conversion ratio. |
1058 |
toIntegerFactor = 2^(precision-1) |
1059 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
1060 |
### Variables and rings for polynomials and root searching. |
1061 |
i=var('i') |
1062 |
t=var('t') |
1063 |
inputFunctionVariable = inputFunction.variables()[0] |
1064 |
function = inputFunction.subs({inputFunctionVariable:i}) |
1065 |
# Polynomial Rings over the integers, for root finding. |
1066 |
Zi = ZZ[i] |
1067 |
Zt = ZZ[t] |
1068 |
Zit = ZZ[i,t] |
1069 |
## Number of iterations limit. |
1070 |
maxIter = 100000 |
1071 |
# |
1072 |
## Set the variable name in Sollya. |
1073 |
pobyso_name_free_variable_sa_so(str(function.variables()[0])) |
1074 |
## Compute the scaled function and the degree, in their Sollya version |
1075 |
# once for all. |
1076 |
(scaledf, sdlb, sdub, silb, siub) = \ |
1077 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
1078 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
1079 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
1080 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
1081 |
# |
1082 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
1083 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
1084 |
(unscalingFunction, scalingFunction) = \ |
1085 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
1086 |
#print scalingFunction, unscalingFunction |
1087 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
1088 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
1089 |
if internalSollyaPrec < 192: |
1090 |
internalSollyaPrec = 192 |
1091 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
1092 |
print "Sollya internal precision:", internalSollyaPrec |
1093 |
## Some variables. |
1094 |
### General variables |
1095 |
lb = sdlb |
1096 |
ub = sdub |
1097 |
nbw = 0 |
1098 |
intervalUlp = ub.ulp() |
1099 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
1100 |
ic = 0 |
1101 |
icAsInt = 0 # Set from ic. |
1102 |
solutionsSet = set() |
1103 |
tsErrorWidth = [] |
1104 |
csErrorVectors = [] |
1105 |
csVectorsResultants = [] |
1106 |
floatP = 0 # Taylor polynomial. |
1107 |
floatPcv = 0 # Ditto with variable change. |
1108 |
intvl = "" # Taylor interval |
1109 |
terr = 0 # Taylor error. |
1110 |
iterCount = 0 |
1111 |
htrnSet = set() |
1112 |
### Timers and counters. |
1113 |
wallTimeStart = 0 |
1114 |
cpuTimeStart = 0 |
1115 |
taylCondFailedCount = 0 |
1116 |
coppCondFailedCount = 0 |
1117 |
resultCondFailedCount = 0 |
1118 |
coppCondFailed = False |
1119 |
resultCondFailed = False |
1120 |
globalResultsList = [] |
1121 |
basisConstructionsCount = 0 |
1122 |
basisConstructionsFullTime = 0 |
1123 |
basisConstructionTime = 0 |
1124 |
reductionsCount = 0 |
1125 |
reductionsFullTime = 0 |
1126 |
reductionTime = 0 |
1127 |
resultantsComputationsCount = 0 |
1128 |
resultantsComputationsFullTime = 0 |
1129 |
resultantsComputationTime = 0 |
1130 |
rootsComputationsCount = 0 |
1131 |
rootsComputationsFullTime = 0 |
1132 |
rootsComputationTime = 0 |
1133 |
|
1134 |
## Global times are started here. |
1135 |
wallTimeStart = walltime() |
1136 |
cpuTimeStart = cputime() |
1137 |
## Main loop. |
1138 |
while True: |
1139 |
if lb >= sdub: |
1140 |
print "Lower bound reached upper bound." |
1141 |
break |
1142 |
if iterCount == maxIter: |
1143 |
print "Reached maxIter. Aborting" |
1144 |
break |
1145 |
iterCount += 1 |
1146 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1147 |
"log2(numbers)." |
1148 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
1149 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
1150 |
degreeSo, |
1151 |
lb, |
1152 |
ub, |
1153 |
polyApproxAccur) |
1154 |
### Convert back the data into Sage space. |
1155 |
(floatP, floatPcv, intvl, ic, terr) = \ |
1156 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
1157 |
prceSo[1], prceSo[2], |
1158 |
prceSo[3])) |
1159 |
intvl = RRIF(intvl) |
1160 |
## Clean-up Sollya stuff. |
1161 |
for elem in prceSo: |
1162 |
sollya_lib_clear_obj(elem) |
1163 |
#print floatP, floatPcv, intvl, ic, terr |
1164 |
#print floatP |
1165 |
#print intvl.endpoints()[0].n(), \ |
1166 |
# ic.n(), |
1167 |
#intvl.endpoints()[1].n() |
1168 |
### Check returned data. |
1169 |
#### Is approximation error OK? |
1170 |
if terr > polyApproxAccur: |
1171 |
exceptionErrorMess = \ |
1172 |
"Approximation failed - computed error:" + \ |
1173 |
str(terr) + " - target error: " |
1174 |
exceptionErrorMess += \ |
1175 |
str(polyApproxAccur) + ". Aborting!" |
1176 |
raise Exception(exceptionErrorMess) |
1177 |
#### Is lower bound OK? |
1178 |
if lb != intvl.endpoints()[0]: |
1179 |
exceptionErrorMess = "Wrong lower bound:" + \ |
1180 |
str(lb) + ". Aborting!" |
1181 |
raise Exception(exceptionErrorMess) |
1182 |
#### Set upper bound. |
1183 |
if ub > intvl.endpoints()[1]: |
1184 |
ub = intvl.endpoints()[1] |
1185 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1186 |
"log2(numbers)." |
1187 |
taylCondFailedCount += 1 |
1188 |
#### Is interval not degenerate? |
1189 |
if lb >= ub: |
1190 |
exceptionErrorMess = "Degenerate interval: " + \ |
1191 |
"lowerBound(" + str(lb) +\ |
1192 |
")>= upperBound(" + str(ub) + \ |
1193 |
"). Aborting!" |
1194 |
raise Exception(exceptionErrorMess) |
1195 |
#### Is interval center ok? |
1196 |
if ic <= lb or ic >= ub: |
1197 |
exceptionErrorMess = "Invalid interval center for " + \ |
1198 |
str(lb) + ',' + str(ic) + ',' + \ |
1199 |
str(ub) + ". Aborting!" |
1200 |
raise Exception(exceptionErrorMess) |
1201 |
##### Current interval width and reset future interval width. |
1202 |
bw = ub - lb |
1203 |
nbw = 0 |
1204 |
icAsInt = int(ic * toIntegerFactor) |
1205 |
#### The following ratio is always >= 1. In case we may want to |
1206 |
# enlarge the interval |
1207 |
curTaylErrRat = polyApproxAccur / terr |
1208 |
### Make the integral transformations. |
1209 |
#### Bounds and interval center. |
1210 |
intIc = int(ic * toIntegerFactor) |
1211 |
intLb = int(lb * toIntegerFactor) - intIc |
1212 |
intUb = int(ub * toIntegerFactor) - intIc |
1213 |
# |
1214 |
#### Polynomials |
1215 |
basisConstructionTime = cputime() |
1216 |
##### To a polynomial with rational coefficients with rational arguments |
1217 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
1218 |
##### To a polynomial with rational coefficients with integer arguments |
1219 |
ratIntP = \ |
1220 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
1221 |
##### Ultimately a multivariate polynomial with integer coefficients |
1222 |
# with integer arguments. |
1223 |
coppersmithTuple = \ |
1224 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
1225 |
precision, |
1226 |
targetHardnessToRound, |
1227 |
i, t) |
1228 |
#### Recover Coppersmith information. |
1229 |
intIntP = coppersmithTuple[0] |
1230 |
N = coppersmithTuple[1] |
1231 |
nAtAlpha = N^alpha |
1232 |
tBound = coppersmithTuple[2] |
1233 |
leastCommonMultiple = coppersmithTuple[3] |
1234 |
iBound = max(abs(intLb),abs(intUb)) |
1235 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
1236 |
basisConstructionsCount += 1 |
1237 |
reductionTime = cputime() |
1238 |
#### Compute the reduced polynomials. |
1239 |
ccReducedPolynomialsList = \ |
1240 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
1241 |
alpha, |
1242 |
N, |
1243 |
iBound, |
1244 |
tBound) |
1245 |
if ccReducedPolynomialsList is None: |
1246 |
raise Exception("Reduction failed.") |
1247 |
reductionsFullTime += cputime(reductionTime) |
1248 |
reductionsCount += 1 |
1249 |
if len(ccReducedPolynomialsList) < 2: |
1250 |
print "Nothing to form resultants with." |
1251 |
|
1252 |
coppCondFailedCount += 1 |
1253 |
coppCondFailed = True |
1254 |
##### Apply a different shrink factor according to |
1255 |
# the number of compliant polynomials. |
1256 |
if len(ccReducedPolynomialsList) == 0: |
1257 |
ub = lb + bw * noCoppersmithIntervalShrink |
1258 |
else: # At least one compliant polynomial. |
1259 |
ub = lb + bw * oneCoppersmithIntervalShrink |
1260 |
if ub > sdub: |
1261 |
ub = sdub |
1262 |
if lb == ub: |
1263 |
raise Exception("Cant shrink interval \ |
1264 |
anymore to get Coppersmith condition.") |
1265 |
nbw = 0 |
1266 |
continue |
1267 |
#### We have at least two polynomials. |
1268 |
# Let us try to compute resultants. |
1269 |
# For each resultant computed, go for the solutions. |
1270 |
##### Build the pairs list. |
1271 |
polyPairsList = [] |
1272 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
1273 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
1274 |
len(ccReducedPolynomialsList)): |
1275 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
1276 |
ccReducedPolynomialsList[polyInnerIndex])) |
1277 |
#### Actual root search. |
1278 |
rootsSet = set() |
1279 |
hasNonNullResultant = False |
1280 |
for polyPair in polyPairsList: |
1281 |
if hasNonNullResultant: |
1282 |
break |
1283 |
resultantsComputationTime = cputime() |
1284 |
currentResultant = \ |
1285 |
slz_resultant(polyPair[0], |
1286 |
polyPair[1], |
1287 |
t) |
1288 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
1289 |
resultantsComputationsCount += 1 |
1290 |
if currentResultant is None: |
1291 |
print "Nul resultant" |
1292 |
continue # Next polyPair. |
1293 |
else: |
1294 |
hasNonNullResultant = True |
1295 |
#### We have a non null resultant. From now on, whatever the |
1296 |
# root search yields, no extra root search is necessary. |
1297 |
#### A constant resultant leads to no root. Root search is done. |
1298 |
if currentResultant.degree() < 1: |
1299 |
print "Resultant is constant:", currentResultant |
1300 |
continue # Next polyPair and should break. |
1301 |
#### Actual roots computation. |
1302 |
rootsComputationTime = cputime() |
1303 |
##### Compute i roots |
1304 |
iRootsList = Zi(currentResultant).roots() |
1305 |
##### For each iRoot, compute the corresponding tRoots and |
1306 |
# and build populate the .rootsSet. |
1307 |
for iRoot in iRootsList: |
1308 |
####### Roots returned by roots() are (value, multiplicity) |
1309 |
# tuples. |
1310 |
#print "iRoot:", iRoot |
1311 |
###### Use the tRoot against each polynomial, alternatively. |
1312 |
for indexInPair in range(0,2): |
1313 |
currentPolynomial = polyPair[indexInPair] |
1314 |
####### If the polynomial is univariate, just drop it. |
1315 |
if len(currentPolynomial.variables()) < 2: |
1316 |
print " Current polynomial is not in two variables." |
1317 |
continue # Next indexInPair |
1318 |
tRootsList = \ |
1319 |
Zt(currentPolynomial.subs({currentPolynomial.variables()[0]:iRoot[0]})).roots() |
1320 |
####### The tRootsList can be empty, hence the test. |
1321 |
if len(tRootsList) == 0: |
1322 |
print " No t root." |
1323 |
continue # Next indexInPair |
1324 |
for tRoot in tRootsList: |
1325 |
rootsSet.add((iRoot[0], tRoot[0])) |
1326 |
# End of roots computation. |
1327 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
1328 |
rootsComputationsCount += 1 |
1329 |
# End loop for polyPair in polyParsList. Will break at next iteration. |
1330 |
# since a non null resultant was found. |
1331 |
#### Prepare for results for the current interval.. |
1332 |
intervalResultsList = [] |
1333 |
intervalResultsList.append((lb, ub)) |
1334 |
#### Check roots. |
1335 |
rootsResultsList = [] |
1336 |
for root in rootsSet: |
1337 |
specificRootResultsList = [] |
1338 |
failingBounds = [] |
1339 |
intIntPdivN = intIntP(root[0], root[1]) / N |
1340 |
if int(intIntPdivN) != intIntPdivN: |
1341 |
continue # Next root |
1342 |
# Root qualifies for modular equation, test it for hardness to round. |
1343 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
1344 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
1345 |
#print scalingFunction |
1346 |
scaledHardToRoundCaseAsFloat = \ |
1347 |
scalingFunction(hardToRoundCaseAsFloat) |
1348 |
print "Candidate HTRNc at x =", \ |
1349 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
1350 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
1351 |
function, |
1352 |
2^-(targetHardnessToRound), |
1353 |
RRR): |
1354 |
print hardToRoundCaseAsFloat, "is HTRN case." |
1355 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
1356 |
print "Found in interval." |
1357 |
else: |
1358 |
print "Found out of interval." |
1359 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
1360 |
# Check the root is in the bounds |
1361 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
1362 |
print "Root", root, "is out of bounds for modular equation." |
1363 |
if abs(root[0]) > iBound: |
1364 |
print "root[0]:", root[0] |
1365 |
print "i bound:", iBound |
1366 |
failingBounds.append('i') |
1367 |
failingBounds.append(root[0]) |
1368 |
failingBounds.append(iBound) |
1369 |
if abs(root[1]) > tBound: |
1370 |
print "root[1]:", root[1] |
1371 |
print "t bound:", tBound |
1372 |
failingBounds.append('t') |
1373 |
failingBounds.append(root[1]) |
1374 |
failingBounds.append(tBound) |
1375 |
if len(failingBounds) > 0: |
1376 |
specificRootResultsList.append(failingBounds) |
1377 |
else: # From slz_is_htrn... |
1378 |
print "is not an HTRN case." |
1379 |
if len(specificRootResultsList) > 0: |
1380 |
rootsResultsList.append(specificRootResultsList) |
1381 |
if len(rootsResultsList) > 0: |
1382 |
intervalResultsList.append(rootsResultsList) |
1383 |
### Check if a non null resultant was found. If not shrink the interval. |
1384 |
if not hasNonNullResultant: |
1385 |
print "Only null resultants for this reduction, shrinking interval." |
1386 |
resultCondFailed = True |
1387 |
resultCondFailedCount += 1 |
1388 |
### Shrink interval for next iteration. |
1389 |
ub = lb + bw * onlyNullResultantsShrink |
1390 |
if ub > sdub: |
1391 |
ub = sdub |
1392 |
nbw = 0 |
1393 |
continue |
1394 |
#### An intervalResultsList has at least the bounds. |
1395 |
globalResultsList.append(intervalResultsList) |
1396 |
#### Compute an incremented width for next upper bound, only |
1397 |
# if not Coppersmith condition nor resultant condition |
1398 |
# failed at the previous run. |
1399 |
if not coppCondFailed and not resultCondFailed: |
1400 |
nbw = noErrorIntervalStretch * bw |
1401 |
else: |
1402 |
nbw = bw |
1403 |
##### Reset the failure flags. They will be raised |
1404 |
# again if needed. |
1405 |
coppCondFailed = False |
1406 |
resultCondFailed = False |
1407 |
#### For next iteration (at end of loop) |
1408 |
#print "nbw:", nbw |
1409 |
lb = ub |
1410 |
ub += nbw |
1411 |
if ub > sdub: |
1412 |
ub = sdub |
1413 |
|
1414 |
# End while True |
1415 |
## Main loop just ended. |
1416 |
globalWallTime = walltime(wallTimeStart) |
1417 |
globalCpuTime = cputime(cpuTimeStart) |
1418 |
## Output results |
1419 |
print ; print "Intervals and HTRNs" ; print |
1420 |
for intervalResultsList in globalResultsList: |
1421 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
1422 |
"," + str(intervalResultsList[0][1]) + "]" |
1423 |
print intervalResultString, |
1424 |
if len(intervalResultsList) > 1: |
1425 |
rootsResultsList = intervalResultsList[1] |
1426 |
specificRootResultIndex = 0 |
1427 |
for specificRootResultsList in rootsResultsList: |
1428 |
if specificRootResultIndex == 0: |
1429 |
print "\t", specificRootResultsList[0], |
1430 |
else: |
1431 |
print " " * len(intervalResultString), "\t", \ |
1432 |
specificRootResultsList[0], |
1433 |
if len(specificRootResultsList) > 1: |
1434 |
print specificRootResultsList[1] |
1435 |
specificRootResultIndex += 1 |
1436 |
print ; print |
1437 |
#print globalResultsList |
1438 |
# |
1439 |
print "Timers and counters" |
1440 |
|
1441 |
print "Number of iterations:", iterCount |
1442 |
print "Taylor condition failures:", taylCondFailedCount |
1443 |
print "Coppersmith condition failures:", coppCondFailedCount |
1444 |
print "Resultant condition failures:", resultCondFailedCount |
1445 |
print "Iterations count: ", iterCount |
1446 |
print "Number of intervals:", len(globalResultsList) |
1447 |
print "Number of basis constructions:", basisConstructionsCount |
1448 |
print "Total CPU time spent in basis constructions:", \ |
1449 |
basisConstructionsFullTime |
1450 |
if basisConstructionsCount != 0: |
1451 |
print "Average basis construction CPU time:", \ |
1452 |
basisConstructionsFullTime/basisConstructionsCount |
1453 |
print "Number of reductions:", reductionsCount |
1454 |
print "Total CPU time spent in reductions:", reductionsFullTime |
1455 |
if reductionsCount != 0: |
1456 |
print "Average reduction CPU time:", \ |
1457 |
reductionsFullTime/reductionsCount |
1458 |
print "Number of resultants computation rounds:", \ |
1459 |
resultantsComputationsCount |
1460 |
print "Total CPU time spent in resultants computation rounds:", \ |
1461 |
resultantsComputationsFullTime |
1462 |
if resultantsComputationsCount != 0: |
1463 |
print "Average resultants computation round CPU time:", \ |
1464 |
resultantsComputationsFullTime/resultantsComputationsCount |
1465 |
print "Number of root finding rounds:", rootsComputationsCount |
1466 |
print "Total CPU time spent in roots finding rounds:", \ |
1467 |
rootsComputationsFullTime |
1468 |
if rootsComputationsCount != 0: |
1469 |
print "Average roots finding round CPU time:", \ |
1470 |
rootsComputationsFullTime/rootsComputationsCount |
1471 |
print "Global Wall time:", globalWallTime |
1472 |
print "Global CPU time:", globalCpuTime |
1473 |
## Output counters |
1474 |
# End srs_runSLZ-v02 |
1475 |
|
1476 |
def srs_run_SLZ_v03(inputFunction, |
1477 |
inputLowerBound, |
1478 |
inputUpperBound, |
1479 |
alpha, |
1480 |
degree, |
1481 |
precision, |
1482 |
emin, |
1483 |
emax, |
1484 |
targetHardnessToRound, |
1485 |
debug = False): |
1486 |
""" |
1487 |
Changes from V2: |
1488 |
Root search is changed: |
1489 |
- we compute the resultants in i and in t; |
1490 |
- we compute the roots set of each of these resultants; |
1491 |
- we combine all the possible pairs between the two sets; |
1492 |
- we check these pairs in polynomials for correctness. |
1493 |
Changes from V1: |
1494 |
1- check for roots as soon as a resultant is computed; |
1495 |
2- once a non null resultant is found, check for roots; |
1496 |
3- constant resultant == no root. |
1497 |
""" |
1498 |
|
1499 |
if debug: |
1500 |
print "Function :", inputFunction |
1501 |
print "Lower bound :", inputLowerBound |
1502 |
print "Upper bounds :", inputUpperBound |
1503 |
print "Alpha :", alpha |
1504 |
print "Degree :", degree |
1505 |
print "Precision :", precision |
1506 |
print "Emin :", emin |
1507 |
print "Emax :", emax |
1508 |
print "Target hardness-to-round:", targetHardnessToRound |
1509 |
|
1510 |
## Important constants. |
1511 |
### Stretch the interval if no error happens. |
1512 |
noErrorIntervalStretch = 1 + 2^(-5) |
1513 |
### If no vector validates the Coppersmith condition, shrink the interval |
1514 |
# by the following factor. |
1515 |
noCoppersmithIntervalShrink = 1/2 |
1516 |
### If only (or at least) one vector validates the Coppersmith condition, |
1517 |
# shrink the interval by the following factor. |
1518 |
oneCoppersmithIntervalShrink = 3/4 |
1519 |
#### If only null resultants are found, shrink the interval by the |
1520 |
# following factor. |
1521 |
onlyNullResultantsShrink = 3/4 |
1522 |
## Structures. |
1523 |
RRR = RealField(precision) |
1524 |
RRIF = RealIntervalField(precision) |
1525 |
## Converting input bound into the "right" field. |
1526 |
lowerBound = RRR(inputLowerBound) |
1527 |
upperBound = RRR(inputUpperBound) |
1528 |
## Before going any further, check domain and image binade conditions. |
1529 |
print inputFunction(1).n() |
1530 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
1531 |
if output is None: |
1532 |
print "Invalid domain/image binades. Domain:",\ |
1533 |
lowerBound, upperBound, "Images:", \ |
1534 |
inputFunction(lowerBound), inputFunction(upperBound) |
1535 |
raise Exception("Invalid domain/image binades.") |
1536 |
lb = output[0] ; ub = output[1] |
1537 |
if lb != lowerBound or ub != upperBound: |
1538 |
print "lb:", lb, " - ub:", ub |
1539 |
print "Invalid domain/image binades. Domain:",\ |
1540 |
lowerBound, upperBound, "Images:", \ |
1541 |
inputFunction(lowerBound), inputFunction(upperBound) |
1542 |
raise Exception("Invalid domain/image binades.") |
1543 |
# |
1544 |
## Progam initialization |
1545 |
### Approximation polynomial accuracy and hardness to round. |
1546 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
1547 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
1548 |
### Significand to integer conversion ratio. |
1549 |
toIntegerFactor = 2^(precision-1) |
1550 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
1551 |
### Variables and rings for polynomials and root searching. |
1552 |
i=var('i') |
1553 |
t=var('t') |
1554 |
inputFunctionVariable = inputFunction.variables()[0] |
1555 |
function = inputFunction.subs({inputFunctionVariable:i}) |
1556 |
# Polynomial Rings over the integers, for root finding. |
1557 |
Zi = ZZ[i] |
1558 |
Zt = ZZ[t] |
1559 |
Zit = ZZ[i,t] |
1560 |
## Number of iterations limit. |
1561 |
maxIter = 100000 |
1562 |
## Set the variable name in Sollya. |
1563 |
pobyso_name_free_variable_sa_so(str(function.variables()[0])) |
1564 |
# |
1565 |
## Compute the scaled function and the degree, in their Sollya version |
1566 |
# once for all. |
1567 |
(scaledf, sdlb, sdub, silb, siub) = \ |
1568 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
1569 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
1570 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
1571 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
1572 |
# |
1573 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
1574 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
1575 |
(unscalingFunction, scalingFunction) = \ |
1576 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
1577 |
#print scalingFunction, unscalingFunction |
1578 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
1579 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
1580 |
if internalSollyaPrec < 192: |
1581 |
internalSollyaPrec = 192 |
1582 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
1583 |
print "Sollya internal precision:", internalSollyaPrec |
1584 |
## Some variables. |
1585 |
### General variables |
1586 |
lb = sdlb |
1587 |
ub = sdub |
1588 |
nbw = 0 |
1589 |
intervalUlp = ub.ulp() |
1590 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
1591 |
ic = 0 |
1592 |
icAsInt = 0 # Set from ic. |
1593 |
solutionsSet = set() |
1594 |
tsErrorWidth = [] |
1595 |
csErrorVectors = [] |
1596 |
csVectorsResultants = [] |
1597 |
floatP = 0 # Taylor polynomial. |
1598 |
floatPcv = 0 # Ditto with variable change. |
1599 |
intvl = "" # Taylor interval |
1600 |
terr = 0 # Taylor error. |
1601 |
iterCount = 0 |
1602 |
htrnSet = set() |
1603 |
### Timers and counters. |
1604 |
wallTimeStart = 0 |
1605 |
cpuTimeStart = 0 |
1606 |
taylCondFailedCount = 0 |
1607 |
coppCondFailedCount = 0 |
1608 |
resultCondFailedCount = 0 |
1609 |
coppCondFailed = False |
1610 |
resultCondFailed = False |
1611 |
globalResultsList = [] |
1612 |
basisConstructionsCount = 0 |
1613 |
basisConstructionsFullTime = 0 |
1614 |
basisConstructionTime = 0 |
1615 |
reductionsCount = 0 |
1616 |
reductionsFullTime = 0 |
1617 |
reductionTime = 0 |
1618 |
resultantsComputationsCount = 0 |
1619 |
resultantsComputationsFullTime = 0 |
1620 |
resultantsComputationTime = 0 |
1621 |
rootsComputationsCount = 0 |
1622 |
rootsComputationsFullTime = 0 |
1623 |
rootsComputationTime = 0 |
1624 |
|
1625 |
## Global times are started here. |
1626 |
wallTimeStart = walltime() |
1627 |
cpuTimeStart = cputime() |
1628 |
## Main loop. |
1629 |
while True: |
1630 |
if lb >= sdub: |
1631 |
print "Lower bound reached upper bound." |
1632 |
break |
1633 |
if iterCount == maxIter: |
1634 |
print "Reached maxIter. Aborting" |
1635 |
break |
1636 |
iterCount += 1 |
1637 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1638 |
"log2(numbers)." |
1639 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
1640 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
1641 |
degreeSo, |
1642 |
lb, |
1643 |
ub, |
1644 |
polyApproxAccur) |
1645 |
### Convert back the data into Sage space. |
1646 |
(floatP, floatPcv, intvl, ic, terr) = \ |
1647 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
1648 |
prceSo[1], prceSo[2], |
1649 |
prceSo[3])) |
1650 |
intvl = RRIF(intvl) |
1651 |
## Clean-up Sollya stuff. |
1652 |
for elem in prceSo: |
1653 |
sollya_lib_clear_obj(elem) |
1654 |
#print floatP, floatPcv, intvl, ic, terr |
1655 |
#print floatP |
1656 |
#print intvl.endpoints()[0].n(), \ |
1657 |
# ic.n(), |
1658 |
#intvl.endpoints()[1].n() |
1659 |
### Check returned data. |
1660 |
#### Is approximation error OK? |
1661 |
if terr > polyApproxAccur: |
1662 |
exceptionErrorMess = \ |
1663 |
"Approximation failed - computed error:" + \ |
1664 |
str(terr) + " - target error: " |
1665 |
exceptionErrorMess += \ |
1666 |
str(polyApproxAccur) + ". Aborting!" |
1667 |
raise Exception(exceptionErrorMess) |
1668 |
#### Is lower bound OK? |
1669 |
if lb != intvl.endpoints()[0]: |
1670 |
exceptionErrorMess = "Wrong lower bound:" + \ |
1671 |
str(lb) + ". Aborting!" |
1672 |
raise Exception(exceptionErrorMess) |
1673 |
#### Set upper bound. |
1674 |
if ub > intvl.endpoints()[1]: |
1675 |
ub = intvl.endpoints()[1] |
1676 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1677 |
"log2(numbers)." |
1678 |
taylCondFailedCount += 1 |
1679 |
#### Is interval not degenerate? |
1680 |
if lb >= ub: |
1681 |
exceptionErrorMess = "Degenerate interval: " + \ |
1682 |
"lowerBound(" + str(lb) +\ |
1683 |
")>= upperBound(" + str(ub) + \ |
1684 |
"). Aborting!" |
1685 |
raise Exception(exceptionErrorMess) |
1686 |
#### Is interval center ok? |
1687 |
if ic <= lb or ic >= ub: |
1688 |
exceptionErrorMess = "Invalid interval center for " + \ |
1689 |
str(lb) + ',' + str(ic) + ',' + \ |
1690 |
str(ub) + ". Aborting!" |
1691 |
raise Exception(exceptionErrorMess) |
1692 |
##### Current interval width and reset future interval width. |
1693 |
bw = ub - lb |
1694 |
nbw = 0 |
1695 |
icAsInt = int(ic * toIntegerFactor) |
1696 |
#### The following ratio is always >= 1. In case we may want to |
1697 |
# enlarge the interval |
1698 |
curTaylErrRat = polyApproxAccur / terr |
1699 |
### Make the integral transformations. |
1700 |
#### Bounds and interval center. |
1701 |
intIc = int(ic * toIntegerFactor) |
1702 |
intLb = int(lb * toIntegerFactor) - intIc |
1703 |
intUb = int(ub * toIntegerFactor) - intIc |
1704 |
# |
1705 |
#### Polynomials |
1706 |
basisConstructionTime = cputime() |
1707 |
##### To a polynomial with rational coefficients with rational arguments |
1708 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
1709 |
##### To a polynomial with rational coefficients with integer arguments |
1710 |
ratIntP = \ |
1711 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
1712 |
##### Ultimately a multivariate polynomial with integer coefficients |
1713 |
# with integer arguments. |
1714 |
coppersmithTuple = \ |
1715 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
1716 |
precision, |
1717 |
targetHardnessToRound, |
1718 |
i, t) |
1719 |
#### Recover Coppersmith information. |
1720 |
intIntP = coppersmithTuple[0] |
1721 |
N = coppersmithTuple[1] |
1722 |
nAtAlpha = N^alpha |
1723 |
tBound = coppersmithTuple[2] |
1724 |
leastCommonMultiple = coppersmithTuple[3] |
1725 |
iBound = max(abs(intLb),abs(intUb)) |
1726 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
1727 |
basisConstructionsCount += 1 |
1728 |
reductionTime = cputime() |
1729 |
#### Compute the reduced polynomials. |
1730 |
ccReducedPolynomialsList = \ |
1731 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
1732 |
alpha, |
1733 |
N, |
1734 |
iBound, |
1735 |
tBound) |
1736 |
if ccReducedPolynomialsList is None: |
1737 |
raise Exception("Reduction failed.") |
1738 |
reductionsFullTime += cputime(reductionTime) |
1739 |
reductionsCount += 1 |
1740 |
if len(ccReducedPolynomialsList) < 2: |
1741 |
print "Nothing to form resultants with." |
1742 |
|
1743 |
coppCondFailedCount += 1 |
1744 |
coppCondFailed = True |
1745 |
##### Apply a different shrink factor according to |
1746 |
# the number of compliant polynomials. |
1747 |
if len(ccReducedPolynomialsList) == 0: |
1748 |
ub = lb + bw * noCoppersmithIntervalShrink |
1749 |
else: # At least one compliant polynomial. |
1750 |
ub = lb + bw * oneCoppersmithIntervalShrink |
1751 |
if ub > sdub: |
1752 |
ub = sdub |
1753 |
if lb == ub: |
1754 |
raise Exception("Cant shrink interval \ |
1755 |
anymore to get Coppersmith condition.") |
1756 |
nbw = 0 |
1757 |
continue |
1758 |
#### We have at least two polynomials. |
1759 |
# Let us try to compute resultants. |
1760 |
# For each resultant computed, go for the solutions. |
1761 |
##### Build the pairs list. |
1762 |
polyPairsList = [] |
1763 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
1764 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
1765 |
len(ccReducedPolynomialsList)): |
1766 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
1767 |
ccReducedPolynomialsList[polyInnerIndex])) |
1768 |
#### Actual root search. |
1769 |
rootsSet = set() |
1770 |
hasNonNullResultant = False |
1771 |
for polyPair in polyPairsList: |
1772 |
if hasNonNullResultant: |
1773 |
break |
1774 |
resultantsComputationTime = cputime() |
1775 |
currentResultantI = \ |
1776 |
slz_resultant(polyPair[0], |
1777 |
polyPair[1], |
1778 |
t) |
1779 |
resultantsComputationsCount += 1 |
1780 |
if currentResultantI is None: |
1781 |
resultantsComputationsFullTime += \ |
1782 |
cputime(resultantsComputationTime) |
1783 |
print "Nul resultant" |
1784 |
continue # Next polyPair. |
1785 |
currentResultantT = \ |
1786 |
slz_resultant(polyPair[0], |
1787 |
polyPair[1], |
1788 |
i) |
1789 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
1790 |
resultantsComputationsCount += 1 |
1791 |
if currentResultantT is None: |
1792 |
print "Nul resultant" |
1793 |
continue # Next polyPair. |
1794 |
else: |
1795 |
hasNonNullResultant = True |
1796 |
#### We have a non null resultants pair. From now on, whatever the |
1797 |
# root search yields, no extra root search is necessary. |
1798 |
#### A constant resultant leads to no root. Root search is done. |
1799 |
if currentResultantI.degree() < 1: |
1800 |
print "Resultant is constant:", currentResultantI |
1801 |
break # Next polyPair and should break. |
1802 |
if currentResultantT.degree() < 1: |
1803 |
print "Resultant is constant:", currentResultantT |
1804 |
break # Next polyPair and should break. |
1805 |
#### Actual roots computation. |
1806 |
rootsComputationTime = cputime() |
1807 |
##### Compute i roots |
1808 |
iRootsList = Zi(currentResultantI).roots() |
1809 |
rootsComputationsCount += 1 |
1810 |
if len(iRootsList) == 0: |
1811 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
1812 |
print "No roots in \"i\"." |
1813 |
break # No roots in i. |
1814 |
tRootsList = Zt(currentResultantT).roots() |
1815 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
1816 |
rootsComputationsCount += 1 |
1817 |
if len(tRootsList) == 0: |
1818 |
print "No roots in \"t\"." |
1819 |
break # No roots in i. |
1820 |
##### For each iRoot, get a tRoot and check against the polynomials. |
1821 |
for iRoot in iRootsList: |
1822 |
####### Roots returned by roots() are (value, multiplicity) |
1823 |
# tuples. |
1824 |
#print "iRoot:", iRoot |
1825 |
for tRoot in tRootsList: |
1826 |
###### Use the tRoot against each polynomial, alternatively. |
1827 |
if polyPair[0](iRoot[0],tRoot[0]) != 0: |
1828 |
continue |
1829 |
if polyPair[1](iRoot[0],tRoot[0]) != 0: |
1830 |
continue |
1831 |
rootsSet.add((iRoot[0], tRoot[0])) |
1832 |
# End of roots computation. |
1833 |
# End loop for polyPair in polyParsList. Will break at next iteration. |
1834 |
# since a non null resultant was found. |
1835 |
#### Prepare for results for the current interval.. |
1836 |
intervalResultsList = [] |
1837 |
intervalResultsList.append((lb, ub)) |
1838 |
#### Check roots. |
1839 |
rootsResultsList = [] |
1840 |
for root in rootsSet: |
1841 |
specificRootResultsList = [] |
1842 |
failingBounds = [] |
1843 |
intIntPdivN = intIntP(root[0], root[1]) / N |
1844 |
if int(intIntPdivN) != intIntPdivN: |
1845 |
continue # Next root |
1846 |
# Root qualifies for modular equation, test it for hardness to round. |
1847 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
1848 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
1849 |
#print scalingFunction |
1850 |
scaledHardToRoundCaseAsFloat = \ |
1851 |
scalingFunction(hardToRoundCaseAsFloat) |
1852 |
print "Candidate HTRNc at x =", \ |
1853 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
1854 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
1855 |
function, |
1856 |
2^-(targetHardnessToRound), |
1857 |
RRR): |
1858 |
print hardToRoundCaseAsFloat, "is HTRN case." |
1859 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
1860 |
print "Found in interval." |
1861 |
else: |
1862 |
print "Found out of interval." |
1863 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
1864 |
# Check the root is in the bounds |
1865 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
1866 |
print "Root", root, "is out of bounds for modular equation." |
1867 |
if abs(root[0]) > iBound: |
1868 |
print "root[0]:", root[0] |
1869 |
print "i bound:", iBound |
1870 |
failingBounds.append('i') |
1871 |
failingBounds.append(root[0]) |
1872 |
failingBounds.append(iBound) |
1873 |
if abs(root[1]) > tBound: |
1874 |
print "root[1]:", root[1] |
1875 |
print "t bound:", tBound |
1876 |
failingBounds.append('t') |
1877 |
failingBounds.append(root[1]) |
1878 |
failingBounds.append(tBound) |
1879 |
if len(failingBounds) > 0: |
1880 |
specificRootResultsList.append(failingBounds) |
1881 |
else: # From slz_is_htrn... |
1882 |
print "is not an HTRN case." |
1883 |
if len(specificRootResultsList) > 0: |
1884 |
rootsResultsList.append(specificRootResultsList) |
1885 |
if len(rootsResultsList) > 0: |
1886 |
intervalResultsList.append(rootsResultsList) |
1887 |
### Check if a non null resultant was found. If not shrink the interval. |
1888 |
if not hasNonNullResultant: |
1889 |
print "Only null resultants for this reduction, shrinking interval." |
1890 |
resultCondFailed = True |
1891 |
resultCondFailedCount += 1 |
1892 |
### Shrink interval for next iteration. |
1893 |
ub = lb + bw * onlyNullResultantsShrink |
1894 |
if ub > sdub: |
1895 |
ub = sdub |
1896 |
nbw = 0 |
1897 |
continue |
1898 |
#### An intervalResultsList has at least the bounds. |
1899 |
globalResultsList.append(intervalResultsList) |
1900 |
#### Compute an incremented width for next upper bound, only |
1901 |
# if not Coppersmith condition nor resultant condition |
1902 |
# failed at the previous run. |
1903 |
if not coppCondFailed and not resultCondFailed: |
1904 |
nbw = noErrorIntervalStretch * bw |
1905 |
else: |
1906 |
nbw = bw |
1907 |
##### Reset the failure flags. They will be raised |
1908 |
# again if needed. |
1909 |
coppCondFailed = False |
1910 |
resultCondFailed = False |
1911 |
#### For next iteration (at end of loop) |
1912 |
#print "nbw:", nbw |
1913 |
lb = ub |
1914 |
ub += nbw |
1915 |
if ub > sdub: |
1916 |
ub = sdub |
1917 |
|
1918 |
# End while True |
1919 |
## Main loop just ended. |
1920 |
globalWallTime = walltime(wallTimeStart) |
1921 |
globalCpuTime = cputime(cpuTimeStart) |
1922 |
## Output results |
1923 |
print ; print "Intervals and HTRNs" ; print |
1924 |
for intervalResultsList in globalResultsList: |
1925 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
1926 |
"," + str(intervalResultsList[0][1]) + "]" |
1927 |
print intervalResultString, |
1928 |
if len(intervalResultsList) > 1: |
1929 |
rootsResultsList = intervalResultsList[1] |
1930 |
specificRootResultIndex = 0 |
1931 |
for specificRootResultsList in rootsResultsList: |
1932 |
if specificRootResultIndex == 0: |
1933 |
print "\t", specificRootResultsList[0], |
1934 |
else: |
1935 |
print " " * len(intervalResultString), "\t", \ |
1936 |
specificRootResultsList[0], |
1937 |
if len(specificRootResultsList) > 1: |
1938 |
print specificRootResultsList[1] |
1939 |
specificRootResultIndex += 1 |
1940 |
print ; print |
1941 |
#print globalResultsList |
1942 |
# |
1943 |
print "Timers and counters" |
1944 |
|
1945 |
print "Number of iterations:", iterCount |
1946 |
print "Taylor condition failures:", taylCondFailedCount |
1947 |
print "Coppersmith condition failures:", coppCondFailedCount |
1948 |
print "Resultant condition failures:", resultCondFailedCount |
1949 |
print "Iterations count: ", iterCount |
1950 |
print "Number of intervals:", len(globalResultsList) |
1951 |
print "Number of basis constructions:", basisConstructionsCount |
1952 |
print "Total CPU time spent in basis constructions:", \ |
1953 |
basisConstructionsFullTime |
1954 |
if basisConstructionsCount != 0: |
1955 |
print "Average basis construction CPU time:", \ |
1956 |
basisConstructionsFullTime/basisConstructionsCount |
1957 |
print "Number of reductions:", reductionsCount |
1958 |
print "Total CPU time spent in reductions:", reductionsFullTime |
1959 |
if reductionsCount != 0: |
1960 |
print "Average reduction CPU time:", \ |
1961 |
reductionsFullTime/reductionsCount |
1962 |
print "Number of resultants computation rounds:", \ |
1963 |
resultantsComputationsCount |
1964 |
print "Total CPU time spent in resultants computation rounds:", \ |
1965 |
resultantsComputationsFullTime |
1966 |
if resultantsComputationsCount != 0: |
1967 |
print "Average resultants computation round CPU time:", \ |
1968 |
resultantsComputationsFullTime/resultantsComputationsCount |
1969 |
print "Number of root finding rounds:", rootsComputationsCount |
1970 |
print "Total CPU time spent in roots finding rounds:", \ |
1971 |
rootsComputationsFullTime |
1972 |
if rootsComputationsCount != 0: |
1973 |
print "Average roots finding round CPU time:", \ |
1974 |
rootsComputationsFullTime/rootsComputationsCount |
1975 |
print "Global Wall time:", globalWallTime |
1976 |
print "Global CPU time:", globalCpuTime |
1977 |
## Output counters |
1978 |
# End srs_runSLZ-v03 |
1979 |
|
1980 |
def srs_run_SLZ_v04(inputFunction, |
1981 |
inputLowerBound, |
1982 |
inputUpperBound, |
1983 |
alpha, |
1984 |
degree, |
1985 |
precision, |
1986 |
emin, |
1987 |
emax, |
1988 |
targetHardnessToRound, |
1989 |
debug = False): |
1990 |
""" |
1991 |
Changes from V3: |
1992 |
Root search is changed again: |
1993 |
- only resultants in i are computed; |
1994 |
- roots in i are searched for; |
1995 |
- if any, they are tested for hardness-to-round. |
1996 |
Changes from V2: |
1997 |
Root search is changed: |
1998 |
- we compute the resultants in i and in t; |
1999 |
- we compute the roots set of each of these resultants; |
2000 |
- we combine all the possible pairs between the two sets; |
2001 |
- we check these pairs in polynomials for correctness. |
2002 |
Changes from V1: |
2003 |
1- check for roots as soon as a resultant is computed; |
2004 |
2- once a non null resultant is found, check for roots; |
2005 |
3- constant resultant == no root. |
2006 |
""" |
2007 |
|
2008 |
if debug: |
2009 |
print "Function :", inputFunction |
2010 |
print "Lower bound :", inputLowerBound |
2011 |
print "Upper bounds :", inputUpperBound |
2012 |
print "Alpha :", alpha |
2013 |
print "Degree :", degree |
2014 |
print "Precision :", precision |
2015 |
print "Emin :", emin |
2016 |
print "Emax :", emax |
2017 |
print "Target hardness-to-round:", targetHardnessToRound |
2018 |
|
2019 |
## Important constants. |
2020 |
### Stretch the interval if no error happens. |
2021 |
noErrorIntervalStretch = 1 + 2^(-5) |
2022 |
### If no vector validates the Coppersmith condition, shrink the interval |
2023 |
# by the following factor. |
2024 |
noCoppersmithIntervalShrink = 1/2 |
2025 |
### If only (or at least) one vector validates the Coppersmith condition, |
2026 |
# shrink the interval by the following factor. |
2027 |
oneCoppersmithIntervalShrink = 3/4 |
2028 |
#### If only null resultants are found, shrink the interval by the |
2029 |
# following factor. |
2030 |
onlyNullResultantsShrink = 3/4 |
2031 |
## Structures. |
2032 |
RRR = RealField(precision) |
2033 |
RRIF = RealIntervalField(precision) |
2034 |
## Converting input bound into the "right" field. |
2035 |
lowerBound = RRR(inputLowerBound) |
2036 |
upperBound = RRR(inputUpperBound) |
2037 |
## Before going any further, check domain and image binade conditions. |
2038 |
print inputFunction(1).n() |
2039 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
2040 |
if output is None: |
2041 |
print "Invalid domain/image binades. Domain:",\ |
2042 |
lowerBound, upperBound, "Images:", \ |
2043 |
inputFunction(lowerBound), inputFunction(upperBound) |
2044 |
raise Exception("Invalid domain/image binades.") |
2045 |
lb = output[0] ; ub = output[1] |
2046 |
if lb != lowerBound or ub != upperBound: |
2047 |
print "lb:", lb, " - ub:", ub |
2048 |
print "Invalid domain/image binades. Domain:",\ |
2049 |
lowerBound, upperBound, "Images:", \ |
2050 |
inputFunction(lowerBound), inputFunction(upperBound) |
2051 |
raise Exception("Invalid domain/image binades.") |
2052 |
# |
2053 |
## Progam initialization |
2054 |
### Approximation polynomial accuracy and hardness to round. |
2055 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
2056 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
2057 |
### Significand to integer conversion ratio. |
2058 |
toIntegerFactor = 2^(precision-1) |
2059 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
2060 |
### Variables and rings for polynomials and root searching. |
2061 |
i=var('i') |
2062 |
t=var('t') |
2063 |
inputFunctionVariable = inputFunction.variables()[0] |
2064 |
function = inputFunction.subs({inputFunctionVariable:i}) |
2065 |
# Polynomial Rings over the integers, for root finding. |
2066 |
Zi = ZZ[i] |
2067 |
Zt = ZZ[t] |
2068 |
Zit = ZZ[i,t] |
2069 |
## Number of iterations limit. |
2070 |
maxIter = 100000 |
2071 |
# |
2072 |
## Set the variable name in Sollya. |
2073 |
pobyso_name_free_variable_sa_so(str(function.variables()[0])) |
2074 |
## Compute the scaled function and the degree, in their Sollya version |
2075 |
# once for all. |
2076 |
(scaledf, sdlb, sdub, silb, siub) = \ |
2077 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
2078 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
2079 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
2080 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
2081 |
# |
2082 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
2083 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
2084 |
(unscalingFunction, scalingFunction) = \ |
2085 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
2086 |
#print scalingFunction, unscalingFunction |
2087 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
2088 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
2089 |
if internalSollyaPrec < 192: |
2090 |
internalSollyaPrec = 192 |
2091 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
2092 |
print "Sollya internal precision:", internalSollyaPrec |
2093 |
## Some variables. |
2094 |
### General variables |
2095 |
lb = sdlb |
2096 |
ub = sdub |
2097 |
nbw = 0 |
2098 |
intervalUlp = ub.ulp() |
2099 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
2100 |
ic = 0 |
2101 |
icAsInt = 0 # Set from ic. |
2102 |
solutionsSet = set() |
2103 |
tsErrorWidth = [] |
2104 |
csErrorVectors = [] |
2105 |
csVectorsResultants = [] |
2106 |
floatP = 0 # Taylor polynomial. |
2107 |
floatPcv = 0 # Ditto with variable change. |
2108 |
intvl = "" # Taylor interval |
2109 |
terr = 0 # Taylor error. |
2110 |
iterCount = 0 |
2111 |
htrnSet = set() |
2112 |
### Timers and counters. |
2113 |
wallTimeStart = 0 |
2114 |
cpuTimeStart = 0 |
2115 |
taylCondFailedCount = 0 |
2116 |
coppCondFailedCount = 0 |
2117 |
resultCondFailedCount = 0 |
2118 |
coppCondFailed = False |
2119 |
resultCondFailed = False |
2120 |
globalResultsList = [] |
2121 |
basisConstructionsCount = 0 |
2122 |
basisConstructionsFullTime = 0 |
2123 |
basisConstructionTime = 0 |
2124 |
reductionsCount = 0 |
2125 |
reductionsFullTime = 0 |
2126 |
reductionTime = 0 |
2127 |
resultantsComputationsCount = 0 |
2128 |
resultantsComputationsFullTime = 0 |
2129 |
resultantsComputationTime = 0 |
2130 |
rootsComputationsCount = 0 |
2131 |
rootsComputationsFullTime = 0 |
2132 |
rootsComputationTime = 0 |
2133 |
|
2134 |
## Global times are started here. |
2135 |
wallTimeStart = walltime() |
2136 |
cpuTimeStart = cputime() |
2137 |
## Main loop. |
2138 |
while True: |
2139 |
if lb >= sdub: |
2140 |
print "Lower bound reached upper bound." |
2141 |
break |
2142 |
if iterCount == maxIter: |
2143 |
print "Reached maxIter. Aborting" |
2144 |
break |
2145 |
iterCount += 1 |
2146 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
2147 |
"log2(numbers)." |
2148 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
2149 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
2150 |
degreeSo, |
2151 |
lb, |
2152 |
ub, |
2153 |
polyApproxAccur) |
2154 |
### Convert back the data into Sage space. |
2155 |
(floatP, floatPcv, intvl, ic, terr) = \ |
2156 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
2157 |
prceSo[1], prceSo[2], |
2158 |
prceSo[3])) |
2159 |
intvl = RRIF(intvl) |
2160 |
## Clean-up Sollya stuff. |
2161 |
for elem in prceSo: |
2162 |
sollya_lib_clear_obj(elem) |
2163 |
#print floatP, floatPcv, intvl, ic, terr |
2164 |
#print floatP |
2165 |
#print intvl.endpoints()[0].n(), \ |
2166 |
# ic.n(), |
2167 |
#intvl.endpoints()[1].n() |
2168 |
### Check returned data. |
2169 |
#### Is approximation error OK? |
2170 |
if terr > polyApproxAccur: |
2171 |
exceptionErrorMess = \ |
2172 |
"Approximation failed - computed error:" + \ |
2173 |
str(terr) + " - target error: " |
2174 |
exceptionErrorMess += \ |
2175 |
str(polyApproxAccur) + ". Aborting!" |
2176 |
raise Exception(exceptionErrorMess) |
2177 |
#### Is lower bound OK? |
2178 |
if lb != intvl.endpoints()[0]: |
2179 |
exceptionErrorMess = "Wrong lower bound:" + \ |
2180 |
str(lb) + ". Aborting!" |
2181 |
raise Exception(exceptionErrorMess) |
2182 |
#### Set upper bound. |
2183 |
if ub > intvl.endpoints()[1]: |
2184 |
ub = intvl.endpoints()[1] |
2185 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
2186 |
"log2(numbers)." |
2187 |
taylCondFailedCount += 1 |
2188 |
#### Is interval not degenerate? |
2189 |
if lb >= ub: |
2190 |
exceptionErrorMess = "Degenerate interval: " + \ |
2191 |
"lowerBound(" + str(lb) +\ |
2192 |
")>= upperBound(" + str(ub) + \ |
2193 |
"). Aborting!" |
2194 |
raise Exception(exceptionErrorMess) |
2195 |
#### Is interval center ok? |
2196 |
if ic <= lb or ic >= ub: |
2197 |
exceptionErrorMess = "Invalid interval center for " + \ |
2198 |
str(lb) + ',' + str(ic) + ',' + \ |
2199 |
str(ub) + ". Aborting!" |
2200 |
raise Exception(exceptionErrorMess) |
2201 |
##### Current interval width and reset future interval width. |
2202 |
bw = ub - lb |
2203 |
nbw = 0 |
2204 |
icAsInt = int(ic * toIntegerFactor) |
2205 |
#### The following ratio is always >= 1. In case we may want to |
2206 |
# enlarge the interval |
2207 |
curTaylErrRat = polyApproxAccur / terr |
2208 |
### Make the integral transformations. |
2209 |
#### Bounds and interval center. |
2210 |
intIc = int(ic * toIntegerFactor) |
2211 |
intLb = int(lb * toIntegerFactor) - intIc |
2212 |
intUb = int(ub * toIntegerFactor) - intIc |
2213 |
# |
2214 |
#### Polynomials |
2215 |
basisConstructionTime = cputime() |
2216 |
##### To a polynomial with rational coefficients with rational arguments |
2217 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
2218 |
##### To a polynomial with rational coefficients with integer arguments |
2219 |
ratIntP = \ |
2220 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
2221 |
##### Ultimately a multivariate polynomial with integer coefficients |
2222 |
# with integer arguments. |
2223 |
coppersmithTuple = \ |
2224 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
2225 |
precision, |
2226 |
targetHardnessToRound, |
2227 |
i, t) |
2228 |
#### Recover Coppersmith information. |
2229 |
intIntP = coppersmithTuple[0] |
2230 |
N = coppersmithTuple[1] |
2231 |
nAtAlpha = N^alpha |
2232 |
tBound = coppersmithTuple[2] |
2233 |
leastCommonMultiple = coppersmithTuple[3] |
2234 |
iBound = max(abs(intLb),abs(intUb)) |
2235 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
2236 |
basisConstructionsCount += 1 |
2237 |
reductionTime = cputime() |
2238 |
#### Compute the reduced polynomials. |
2239 |
ccReducedPolynomialsList = \ |
2240 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
2241 |
alpha, |
2242 |
N, |
2243 |
iBound, |
2244 |
tBound) |
2245 |
if ccReducedPolynomialsList is None: |
2246 |
raise Exception("Reduction failed.") |
2247 |
reductionsFullTime += cputime(reductionTime) |
2248 |
reductionsCount += 1 |
2249 |
if len(ccReducedPolynomialsList) < 2: |
2250 |
print "Nothing to form resultants with." |
2251 |
|
2252 |
coppCondFailedCount += 1 |
2253 |
coppCondFailed = True |
2254 |
##### Apply a different shrink factor according to |
2255 |
# the number of compliant polynomials. |
2256 |
if len(ccReducedPolynomialsList) == 0: |
2257 |
ub = lb + bw * noCoppersmithIntervalShrink |
2258 |
else: # At least one compliant polynomial. |
2259 |
ub = lb + bw * oneCoppersmithIntervalShrink |
2260 |
if ub > sdub: |
2261 |
ub = sdub |
2262 |
if lb == ub: |
2263 |
raise Exception("Cant shrink interval \ |
2264 |
anymore to get Coppersmith condition.") |
2265 |
nbw = 0 |
2266 |
continue |
2267 |
#### We have at least two polynomials. |
2268 |
# Let us try to compute resultants. |
2269 |
# For each resultant computed, go for the solutions. |
2270 |
##### Build the pairs list. |
2271 |
polyPairsList = [] |
2272 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
2273 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
2274 |
len(ccReducedPolynomialsList)): |
2275 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
2276 |
ccReducedPolynomialsList[polyInnerIndex])) |
2277 |
#### Actual root search. |
2278 |
iRootsSet = set() |
2279 |
hasNonNullResultant = False |
2280 |
for polyPair in polyPairsList: |
2281 |
resultantsComputationTime = cputime() |
2282 |
currentResultantI = \ |
2283 |
slz_resultant(polyPair[0], |
2284 |
polyPair[1], |
2285 |
t) |
2286 |
resultantsComputationsCount += 1 |
2287 |
resultantsComputationsFullTime += \ |
2288 |
cputime(resultantsComputationTime) |
2289 |
#### Function slz_resultant returns None both for None and O |
2290 |
# resultants. |
2291 |
if currentResultantI is None: |
2292 |
print "Nul resultant" |
2293 |
continue # Next polyPair. |
2294 |
## We deleted the currentResultantI computation. |
2295 |
#### We have a non null resultant. From now on, whatever this |
2296 |
# root search yields, no extra root search is necessary. |
2297 |
hasNonNullResultant = True |
2298 |
#### A constant resultant leads to no root. Root search is done. |
2299 |
if currentResultantI.degree() < 1: |
2300 |
print "Resultant is constant:", currentResultantI |
2301 |
break # There is no root. |
2302 |
#### Actual iroots computation. |
2303 |
rootsComputationTime = cputime() |
2304 |
iRootsList = Zi(currentResultantI).roots() |
2305 |
rootsComputationsCount += 1 |
2306 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
2307 |
if len(iRootsList) == 0: |
2308 |
print "No roots in \"i\"." |
2309 |
break # No roots in i. |
2310 |
else: |
2311 |
for iRoot in iRootsList: |
2312 |
# A root is given as a (value, multiplicity) tuple. |
2313 |
iRootsSet.add(iRoot[0]) |
2314 |
# End loop for polyPair in polyParsList. We only loop again if a |
2315 |
# None or zero resultant is found. |
2316 |
#### Prepare for results for the current interval.. |
2317 |
intervalResultsList = [] |
2318 |
intervalResultsList.append((lb, ub)) |
2319 |
#### Check roots. |
2320 |
rootsResultsList = [] |
2321 |
for iRoot in iRootsSet: |
2322 |
specificRootResultsList = [] |
2323 |
failingBounds = [] |
2324 |
# Root qualifies for modular equation, test it for hardness to round. |
2325 |
hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor) |
2326 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
2327 |
#print scalingFunction |
2328 |
scaledHardToRoundCaseAsFloat = \ |
2329 |
scalingFunction(hardToRoundCaseAsFloat) |
2330 |
print "Candidate HTRNc at x =", \ |
2331 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
2332 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
2333 |
function, |
2334 |
2^-(targetHardnessToRound), |
2335 |
RRR): |
2336 |
print hardToRoundCaseAsFloat, "is HTRN case." |
2337 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
2338 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
2339 |
print "Found in interval." |
2340 |
else: |
2341 |
print "Found out of interval." |
2342 |
# Check the i root is within the i bound. |
2343 |
if abs(iRoot) > iBound: |
2344 |
print "IRoot", iRoot, "is out of bounds for modular equation." |
2345 |
print "i bound:", iBound |
2346 |
failingBounds.append('i') |
2347 |
failingBounds.append(iRoot) |
2348 |
failingBounds.append(iBound) |
2349 |
if len(failingBounds) > 0: |
2350 |
specificRootResultsList.append(failingBounds) |
2351 |
else: # From slz_is_htrn... |
2352 |
print "is not an HTRN case." |
2353 |
if len(specificRootResultsList) > 0: |
2354 |
rootsResultsList.append(specificRootResultsList) |
2355 |
if len(rootsResultsList) > 0: |
2356 |
intervalResultsList.append(rootsResultsList) |
2357 |
### Check if a non null resultant was found. If not shrink the interval. |
2358 |
if not hasNonNullResultant: |
2359 |
print "Only null resultants for this reduction, shrinking interval." |
2360 |
resultCondFailed = True |
2361 |
resultCondFailedCount += 1 |
2362 |
### Shrink interval for next iteration. |
2363 |
ub = lb + bw * onlyNullResultantsShrink |
2364 |
if ub > sdub: |
2365 |
ub = sdub |
2366 |
nbw = 0 |
2367 |
continue |
2368 |
#### An intervalResultsList has at least the bounds. |
2369 |
globalResultsList.append(intervalResultsList) |
2370 |
#### Compute an incremented width for next upper bound, only |
2371 |
# if not Coppersmith condition nor resultant condition |
2372 |
# failed at the previous run. |
2373 |
if not coppCondFailed and not resultCondFailed: |
2374 |
nbw = noErrorIntervalStretch * bw |
2375 |
else: |
2376 |
nbw = bw |
2377 |
##### Reset the failure flags. They will be raised |
2378 |
# again if needed. |
2379 |
coppCondFailed = False |
2380 |
resultCondFailed = False |
2381 |
#### For next iteration (at end of loop) |
2382 |
#print "nbw:", nbw |
2383 |
lb = ub |
2384 |
ub += nbw |
2385 |
if ub > sdub: |
2386 |
ub = sdub |
2387 |
|
2388 |
# End while True |
2389 |
## Main loop just ended. |
2390 |
globalWallTime = walltime(wallTimeStart) |
2391 |
globalCpuTime = cputime(cpuTimeStart) |
2392 |
## Output results |
2393 |
print ; print "Intervals and HTRNs" ; print |
2394 |
for intervalResultsList in globalResultsList: |
2395 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
2396 |
"," + str(intervalResultsList[0][1]) + "]" |
2397 |
print intervalResultString, |
2398 |
if len(intervalResultsList) > 1: |
2399 |
rootsResultsList = intervalResultsList[1] |
2400 |
specificRootResultIndex = 0 |
2401 |
for specificRootResultsList in rootsResultsList: |
2402 |
if specificRootResultIndex == 0: |
2403 |
print "\t", specificRootResultsList[0], |
2404 |
else: |
2405 |
print " " * len(intervalResultString), "\t", \ |
2406 |
specificRootResultsList[0], |
2407 |
if len(specificRootResultsList) > 1: |
2408 |
print specificRootResultsList[1] |
2409 |
specificRootResultIndex += 1 |
2410 |
print ; print |
2411 |
#print globalResultsList |
2412 |
# |
2413 |
print "Timers and counters" |
2414 |
|
2415 |
print "Number of iterations:", iterCount |
2416 |
print "Taylor condition failures:", taylCondFailedCount |
2417 |
print "Coppersmith condition failures:", coppCondFailedCount |
2418 |
print "Resultant condition failures:", resultCondFailedCount |
2419 |
print "Iterations count: ", iterCount |
2420 |
print "Number of intervals:", len(globalResultsList) |
2421 |
print "Number of basis constructions:", basisConstructionsCount |
2422 |
print "Total CPU time spent in basis constructions:", \ |
2423 |
basisConstructionsFullTime |
2424 |
if basisConstructionsCount != 0: |
2425 |
print "Average basis construction CPU time:", \ |
2426 |
basisConstructionsFullTime/basisConstructionsCount |
2427 |
print "Number of reductions:", reductionsCount |
2428 |
print "Total CPU time spent in reductions:", reductionsFullTime |
2429 |
if reductionsCount != 0: |
2430 |
print "Average reduction CPU time:", \ |
2431 |
reductionsFullTime/reductionsCount |
2432 |
print "Number of resultants computation rounds:", \ |
2433 |
resultantsComputationsCount |
2434 |
print "Total CPU time spent in resultants computation rounds:", \ |
2435 |
resultantsComputationsFullTime |
2436 |
if resultantsComputationsCount != 0: |
2437 |
print "Average resultants computation round CPU time:", \ |
2438 |
resultantsComputationsFullTime/resultantsComputationsCount |
2439 |
print "Number of root finding rounds:", rootsComputationsCount |
2440 |
print "Total CPU time spent in roots finding rounds:", \ |
2441 |
rootsComputationsFullTime |
2442 |
if rootsComputationsCount != 0: |
2443 |
print "Average roots finding round CPU time:", \ |
2444 |
rootsComputationsFullTime/rootsComputationsCount |
2445 |
print "Global Wall time:", globalWallTime |
2446 |
print "Global CPU time:", globalCpuTime |
2447 |
## Output counters |
2448 |
# End srs_runSLZ-v04 |
2449 |
|
2450 |
def srs_run_SLZ_v05(inputFunction, |
2451 |
inputLowerBound, |
2452 |
inputUpperBound, |
2453 |
alpha, |
2454 |
degree, |
2455 |
precision, |
2456 |
emin, |
2457 |
emax, |
2458 |
targetHardnessToRound, |
2459 |
debug = False): |
2460 |
""" |
2461 |
Changes from V4: |
2462 |
Approximation polynomial has coefficients rounded. |
2463 |
Changes from V3: |
2464 |
Root search is changed again: |
2465 |
- only resultants in i are computed; |
2466 |
- roots in i are searched for; |
2467 |
- if any, they are tested for hardness-to-round. |
2468 |
Changes from V2: |
2469 |
Root search is changed: |
2470 |
- we compute the resultants in i and in t; |
2471 |
- we compute the roots set of each of these resultants; |
2472 |
- we combine all the possible pairs between the two sets; |
2473 |
- we check these pairs in polynomials for correctness. |
2474 |
Changes from V1: |
2475 |
1- check for roots as soon as a resultant is computed; |
2476 |
2- once a non null resultant is found, check for roots; |
2477 |
3- constant resultant == no root. |
2478 |
""" |
2479 |
|
2480 |
if debug: |
2481 |
print "Function :", inputFunction |
2482 |
print "Lower bound :", inputLowerBound |
2483 |
print "Upper bounds :", inputUpperBound |
2484 |
print "Alpha :", alpha |
2485 |
print "Degree :", degree |
2486 |
print "Precision :", precision |
2487 |
print "Emin :", emin |
2488 |
print "Emax :", emax |
2489 |
print "Target hardness-to-round:", targetHardnessToRound |
2490 |
|
2491 |
## Important constants. |
2492 |
### Stretch the interval if no error happens. |
2493 |
noErrorIntervalStretch = 1 + 2^(-5) |
2494 |
### If no vector validates the Coppersmith condition, shrink the interval |
2495 |
# by the following factor. |
2496 |
noCoppersmithIntervalShrink = 1/2 |
2497 |
### If only (or at least) one vector validates the Coppersmith condition, |
2498 |
# shrink the interval by the following factor. |
2499 |
oneCoppersmithIntervalShrink = 3/4 |
2500 |
#### If only null resultants are found, shrink the interval by the |
2501 |
# following factor. |
2502 |
onlyNullResultantsShrink = 3/4 |
2503 |
## Structures. |
2504 |
RRR = RealField(precision) |
2505 |
RRIF = RealIntervalField(precision) |
2506 |
## Converting input bound into the "right" field. |
2507 |
lowerBound = RRR(inputLowerBound) |
2508 |
upperBound = RRR(inputUpperBound) |
2509 |
## Before going any further, check domain and image binade conditions. |
2510 |
print inputFunction(1).n() |
2511 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
2512 |
if output is None: |
2513 |
print "Invalid domain/image binades. Domain:",\ |
2514 |
lowerBound, upperBound, "Images:", \ |
2515 |
inputFunction(lowerBound), inputFunction(upperBound) |
2516 |
raise Exception("Invalid domain/image binades.") |
2517 |
lb = output[0] ; ub = output[1] |
2518 |
if lb != lowerBound or ub != upperBound: |
2519 |
print "lb:", lb, " - ub:", ub |
2520 |
print "Invalid domain/image binades. Domain:",\ |
2521 |
lowerBound, upperBound, "Images:", \ |
2522 |
inputFunction(lowerBound), inputFunction(upperBound) |
2523 |
raise Exception("Invalid domain/image binades.") |
2524 |
# |
2525 |
## Progam initialization |
2526 |
### Approximation polynomial accuracy and hardness to round. |
2527 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
2528 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
2529 |
### Significand to integer conversion ratio. |
2530 |
toIntegerFactor = 2^(precision-1) |
2531 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
2532 |
### Variables and rings for polynomials and root searching. |
2533 |
i=var('i') |
2534 |
t=var('t') |
2535 |
inputFunctionVariable = inputFunction.variables()[0] |
2536 |
function = inputFunction.subs({inputFunctionVariable:i}) |
2537 |
# Polynomial Rings over the integers, for root finding. |
2538 |
Zi = ZZ[i] |
2539 |
Zt = ZZ[t] |
2540 |
Zit = ZZ[i,t] |
2541 |
## Number of iterations limit. |
2542 |
maxIter = 100000 |
2543 |
# |
2544 |
## Set the variable name in Sollya. |
2545 |
pobyso_name_free_variable_sa_so(str(function.variables()[0])) |
2546 |
## Compute the scaled function and the degree, in their Sollya version |
2547 |
# once for all. |
2548 |
(scaledf, sdlb, sdub, silb, siub) = \ |
2549 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
2550 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
2551 |
#print "Scaled bounds:", sdlb, sdub |
2552 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
2553 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
2554 |
# |
2555 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
2556 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
2557 |
(unscalingFunction, scalingFunction) = \ |
2558 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
2559 |
#print scalingFunction, unscalingFunction |
2560 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
2561 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
2562 |
if internalSollyaPrec < 192: |
2563 |
internalSollyaPrec = 192 |
2564 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
2565 |
print "Sollya internal precision:", internalSollyaPrec |
2566 |
## Some variables. |
2567 |
### General variables |
2568 |
lb = sdlb |
2569 |
ub = sdub |
2570 |
nbw = 0 |
2571 |
intervalUlp = ub.ulp() |
2572 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
2573 |
ic = 0 |
2574 |
icAsInt = 0 # Set from ic. |
2575 |
solutionsSet = set() |
2576 |
tsErrorWidth = [] |
2577 |
csErrorVectors = [] |
2578 |
csVectorsResultants = [] |
2579 |
floatP = 0 # Taylor polynomial. |
2580 |
floatPcv = 0 # Ditto with variable change. |
2581 |
intvl = "" # Taylor interval |
2582 |
terr = 0 # Taylor error. |
2583 |
iterCount = 0 |
2584 |
htrnSet = set() |
2585 |
### Timers and counters. |
2586 |
wallTimeStart = 0 |
2587 |
cpuTimeStart = 0 |
2588 |
taylCondFailedCount = 0 |
2589 |
coppCondFailedCount = 0 |
2590 |
resultCondFailedCount = 0 |
2591 |
coppCondFailed = False |
2592 |
resultCondFailed = False |
2593 |
globalResultsList = [] |
2594 |
basisConstructionsCount = 0 |
2595 |
basisConstructionsFullTime = 0 |
2596 |
basisConstructionTime = 0 |
2597 |
reductionsCount = 0 |
2598 |
reductionsFullTime = 0 |
2599 |
reductionTime = 0 |
2600 |
resultantsComputationsCount = 0 |
2601 |
resultantsComputationsFullTime = 0 |
2602 |
resultantsComputationTime = 0 |
2603 |
rootsComputationsCount = 0 |
2604 |
rootsComputationsFullTime = 0 |
2605 |
rootsComputationTime = 0 |
2606 |
|
2607 |
## Global times are started here. |
2608 |
wallTimeStart = walltime() |
2609 |
cpuTimeStart = cputime() |
2610 |
## Main loop. |
2611 |
while True: |
2612 |
if lb >= sdub: |
2613 |
print "Lower bound reached upper bound." |
2614 |
break |
2615 |
if iterCount == maxIter: |
2616 |
print "Reached maxIter. Aborting" |
2617 |
break |
2618 |
iterCount += 1 |
2619 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
2620 |
"log2(numbers)." |
2621 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
2622 |
prceSo = slz_compute_polynomial_and_interval_01(scaledfSo, |
2623 |
degreeSo, |
2624 |
lb, |
2625 |
ub, |
2626 |
polyApproxAccur) |
2627 |
if debug: |
2628 |
print "Approximation polynomial computed." |
2629 |
if prceSo is None: |
2630 |
raise Exception("Could not compute an approximation polynomial.") |
2631 |
### Convert back the data into Sage space. |
2632 |
(floatP, floatPcv, intvl, ic, terr) = \ |
2633 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
2634 |
prceSo[1], prceSo[2], |
2635 |
prceSo[3])) |
2636 |
intvl = RRIF(intvl) |
2637 |
## Clean-up Sollya stuff. |
2638 |
for elem in prceSo: |
2639 |
sollya_lib_clear_obj(elem) |
2640 |
#print floatP, floatPcv, intvl, ic, terr |
2641 |
#print floatP |
2642 |
#print intvl.endpoints()[0].n(), \ |
2643 |
# ic.n(), |
2644 |
#intvl.endpoints()[1].n() |
2645 |
### Check returned data. |
2646 |
#### Is approximation error OK? |
2647 |
if terr > polyApproxAccur: |
2648 |
exceptionErrorMess = \ |
2649 |
"Approximation failed - computed error:" + \ |
2650 |
str(terr) + " - target error: " |
2651 |
exceptionErrorMess += \ |
2652 |
str(polyApproxAccur) + ". Aborting!" |
2653 |
raise Exception(exceptionErrorMess) |
2654 |
#### Is lower bound OK? |
2655 |
if lb != intvl.endpoints()[0]: |
2656 |
exceptionErrorMess = "Wrong lower bound:" + \ |
2657 |
str(lb) + ". Aborting!" |
2658 |
raise Exception(exceptionErrorMess) |
2659 |
#### Set upper bound. |
2660 |
if ub > intvl.endpoints()[1]: |
2661 |
ub = intvl.endpoints()[1] |
2662 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
2663 |
"log2(numbers)." |
2664 |
taylCondFailedCount += 1 |
2665 |
#### Is interval not degenerate? |
2666 |
if lb >= ub: |
2667 |
exceptionErrorMess = "Degenerate interval: " + \ |
2668 |
"lowerBound(" + str(lb) +\ |
2669 |
")>= upperBound(" + str(ub) + \ |
2670 |
"). Aborting!" |
2671 |
raise Exception(exceptionErrorMess) |
2672 |
#### Is interval center ok? |
2673 |
if ic <= lb or ic >= ub: |
2674 |
exceptionErrorMess = "Invalid interval center for " + \ |
2675 |
str(lb) + ',' + str(ic) + ',' + \ |
2676 |
str(ub) + ". Aborting!" |
2677 |
raise Exception(exceptionErrorMess) |
2678 |
##### Current interval width and reset future interval width. |
2679 |
bw = ub - lb |
2680 |
nbw = 0 |
2681 |
icAsInt = int(ic * toIntegerFactor) |
2682 |
#### The following ratio is always >= 1. In case we may want to |
2683 |
# enlarge the interval |
2684 |
curTaylErrRat = polyApproxAccur / terr |
2685 |
### Make the integral transformations. |
2686 |
#### Bounds and interval center. |
2687 |
intIc = int(ic * toIntegerFactor) |
2688 |
intLb = int(lb * toIntegerFactor) - intIc |
2689 |
intUb = int(ub * toIntegerFactor) - intIc |
2690 |
# |
2691 |
#### Polynomials |
2692 |
basisConstructionTime = cputime() |
2693 |
##### To a polynomial with rational coefficients with rational arguments |
2694 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
2695 |
##### To a polynomial with rational coefficients with integer arguments |
2696 |
ratIntP = \ |
2697 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
2698 |
##### Ultimately a multivariate polynomial with integer coefficients |
2699 |
# with integer arguments. |
2700 |
coppersmithTuple = \ |
2701 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
2702 |
precision, |
2703 |
targetHardnessToRound, |
2704 |
i, t) |
2705 |
#### Recover Coppersmith information. |
2706 |
intIntP = coppersmithTuple[0] |
2707 |
N = coppersmithTuple[1] |
2708 |
nAtAlpha = N^alpha |
2709 |
tBound = coppersmithTuple[2] |
2710 |
leastCommonMultiple = coppersmithTuple[3] |
2711 |
iBound = max(abs(intLb),abs(intUb)) |
2712 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
2713 |
basisConstructionsCount += 1 |
2714 |
#### Compute the matrix to reduce for debug purpose. Otherwise |
2715 |
# slz_compute_coppersmith_reduced_polynomials does the job |
2716 |
# invisibly. |
2717 |
if debug: |
2718 |
matrixToReduce = slz_compute_initial_lattice_matrix(intIntP, |
2719 |
alpha, |
2720 |
N, |
2721 |
iBound, |
2722 |
tBound) |
2723 |
maxNorm = 0 |
2724 |
latticeSize = 0 |
2725 |
matrixFile = file('/tmp/matrixToReduce.txt', 'w') |
2726 |
for row in matrixToReduce.rows(): |
2727 |
currentNorm = row.norm() |
2728 |
if currentNorm > maxNorm: |
2729 |
maxNorm = currentNorm |
2730 |
latticeSize += 1 |
2731 |
for elem in row: |
2732 |
matrixFile.write(elem.str(base=2) + ",") |
2733 |
matrixFile.write("\n") |
2734 |
#matrixFile.write(matrixToReduce.str(radix="2") + "\n") |
2735 |
matrixFile.close() |
2736 |
#### We use here binary length as defined in LLL princepts. |
2737 |
binaryLength = latticeSize * log(maxNorm) |
2738 |
print "Binary length:", binaryLength.n() |
2739 |
raise Exception("Deliberate stop here.") |
2740 |
# End if debug |
2741 |
reductionTime = cputime() |
2742 |
#### Compute the reduced polynomials. |
2743 |
print "Starting reduction..." |
2744 |
ccReducedPolynomialsList = \ |
2745 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
2746 |
alpha, |
2747 |
N, |
2748 |
iBound, |
2749 |
tBound) |
2750 |
print "...reduction accomplished in", cputime(reductionTime), "s." |
2751 |
if ccReducedPolynomialsList is None: |
2752 |
raise Exception("Reduction failed.") |
2753 |
reductionsFullTime += cputime(reductionTime) |
2754 |
reductionsCount += 1 |
2755 |
if len(ccReducedPolynomialsList) < 2: |
2756 |
print "Nothing to form resultants with." |
2757 |
|
2758 |
coppCondFailedCount += 1 |
2759 |
coppCondFailed = True |
2760 |
##### Apply a different shrink factor according to |
2761 |
# the number of compliant polynomials. |
2762 |
if len(ccReducedPolynomialsList) == 0: |
2763 |
ub = lb + bw * noCoppersmithIntervalShrink |
2764 |
else: # At least one compliant polynomial. |
2765 |
ub = lb + bw * oneCoppersmithIntervalShrink |
2766 |
if ub > sdub: |
2767 |
ub = sdub |
2768 |
if lb == ub: |
2769 |
raise Exception("Cant shrink interval \ |
2770 |
anymore to get Coppersmith condition.") |
2771 |
nbw = 0 |
2772 |
continue |
2773 |
#### We have at least two polynomials. |
2774 |
# Let us try to compute resultants. |
2775 |
# For each resultant computed, go for the solutions. |
2776 |
##### Build the pairs list. |
2777 |
polyPairsList = [] |
2778 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
2779 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
2780 |
len(ccReducedPolynomialsList)): |
2781 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
2782 |
ccReducedPolynomialsList[polyInnerIndex])) |
2783 |
#### Actual root search. |
2784 |
iRootsSet = set() |
2785 |
hasNonNullResultant = False |
2786 |
for polyPair in polyPairsList: |
2787 |
resultantsComputationTime = cputime() |
2788 |
currentResultantI = \ |
2789 |
slz_resultant(polyPair[0], |
2790 |
polyPair[1], |
2791 |
t) |
2792 |
resultantsComputationsCount += 1 |
2793 |
resultantsComputationsFullTime += \ |
2794 |
cputime(resultantsComputationTime) |
2795 |
#### Function slz_resultant returns None both for None and O |
2796 |
# resultants. |
2797 |
if currentResultantI is None: |
2798 |
print "Nul resultant" |
2799 |
continue # Next polyPair. |
2800 |
## We deleted the currentResultantI computation. |
2801 |
#### We have a non null resultant. From now on, whatever this |
2802 |
# root search yields, no extra root search is necessary. |
2803 |
hasNonNullResultant = True |
2804 |
#### A constant resultant leads to no root. Root search is done. |
2805 |
if currentResultantI.degree() < 1: |
2806 |
print "Resultant is constant:", currentResultantI |
2807 |
break # There is no root. |
2808 |
#### Actual iroots computation. |
2809 |
rootsComputationTime = cputime() |
2810 |
iRootsList = Zi(currentResultantI).roots() |
2811 |
rootsComputationsCount += 1 |
2812 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
2813 |
if len(iRootsList) == 0: |
2814 |
print "No roots in \"i\"." |
2815 |
break # No roots in i. |
2816 |
else: |
2817 |
for iRoot in iRootsList: |
2818 |
# A root is given as a (value, multiplicity) tuple. |
2819 |
iRootsSet.add(iRoot[0]) |
2820 |
# End loop for polyPair in polyParsList. We only loop again if a |
2821 |
# None or zero resultant is found. |
2822 |
#### Prepare for results for the current interval.. |
2823 |
intervalResultsList = [] |
2824 |
intervalResultsList.append((lb, ub)) |
2825 |
#### Check roots. |
2826 |
rootsResultsList = [] |
2827 |
for iRoot in iRootsSet: |
2828 |
specificRootResultsList = [] |
2829 |
failingBounds = [] |
2830 |
# Root qualifies for modular equation, test it for hardness to round. |
2831 |
hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor) |
2832 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
2833 |
#print scalingFunction |
2834 |
scaledHardToRoundCaseAsFloat = \ |
2835 |
scalingFunction(hardToRoundCaseAsFloat) |
2836 |
print "Candidate HTRNc at x =", \ |
2837 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
2838 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
2839 |
function, |
2840 |
2^-(targetHardnessToRound), |
2841 |
RRR): |
2842 |
print hardToRoundCaseAsFloat, "is HTRN case." |
2843 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
2844 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
2845 |
print "Found in interval." |
2846 |
else: |
2847 |
print "Found out of interval." |
2848 |
# Check the i root is within the i bound. |
2849 |
if abs(iRoot) > iBound: |
2850 |
print "IRoot", iRoot, "is out of bounds for modular equation." |
2851 |
print "i bound:", iBound |
2852 |
failingBounds.append('i') |
2853 |
failingBounds.append(iRoot) |
2854 |
failingBounds.append(iBound) |
2855 |
if len(failingBounds) > 0: |
2856 |
specificRootResultsList.append(failingBounds) |
2857 |
else: # From slz_is_htrn... |
2858 |
print "is not an HTRN case." |
2859 |
if len(specificRootResultsList) > 0: |
2860 |
rootsResultsList.append(specificRootResultsList) |
2861 |
if len(rootsResultsList) > 0: |
2862 |
intervalResultsList.append(rootsResultsList) |
2863 |
### Check if a non null resultant was found. If not shrink the interval. |
2864 |
if not hasNonNullResultant: |
2865 |
print "Only null resultants for this reduction, shrinking interval." |
2866 |
resultCondFailed = True |
2867 |
resultCondFailedCount += 1 |
2868 |
### Shrink interval for next iteration. |
2869 |
ub = lb + bw * onlyNullResultantsShrink |
2870 |
if ub > sdub: |
2871 |
ub = sdub |
2872 |
nbw = 0 |
2873 |
continue |
2874 |
#### An intervalResultsList has at least the bounds. |
2875 |
globalResultsList.append(intervalResultsList) |
2876 |
#### Compute an incremented width for next upper bound, only |
2877 |
# if not Coppersmith condition nor resultant condition |
2878 |
# failed at the previous run. |
2879 |
if not coppCondFailed and not resultCondFailed: |
2880 |
nbw = noErrorIntervalStretch * bw |
2881 |
else: |
2882 |
nbw = bw |
2883 |
##### Reset the failure flags. They will be raised |
2884 |
# again if needed. |
2885 |
coppCondFailed = False |
2886 |
resultCondFailed = False |
2887 |
#### For next iteration (at end of loop) |
2888 |
#print "nbw:", nbw |
2889 |
lb = ub |
2890 |
ub += nbw |
2891 |
if ub > sdub: |
2892 |
ub = sdub |
2893 |
|
2894 |
# End while True |
2895 |
## Main loop just ended. |
2896 |
globalWallTime = walltime(wallTimeStart) |
2897 |
globalCpuTime = cputime(cpuTimeStart) |
2898 |
## Output results |
2899 |
print ; print "Intervals and HTRNs" ; print |
2900 |
for intervalResultsList in globalResultsList: |
2901 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
2902 |
"," + str(intervalResultsList[0][1]) + "]" |
2903 |
print intervalResultString, |
2904 |
if len(intervalResultsList) > 1: |
2905 |
rootsResultsList = intervalResultsList[1] |
2906 |
specificRootResultIndex = 0 |
2907 |
for specificRootResultsList in rootsResultsList: |
2908 |
if specificRootResultIndex == 0: |
2909 |
print "\t", specificRootResultsList[0], |
2910 |
else: |
2911 |
print " " * len(intervalResultString), "\t", \ |
2912 |
specificRootResultsList[0], |
2913 |
if len(specificRootResultsList) > 1: |
2914 |
print specificRootResultsList[1] |
2915 |
specificRootResultIndex += 1 |
2916 |
print ; print |
2917 |
#print globalResultsList |
2918 |
# |
2919 |
print "Timers and counters" |
2920 |
|
2921 |
print "Number of iterations:", iterCount |
2922 |
print "Taylor condition failures:", taylCondFailedCount |
2923 |
print "Coppersmith condition failures:", coppCondFailedCount |
2924 |
print "Resultant condition failures:", resultCondFailedCount |
2925 |
print "Iterations count: ", iterCount |
2926 |
print "Number of intervals:", len(globalResultsList) |
2927 |
print "Number of basis constructions:", basisConstructionsCount |
2928 |
print "Total CPU time spent in basis constructions:", \ |
2929 |
basisConstructionsFullTime |
2930 |
if basisConstructionsCount != 0: |
2931 |
print "Average basis construction CPU time:", \ |
2932 |
basisConstructionsFullTime/basisConstructionsCount |
2933 |
print "Number of reductions:", reductionsCount |
2934 |
print "Total CPU time spent in reductions:", reductionsFullTime |
2935 |
if reductionsCount != 0: |
2936 |
print "Average reduction CPU time:", \ |
2937 |
reductionsFullTime/reductionsCount |
2938 |
print "Number of resultants computation rounds:", \ |
2939 |
resultantsComputationsCount |
2940 |
print "Total CPU time spent in resultants computation rounds:", \ |
2941 |
resultantsComputationsFullTime |
2942 |
if resultantsComputationsCount != 0: |
2943 |
print "Average resultants computation round CPU time:", \ |
2944 |
resultantsComputationsFullTime/resultantsComputationsCount |
2945 |
print "Number of root finding rounds:", rootsComputationsCount |
2946 |
print "Total CPU time spent in roots finding rounds:", \ |
2947 |
rootsComputationsFullTime |
2948 |
if rootsComputationsCount != 0: |
2949 |
print "Average roots finding round CPU time:", \ |
2950 |
rootsComputationsFullTime/rootsComputationsCount |
2951 |
print "Global Wall time:", globalWallTime |
2952 |
print "Global CPU time:", globalCpuTime |
2953 |
## Output counters |
2954 |
# End srs_runSLZ-v05 |
2955 |
# |
2956 |
def srs_run_SLZ_v05_gram(inputFunction, |
2957 |
inputLowerBound, |
2958 |
inputUpperBound, |
2959 |
alpha, |
2960 |
degree, |
2961 |
precision, |
2962 |
emin, |
2963 |
emax, |
2964 |
targetHardnessToRound, |
2965 |
debug = False): |
2966 |
""" |
2967 |
changes from plain V5: |
2968 |
Uses Pari LLL reduction from the Gram matrix. |
2969 |
Changes from V4: |
2970 |
Approximation polynomial has coefficients rounded. |
2971 |
Changes from V3: |
2972 |
Root search is changed again: |
2973 |
- only resultants in i are computed; |
2974 |
- roots in i are searched for; |
2975 |
- if any, they are tested for hardness-to-round. |
2976 |
Changes from V2: |
2977 |
Root search is changed: |
2978 |
- we compute the resultants in i and in t; |
2979 |
- we compute the roots set of each of these resultants; |
2980 |
- we combine all the possible pairs between the two sets; |
2981 |
- we check these pairs in polynomials for correctness. |
2982 |
Changes from V1: |
2983 |
1- check for roots as soon as a resultant is computed; |
2984 |
2- once a non null resultant is found, check for roots; |
2985 |
3- constant resultant == no root. |
2986 |
""" |
2987 |
|
2988 |
if debug: |
2989 |
print "Function :", inputFunction |
2990 |
print "Lower bound :", inputLowerBound |
2991 |
print "Upper bounds :", inputUpperBound |
2992 |
print "Alpha :", alpha |
2993 |
print "Degree :", degree |
2994 |
print "Precision :", precision |
2995 |
print "Emin :", emin |
2996 |
print "Emax :", emax |
2997 |
print "Target hardness-to-round:", targetHardnessToRound |
2998 |
|
2999 |
## Important constants. |
3000 |
### Stretch the interval if no error happens. |
3001 |
noErrorIntervalStretch = 1 + 2^(-5) |
3002 |
### If no vector validates the Coppersmith condition, shrink the interval |
3003 |
# by the following factor. |
3004 |
noCoppersmithIntervalShrink = 1/2 |
3005 |
### If only (or at least) one vector validates the Coppersmith condition, |
3006 |
# shrink the interval by the following factor. |
3007 |
oneCoppersmithIntervalShrink = 3/4 |
3008 |
#### If only null resultants are found, shrink the interval by the |
3009 |
# following factor. |
3010 |
onlyNullResultantsShrink = 3/4 |
3011 |
## Structures. |
3012 |
RRR = RealField(precision) |
3013 |
RRIF = RealIntervalField(precision) |
3014 |
## Converting input bound into the "right" field. |
3015 |
lowerBound = RRR(inputLowerBound) |
3016 |
upperBound = RRR(inputUpperBound) |
3017 |
## Before going any further, check domain and image binade conditions. |
3018 |
print inputFunction(1).n() |
3019 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
3020 |
if output is None: |
3021 |
print "Invalid domain/image binades. Domain:",\ |
3022 |
lowerBound, upperBound, "Images:", \ |
3023 |
inputFunction(lowerBound), inputFunction(upperBound) |
3024 |
raise Exception("Invalid domain/image binades.") |
3025 |
lb = output[0] ; ub = output[1] |
3026 |
if lb != lowerBound or ub != upperBound: |
3027 |
print "lb:", lb, " - ub:", ub |
3028 |
print "Invalid domain/image binades. Domain:",\ |
3029 |
lowerBound, upperBound, "Images:", \ |
3030 |
inputFunction(lowerBound), inputFunction(upperBound) |
3031 |
raise Exception("Invalid domain/image binades.") |
3032 |
# |
3033 |
## Progam initialization |
3034 |
### Approximation polynomial accuracy and hardness to round. |
3035 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
3036 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
3037 |
### Significand to integer conversion ratio. |
3038 |
toIntegerFactor = 2^(precision-1) |
3039 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
3040 |
### Variables and rings for polynomials and root searching. |
3041 |
i=var('i') |
3042 |
t=var('t') |
3043 |
inputFunctionVariable = inputFunction.variables()[0] |
3044 |
function = inputFunction.subs({inputFunctionVariable:i}) |
3045 |
# Polynomial Rings over the integers, for root finding. |
3046 |
Zi = ZZ[i] |
3047 |
Zt = ZZ[t] |
3048 |
Zit = ZZ[i,t] |
3049 |
## Number of iterations limit. |
3050 |
maxIter = 100000 |
3051 |
# |
3052 |
## Set the variable name in Sollya. |
3053 |
pobyso_name_free_variable_sa_so(str(function.variables()[0])) |
3054 |
## Compute the scaled function and the degree, in their Sollya version |
3055 |
# once for all. |
3056 |
(scaledf, sdlb, sdub, silb, siub) = \ |
3057 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
3058 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
3059 |
#print "Scaled bounds:", sdlb, sdub |
3060 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
3061 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
3062 |
# |
3063 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
3064 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
3065 |
(unscalingFunction, scalingFunction) = \ |
3066 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
3067 |
#print scalingFunction, unscalingFunction |
3068 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
3069 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
3070 |
if internalSollyaPrec < 192: |
3071 |
internalSollyaPrec = 192 |
3072 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
3073 |
print "Sollya internal precision:", internalSollyaPrec |
3074 |
## Some variables. |
3075 |
### General variables |
3076 |
lb = sdlb |
3077 |
ub = sdub |
3078 |
nbw = 0 |
3079 |
intervalUlp = ub.ulp() |
3080 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
3081 |
ic = 0 |
3082 |
icAsInt = 0 # Set from ic. |
3083 |
solutionsSet = set() |
3084 |
tsErrorWidth = [] |
3085 |
csErrorVectors = [] |
3086 |
csVectorsResultants = [] |
3087 |
floatP = 0 # Taylor polynomial. |
3088 |
floatPcv = 0 # Ditto with variable change. |
3089 |
intvl = "" # Taylor interval |
3090 |
terr = 0 # Taylor error. |
3091 |
iterCount = 0 |
3092 |
htrnSet = set() |
3093 |
### Timers and counters. |
3094 |
wallTimeStart = 0 |
3095 |
cpuTimeStart = 0 |
3096 |
taylCondFailedCount = 0 |
3097 |
coppCondFailedCount = 0 |
3098 |
resultCondFailedCount = 0 |
3099 |
coppCondFailed = False |
3100 |
resultCondFailed = False |
3101 |
globalResultsList = [] |
3102 |
basisConstructionsCount = 0 |
3103 |
basisConstructionsFullTime = 0 |
3104 |
basisConstructionTime = 0 |
3105 |
reductionsCount = 0 |
3106 |
reductionsFullTime = 0 |
3107 |
reductionTime = 0 |
3108 |
resultantsComputationsCount = 0 |
3109 |
resultantsComputationsFullTime = 0 |
3110 |
resultantsComputationTime = 0 |
3111 |
rootsComputationsCount = 0 |
3112 |
rootsComputationsFullTime = 0 |
3113 |
rootsComputationTime = 0 |
3114 |
|
3115 |
## Global times are started here. |
3116 |
wallTimeStart = walltime() |
3117 |
cpuTimeStart = cputime() |
3118 |
## Main loop. |
3119 |
while True: |
3120 |
if lb >= sdub: |
3121 |
print "Lower bound reached upper bound." |
3122 |
break |
3123 |
if iterCount == maxIter: |
3124 |
print "Reached maxIter. Aborting" |
3125 |
break |
3126 |
iterCount += 1 |
3127 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
3128 |
"log2(numbers)." |
3129 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
3130 |
prceSo = slz_compute_polynomial_and_interval_01(scaledfSo, |
3131 |
degreeSo, |
3132 |
lb, |
3133 |
ub, |
3134 |
polyApproxAccur) |
3135 |
if debug: |
3136 |
print "Approximation polynomial computed." |
3137 |
if prceSo is None: |
3138 |
raise Exception("Could not compute an approximation polynomial.") |
3139 |
### Convert back the data into Sage space. |
3140 |
(floatP, floatPcv, intvl, ic, terr) = \ |
3141 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
3142 |
prceSo[1], prceSo[2], |
3143 |
prceSo[3])) |
3144 |
intvl = RRIF(intvl) |
3145 |
## Clean-up Sollya stuff. |
3146 |
for elem in prceSo: |
3147 |
sollya_lib_clear_obj(elem) |
3148 |
#print floatP, floatPcv, intvl, ic, terr |
3149 |
#print floatP |
3150 |
#print intvl.endpoints()[0].n(), \ |
3151 |
# ic.n(), |
3152 |
#intvl.endpoints()[1].n() |
3153 |
### Check returned data. |
3154 |
#### Is approximation error OK? |
3155 |
if terr > polyApproxAccur: |
3156 |
exceptionErrorMess = \ |
3157 |
"Approximation failed - computed error:" + \ |
3158 |
str(terr) + " - target error: " |
3159 |
exceptionErrorMess += \ |
3160 |
str(polyApproxAccur) + ". Aborting!" |
3161 |
raise Exception(exceptionErrorMess) |
3162 |
#### Is lower bound OK? |
3163 |
if lb != intvl.endpoints()[0]: |
3164 |
exceptionErrorMess = "Wrong lower bound:" + \ |
3165 |
str(lb) + ". Aborting!" |
3166 |
raise Exception(exceptionErrorMess) |
3167 |
#### Set upper bound. |
3168 |
if ub > intvl.endpoints()[1]: |
3169 |
ub = intvl.endpoints()[1] |
3170 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
3171 |
"log2(numbers)." |
3172 |
taylCondFailedCount += 1 |
3173 |
#### Is interval not degenerate? |
3174 |
if lb >= ub: |
3175 |
exceptionErrorMess = "Degenerate interval: " + \ |
3176 |
"lowerBound(" + str(lb) +\ |
3177 |
")>= upperBound(" + str(ub) + \ |
3178 |
"). Aborting!" |
3179 |
raise Exception(exceptionErrorMess) |
3180 |
#### Is interval center ok? |
3181 |
if ic <= lb or ic >= ub: |
3182 |
exceptionErrorMess = "Invalid interval center for " + \ |
3183 |
str(lb) + ',' + str(ic) + ',' + \ |
3184 |
str(ub) + ". Aborting!" |
3185 |
raise Exception(exceptionErrorMess) |
3186 |
##### Current interval width and reset future interval width. |
3187 |
bw = ub - lb |
3188 |
nbw = 0 |
3189 |
icAsInt = int(ic * toIntegerFactor) |
3190 |
#### The following ratio is always >= 1. In case we may want to |
3191 |
# enlarge the interval |
3192 |
curTaylErrRat = polyApproxAccur / terr |
3193 |
### Make the integral transformations. |
3194 |
#### Bounds and interval center. |
3195 |
intIc = int(ic * toIntegerFactor) |
3196 |
intLb = int(lb * toIntegerFactor) - intIc |
3197 |
intUb = int(ub * toIntegerFactor) - intIc |
3198 |
# |
3199 |
#### Polynomials |
3200 |
basisConstructionTime = cputime() |
3201 |
##### To a polynomial with rational coefficients with rational arguments |
3202 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
3203 |
##### To a polynomial with rational coefficients with integer arguments |
3204 |
ratIntP = \ |
3205 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
3206 |
##### Ultimately a multivariate polynomial with integer coefficients |
3207 |
# with integer arguments. |
3208 |
coppersmithTuple = \ |
3209 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
3210 |
precision, |
3211 |
targetHardnessToRound, |
3212 |
i, t) |
3213 |
#### Recover Coppersmith information. |
3214 |
intIntP = coppersmithTuple[0] |
3215 |
N = coppersmithTuple[1] |
3216 |
nAtAlpha = N^alpha |
3217 |
tBound = coppersmithTuple[2] |
3218 |
leastCommonMultiple = coppersmithTuple[3] |
3219 |
iBound = max(abs(intLb),abs(intUb)) |
3220 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
3221 |
basisConstructionsCount += 1 |
3222 |
#### Compute the matrix to reduce for debug purpose. Otherwise |
3223 |
# slz_compute_coppersmith_reduced_polynomials does the job |
3224 |
# invisibly. |
3225 |
if debug: |
3226 |
matrixToReduce = slz_compute_initial_lattice_matrix(intIntP, |
3227 |
alpha, |
3228 |
N, |
3229 |
iBound, |
3230 |
tBound) |
3231 |
maxNorm = 0 |
3232 |
latticeSize = 0 |
3233 |
matrixFile = file('/tmp/matrixToReduce.txt', 'w') |
3234 |
for row in matrixToReduce.rows(): |
3235 |
currentNorm = row.norm() |
3236 |
if currentNorm > maxNorm: |
3237 |
maxNorm = currentNorm |
3238 |
latticeSize += 1 |
3239 |
for elem in row: |
3240 |
matrixFile.write(elem.str(base=2) + ",") |
3241 |
matrixFile.write("\n") |
3242 |
#matrixFile.write(matrixToReduce.str(radix="2") + "\n") |
3243 |
matrixFile.close() |
3244 |
#### We use here binary length as defined in LLL princepts. |
3245 |
binaryLength = latticeSize * log(maxNorm) |
3246 |
print "Binary length:", binaryLength.n() |
3247 |
raise Exception("Deliberate stop here.") |
3248 |
# End if debug |
3249 |
reductionTime = cputime() |
3250 |
#### Compute the reduced polynomials. |
3251 |
print "Starting reduction..." |
3252 |
ccReducedPolynomialsList = \ |
3253 |
slz_compute_coppersmith_reduced_polynomials_gram(intIntP, |
3254 |
alpha, |
3255 |
N, |
3256 |
iBound, |
3257 |
tBound) |
3258 |
print "...reduction accomplished in", cputime(reductionTime), "s." |
3259 |
if ccReducedPolynomialsList is None: |
3260 |
raise Exception("Reduction failed.") |
3261 |
reductionsFullTime += cputime(reductionTime) |
3262 |
reductionsCount += 1 |
3263 |
if len(ccReducedPolynomialsList) < 2: |
3264 |
print "Nothing to form resultants with." |
3265 |
|
3266 |
coppCondFailedCount += 1 |
3267 |
coppCondFailed = True |
3268 |
##### Apply a different shrink factor according to |
3269 |
# the number of compliant polynomials. |
3270 |
if len(ccReducedPolynomialsList) == 0: |
3271 |
ub = lb + bw * noCoppersmithIntervalShrink |
3272 |
else: # At least one compliant polynomial. |
3273 |
ub = lb + bw * oneCoppersmithIntervalShrink |
3274 |
if ub > sdub: |
3275 |
ub = sdub |
3276 |
if lb == ub: |
3277 |
raise Exception("Cant shrink interval \ |
3278 |
anymore to get Coppersmith condition.") |
3279 |
nbw = 0 |
3280 |
continue |
3281 |
#### We have at least two polynomials. |
3282 |
# Let us try to compute resultants. |
3283 |
# For each resultant computed, go for the solutions. |
3284 |
##### Build the pairs list. |
3285 |
polyPairsList = [] |
3286 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
3287 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
3288 |
len(ccReducedPolynomialsList)): |
3289 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
3290 |
ccReducedPolynomialsList[polyInnerIndex])) |
3291 |
#### Actual root search. |
3292 |
iRootsSet = set() |
3293 |
hasNonNullResultant = False |
3294 |
for polyPair in polyPairsList: |
3295 |
resultantsComputationTime = cputime() |
3296 |
currentResultantI = \ |
3297 |
slz_resultant(polyPair[0], |
3298 |
polyPair[1], |
3299 |
t) |
3300 |
resultantsComputationsCount += 1 |
3301 |
resultantsComputationsFullTime += \ |
3302 |
cputime(resultantsComputationTime) |
3303 |
#### Function slz_resultant returns None both for None and O |
3304 |
# resultants. |
3305 |
if currentResultantI is None: |
3306 |
print "Nul resultant" |
3307 |
continue # Next polyPair. |
3308 |
## We deleted the currentResultantI computation. |
3309 |
#### We have a non null resultant. From now on, whatever this |
3310 |
# root search yields, no extra root search is necessary. |
3311 |
hasNonNullResultant = True |
3312 |
#### A constant resultant leads to no root. Root search is done. |
3313 |
if currentResultantI.degree() < 1: |
3314 |
print "Resultant is constant:", currentResultantI |
3315 |
break # There is no root. |
3316 |
#### Actual iroots computation. |
3317 |
rootsComputationTime = cputime() |
3318 |
iRootsList = Zi(currentResultantI).roots() |
3319 |
rootsComputationsCount += 1 |
3320 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
3321 |
if len(iRootsList) == 0: |
3322 |
print "No roots in \"i\"." |
3323 |
break # No roots in i. |
3324 |
else: |
3325 |
for iRoot in iRootsList: |
3326 |
# A root is given as a (value, multiplicity) tuple. |
3327 |
iRootsSet.add(iRoot[0]) |
3328 |
# End loop for polyPair in polyParsList. We only loop again if a |
3329 |
# None or zero resultant is found. |
3330 |
#### Prepare for results for the current interval.. |
3331 |
intervalResultsList = [] |
3332 |
intervalResultsList.append((lb, ub)) |
3333 |
#### Check roots. |
3334 |
rootsResultsList = [] |
3335 |
for iRoot in iRootsSet: |
3336 |
specificRootResultsList = [] |
3337 |
failingBounds = [] |
3338 |
# Root qualifies for modular equation, test it for hardness to round. |
3339 |
hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor) |
3340 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
3341 |
#print scalingFunction |
3342 |
scaledHardToRoundCaseAsFloat = \ |
3343 |
scalingFunction(hardToRoundCaseAsFloat) |
3344 |
print "Candidate HTRNc at x =", \ |
3345 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
3346 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
3347 |
function, |
3348 |
2^-(targetHardnessToRound), |
3349 |
RRR): |
3350 |
print hardToRoundCaseAsFloat, "is HTRN case." |
3351 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
3352 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
3353 |
print "Found in interval." |
3354 |
else: |
3355 |
print "Found out of interval." |
3356 |
# Check the i root is within the i bound. |
3357 |
if abs(iRoot) > iBound: |
3358 |
print "IRoot", iRoot, "is out of bounds for modular equation." |
3359 |
print "i bound:", iBound |
3360 |
failingBounds.append('i') |
3361 |
failingBounds.append(iRoot) |
3362 |
failingBounds.append(iBound) |
3363 |
if len(failingBounds) > 0: |
3364 |
specificRootResultsList.append(failingBounds) |
3365 |
else: # From slz_is_htrn... |
3366 |
print "is not an HTRN case." |
3367 |
if len(specificRootResultsList) > 0: |
3368 |
rootsResultsList.append(specificRootResultsList) |
3369 |
if len(rootsResultsList) > 0: |
3370 |
intervalResultsList.append(rootsResultsList) |
3371 |
### Check if a non null resultant was found. If not shrink the interval. |
3372 |
if not hasNonNullResultant: |
3373 |
print "Only null resultants for this reduction, shrinking interval." |
3374 |
resultCondFailed = True |
3375 |
resultCondFailedCount += 1 |
3376 |
### Shrink interval for next iteration. |
3377 |
ub = lb + bw * onlyNullResultantsShrink |
3378 |
if ub > sdub: |
3379 |
ub = sdub |
3380 |
nbw = 0 |
3381 |
continue |
3382 |
#### An intervalResultsList has at least the bounds. |
3383 |
globalResultsList.append(intervalResultsList) |
3384 |
#### Compute an incremented width for next upper bound, only |
3385 |
# if not Coppersmith condition nor resultant condition |
3386 |
# failed at the previous run. |
3387 |
if not coppCondFailed and not resultCondFailed: |
3388 |
nbw = noErrorIntervalStretch * bw |
3389 |
else: |
3390 |
nbw = bw |
3391 |
##### Reset the failure flags. They will be raised |
3392 |
# again if needed. |
3393 |
coppCondFailed = False |
3394 |
resultCondFailed = False |
3395 |
#### For next iteration (at end of loop) |
3396 |
#print "nbw:", nbw |
3397 |
lb = ub |
3398 |
ub += nbw |
3399 |
if ub > sdub: |
3400 |
ub = sdub |
3401 |
|
3402 |
# End while True |
3403 |
## Main loop just ended. |
3404 |
globalWallTime = walltime(wallTimeStart) |
3405 |
globalCpuTime = cputime(cpuTimeStart) |
3406 |
## Output results |
3407 |
print ; print "Intervals and HTRNs" ; print |
3408 |
for intervalResultsList in globalResultsList: |
3409 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
3410 |
"," + str(intervalResultsList[0][1]) + "]" |
3411 |
print intervalResultString, |
3412 |
if len(intervalResultsList) > 1: |
3413 |
rootsResultsList = intervalResultsList[1] |
3414 |
specificRootResultIndex = 0 |
3415 |
for specificRootResultsList in rootsResultsList: |
3416 |
if specificRootResultIndex == 0: |
3417 |
print "\t", specificRootResultsList[0], |
3418 |
else: |
3419 |
print " " * len(intervalResultString), "\t", \ |
3420 |
specificRootResultsList[0], |
3421 |
if len(specificRootResultsList) > 1: |
3422 |
print specificRootResultsList[1] |
3423 |
specificRootResultIndex += 1 |
3424 |
print ; print |
3425 |
#print globalResultsList |
3426 |
# |
3427 |
print "Timers and counters" |
3428 |
|
3429 |
print "Number of iterations:", iterCount |
3430 |
print "Taylor condition failures:", taylCondFailedCount |
3431 |
print "Coppersmith condition failures:", coppCondFailedCount |
3432 |
print "Resultant condition failures:", resultCondFailedCount |
3433 |
print "Iterations count: ", iterCount |
3434 |
print "Number of intervals:", len(globalResultsList) |
3435 |
print "Number of basis constructions:", basisConstructionsCount |
3436 |
print "Total CPU time spent in basis constructions:", \ |
3437 |
basisConstructionsFullTime |
3438 |
if basisConstructionsCount != 0: |
3439 |
print "Average basis construction CPU time:", \ |
3440 |
basisConstructionsFullTime/basisConstructionsCount |
3441 |
print "Number of reductions:", reductionsCount |
3442 |
print "Total CPU time spent in reductions:", reductionsFullTime |
3443 |
if reductionsCount != 0: |
3444 |
print "Average reduction CPU time:", \ |
3445 |
reductionsFullTime/reductionsCount |
3446 |
print "Number of resultants computation rounds:", \ |
3447 |
resultantsComputationsCount |
3448 |
print "Total CPU time spent in resultants computation rounds:", \ |
3449 |
resultantsComputationsFullTime |
3450 |
if resultantsComputationsCount != 0: |
3451 |
print "Average resultants computation round CPU time:", \ |
3452 |
resultantsComputationsFullTime/resultantsComputationsCount |
3453 |
print "Number of root finding rounds:", rootsComputationsCount |
3454 |
print "Total CPU time spent in roots finding rounds:", \ |
3455 |
rootsComputationsFullTime |
3456 |
if rootsComputationsCount != 0: |
3457 |
print "Average roots finding round CPU time:", \ |
3458 |
rootsComputationsFullTime/rootsComputationsCount |
3459 |
print "Global Wall time:", globalWallTime |
3460 |
print "Global CPU time:", globalCpuTime |
3461 |
## Output counters |
3462 |
# End srs_runSLZ-v05_gram |
3463 |
# |
3464 |
def srs_run_SLZ_v05_proj(inputFunction, |
3465 |
inputLowerBound, |
3466 |
inputUpperBound, |
3467 |
alpha, |
3468 |
degree, |
3469 |
precision, |
3470 |
emin, |
3471 |
emax, |
3472 |
targetHardnessToRound, |
3473 |
debug = False): |
3474 |
""" |
3475 |
changes from plain V5: |
3476 |
LLL reduction is not performed on the matrix itself but rather on the |
3477 |
product of the matrix with a uniform random matrix. |
3478 |
The reduced matrix obtained is discarded but the transformation matrix |
3479 |
obtained is used to multiply the original matrix in order to reduced it. |
3480 |
If a sufficient level of reduction is obtained, we stop here. If not |
3481 |
the product matrix obtained above is LLL reduced. But as it has been |
3482 |
pre-reduced at the above step, reduction is supposed to be much fastet. |
3483 |
In the worst case, both reductions combined should hopefully be faster |
3484 |
than a straight single reduction. |
3485 |
Changes from V4: |
3486 |
Approximation polynomial has coefficients rounded. |
3487 |
Changes from V3: |
3488 |
Root search is changed again: |
3489 |
- only resultants in i are computed; |
3490 |
- roots in i are searched for; |
3491 |
- if any, they are tested for hardness-to-round. |
3492 |
Changes from V2: |
3493 |
Root search is changed: |
3494 |
- we compute the resultants in i and in t; |
3495 |
- we compute the roots set of each of these resultants; |
3496 |
- we combine all the possible pairs between the two sets; |
3497 |
- we check these pairs in polynomials for correctness. |
3498 |
Changes from V1: |
3499 |
1- check for roots as soon as a resultant is computed; |
3500 |
2- once a non null resultant is found, check for roots; |
3501 |
3- constant resultant == no root. |
3502 |
""" |
3503 |
|
3504 |
if debug: |
3505 |
print "Function :", inputFunction |
3506 |
print "Lower bound :", inputLowerBound.str(truncate=False) |
3507 |
print "Upper bounds :", inputUpperBound.str(truncate=False) |
3508 |
print "Alpha :", alpha |
3509 |
print "Degree :", degree |
3510 |
print "Precision :", precision |
3511 |
print "Emin :", emin |
3512 |
print "Emax :", emax |
3513 |
print "Target hardness-to-round:", targetHardnessToRound |
3514 |
|
3515 |
## Important constants. |
3516 |
### Stretch the interval if no error happens. |
3517 |
noErrorIntervalStretch = 1 + 2^(-5) |
3518 |
### If no vector validates the Coppersmith condition, shrink the interval |
3519 |
# by the following factor. |
3520 |
noCoppersmithIntervalShrink = 1/2 |
3521 |
### If only (or at least) one vector validates the Coppersmith condition, |
3522 |
# shrink the interval by the following factor. |
3523 |
oneCoppersmithIntervalShrink = 3/4 |
3524 |
#### If only null resultants are found, shrink the interval by the |
3525 |
# following factor. |
3526 |
onlyNullResultantsShrink = 3/4 |
3527 |
## Structures. |
3528 |
RRR = RealField(precision) |
3529 |
RRIF = RealIntervalField(precision) |
3530 |
## Converting input bound into the "right" field. |
3531 |
lowerBound = RRR(inputLowerBound) |
3532 |
upperBound = RRR(inputUpperBound) |
3533 |
## Before going any further, check domain and image binade conditions. |
3534 |
print inputFunction._assume_str(), "at 1:", inputFunction(1).n() |
3535 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
3536 |
#print "srsv04p:", output, (output is None) |
3537 |
# |
3538 |
## Check if input to thr fix_bounds function is valid. |
3539 |
if output is None: |
3540 |
print "Invalid domain/image binades. Domain:",\ |
3541 |
lowerBound.str(truncate=False), upperBound(truncate=False), \ |
3542 |
"Images:", \ |
3543 |
inputFunction(lowerBound), inputFunction(upperBound) |
3544 |
raise Exception("Invalid domain/image binades.") |
3545 |
lb = output[0] ; ub = output[1] |
3546 |
# |
3547 |
## Check if bounds have changed. |
3548 |
if lb != lowerBound or ub != upperBound: |
3549 |
print "lb:", lb.str(truncate=False), " - ub:", ub.str(truncate=False) |
3550 |
print "Invalid domain/image binades." |
3551 |
print "Domain:", lowerBound, upperBound |
3552 |
print "Images:", \ |
3553 |
inputFunction(lowerBound), inputFunction(upperBound) |
3554 |
raise Exception("Invalid domain/image binades.") |
3555 |
# |
3556 |
## Progam initialization |
3557 |
### Approximation polynomial accuracy and hardness to round. |
3558 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
3559 |
#polyApproxAccur = 2^(-(targetHardnessToRound + 12)) |
3560 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
3561 |
### Significand to integer conversion ratio. |
3562 |
toIntegerFactor = 2^(precision-1) |
3563 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
3564 |
### Variables and rings for polynomials and root searching. |
3565 |
i=var('i') |
3566 |
t=var('t') |
3567 |
inputFunctionVariable = inputFunction.variables()[0] |
3568 |
function = inputFunction.subs({inputFunctionVariable:i}) |
3569 |
# Polynomial Rings over the integers, for root finding. |
3570 |
Zi = ZZ[i] |
3571 |
Zt = ZZ[t] |
3572 |
Zit = ZZ[i,t] |
3573 |
## Number of iterations limit. |
3574 |
maxIter = 100000 |
3575 |
# |
3576 |
## Set the variable name in Sollya. |
3577 |
pobyso_name_free_variable_sa_so(str(function.variables()[0])) |
3578 |
## Compute the scaled function and the degree, in their Sollya version |
3579 |
# once for all. |
3580 |
#print "srsvp initial bounds:",lowerBound, upperBound |
3581 |
(scaledf, sdlb, sdub, silb, siub) = \ |
3582 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
3583 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
3584 |
#print "srsvp Scaled bounds:", sdlb, sdub |
3585 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
3586 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
3587 |
# |
3588 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
3589 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
3590 |
(unscalingFunction, scalingFunction) = \ |
3591 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
3592 |
#print scalingFunction, unscalingFunction |
3593 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
3594 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
3595 |
if internalSollyaPrec < 192: |
3596 |
internalSollyaPrec = 192 |
3597 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
3598 |
print "Sollya internal precision:", internalSollyaPrec |
3599 |
## Some variables. |
3600 |
### General variables |
3601 |
lb = sdlb |
3602 |
ub = sdub |
3603 |
nbw = 0 |
3604 |
intervalUlp = ub.ulp() |
3605 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
3606 |
ic = 0 |
3607 |
icAsInt = 0 # Set from ic. |
3608 |
solutionsSet = set() |
3609 |
tsErrorWidth = [] |
3610 |
csErrorVectors = [] |
3611 |
csVectorsResultants = [] |
3612 |
floatP = 0 # Taylor polynomial. |
3613 |
floatPcv = 0 # Ditto with variable change. |
3614 |
intvl = "" # Taylor interval |
3615 |
terr = 0 # Taylor error. |
3616 |
iterCount = 0 |
3617 |
htrnSet = set() |
3618 |
### Timers and counters. |
3619 |
wallTimeStart = 0 |
3620 |
cpuTimeStart = 0 |
3621 |
taylCondFailedCount = 0 |
3622 |
coppCondFailedCount = 0 |
3623 |
resultCondFailedCount = 0 |
3624 |
coppCondFailed = False |
3625 |
resultCondFailed = False |
3626 |
globalResultsList = [] |
3627 |
basisConstructionsCount = 0 |
3628 |
basisConstructionsFullTime = 0 |
3629 |
basisConstructionTime = 0 |
3630 |
reductionsCount = 0 |
3631 |
reductionsFullTime = 0 |
3632 |
reductionTime = 0 |
3633 |
resultantsComputationsCount = 0 |
3634 |
resultantsComputationsFullTime = 0 |
3635 |
resultantsComputationTime = 0 |
3636 |
rootsComputationsCount = 0 |
3637 |
rootsComputationsFullTime = 0 |
3638 |
rootsComputationTime = 0 |
3639 |
|
3640 |
## Global times are started here. |
3641 |
wallTimeStart = walltime() |
3642 |
cpuTimeStart = cputime() |
3643 |
## Main loop. |
3644 |
while True: |
3645 |
if lb >= sdub: |
3646 |
print "Lower bound reached upper bound." |
3647 |
break |
3648 |
if iterCount == maxIter: |
3649 |
print "Reached maxIter. Aborting" |
3650 |
break |
3651 |
iterCount += 1 |
3652 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
3653 |
"log2(numbers)." |
3654 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
3655 |
prceSo = slz_compute_polynomial_and_interval_01(scaledfSo, |
3656 |
degreeSo, |
3657 |
lb, |
3658 |
ub, |
3659 |
polyApproxAccur, |
3660 |
debug=debug) |
3661 |
if debug: |
3662 |
print "Approximation polynomial computed." |
3663 |
if prceSo is None: |
3664 |
raise Exception("Could not compute an approximation polynomial.") |
3665 |
### Convert back the data into Sage space. |
3666 |
(floatP, floatPcv, intvl, ic, terr) = \ |
3667 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
3668 |
prceSo[1], prceSo[2], |
3669 |
prceSo[3])) |
3670 |
intvl = RRIF(intvl) |
3671 |
## Clean-up Sollya stuff. |
3672 |
for elem in prceSo: |
3673 |
sollya_lib_clear_obj(elem) |
3674 |
#print floatP, floatPcv, intvl, ic, terr |
3675 |
#print floatP |
3676 |
#print intvl.endpoints()[0].n(), \ |
3677 |
# ic.n(), |
3678 |
#intvl.endpoints()[1].n() |
3679 |
### Check returned data. |
3680 |
#### Is approximation error OK? |
3681 |
if terr > polyApproxAccur: |
3682 |
exceptionErrorMess = \ |
3683 |
"Approximation failed - computed error:" + \ |
3684 |
str(terr) + " - target error: " |
3685 |
exceptionErrorMess += \ |
3686 |
str(polyApproxAccur) + ". Aborting!" |
3687 |
raise Exception(exceptionErrorMess) |
3688 |
#### Is lower bound OK? |
3689 |
if lb != intvl.endpoints()[0]: |
3690 |
exceptionErrorMess = "Wrong lower bound:" + \ |
3691 |
str(lb) + ". Aborting!" |
3692 |
raise Exception(exceptionErrorMess) |
3693 |
#### Set upper bound. |
3694 |
if ub > intvl.endpoints()[1]: |
3695 |
ub = intvl.endpoints()[1] |
3696 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
3697 |
"log2(numbers)." |
3698 |
taylCondFailedCount += 1 |
3699 |
#### Is interval not degenerate? |
3700 |
if lb >= ub: |
3701 |
exceptionErrorMess = "Degenerate interval: " + \ |
3702 |
"lowerBound(" + str(lb) +\ |
3703 |
")>= upperBound(" + str(ub) + \ |
3704 |
"). Aborting!" |
3705 |
raise Exception(exceptionErrorMess) |
3706 |
#### Is interval center ok? |
3707 |
if ic <= lb or ic >= ub: |
3708 |
exceptionErrorMess = "Invalid interval center for " + \ |
3709 |
str(lb) + ',' + str(ic) + ',' + \ |
3710 |
str(ub) + ". Aborting!" |
3711 |
raise Exception(exceptionErrorMess) |
3712 |
##### Current interval width and reset future interval width. |
3713 |
bw = ub - lb |
3714 |
nbw = 0 |
3715 |
icAsInt = int(ic * toIntegerFactor) |
3716 |
#### The following ratio is always >= 1. In case we may want to |
3717 |
# enlarge the interval |
3718 |
curTaylErrRat = polyApproxAccur / terr |
3719 |
### Make the integral transformations. |
3720 |
#### Bounds and interval center. |
3721 |
intIc = int(ic * toIntegerFactor) |
3722 |
intLb = int(lb * toIntegerFactor) - intIc |
3723 |
intUb = int(ub * toIntegerFactor) - intIc |
3724 |
# |
3725 |
#### Polynomials |
3726 |
basisConstructionTime = cputime() |
3727 |
##### To a polynomial with rational coefficients with rational arguments |
3728 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
3729 |
##### To a polynomial with rational coefficients with integer arguments |
3730 |
ratIntP = \ |
3731 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
3732 |
##### Ultimately a multivariate polynomial with integer coefficients |
3733 |
# with integer arguments. |
3734 |
coppersmithTuple = \ |
3735 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
3736 |
precision, |
3737 |
targetHardnessToRound, |
3738 |
i, t) |
3739 |
#### Recover Coppersmith information. |
3740 |
intIntP = coppersmithTuple[0] |
3741 |
N = coppersmithTuple[1] |
3742 |
nAtAlpha = N^alpha |
3743 |
tBound = coppersmithTuple[2] |
3744 |
leastCommonMultiple = coppersmithTuple[3] |
3745 |
iBound = max(abs(intLb),abs(intUb)) |
3746 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
3747 |
basisConstructionsCount += 1 |
3748 |
#### Compute the matrix to reduce for debug purpose. Otherwise |
3749 |
# slz_compute_coppersmith_reduced_polynomials does the job |
3750 |
# invisibly. |
3751 |
if debug: |
3752 |
matrixToReduce = slz_compute_initial_lattice_matrix(intIntP, |
3753 |
alpha, |
3754 |
N, |
3755 |
iBound, |
3756 |
tBound) |
3757 |
maxNorm = 0 |
3758 |
latticeSize = 0 |
3759 |
matrixFile = file('/tmp/matrixToReduce.txt', 'w') |
3760 |
for row in matrixToReduce.rows(): |
3761 |
currentNorm = row.norm() |
3762 |
if currentNorm > maxNorm: |
3763 |
maxNorm = currentNorm |
3764 |
latticeSize += 1 |
3765 |
for elem in row: |
3766 |
matrixFile.write(elem.str(base=2) + ",") |
3767 |
matrixFile.write("\n") |
3768 |
#matrixFile.write(matrixToReduce.str(radix="2") + "\n") |
3769 |
matrixFile.close() |
3770 |
#### We use here binary length as defined in LLL princepts. |
3771 |
binaryLength = latticeSize * log(maxNorm) |
3772 |
print "Binary length:", binaryLength.n() |
3773 |
#raise Exception("Deliberate stop here.") |
3774 |
# End if debug |
3775 |
reductionTime = cputime() |
3776 |
#### Compute the reduced polynomials. |
3777 |
print "Starting reduction..." |
3778 |
ccReducedPolynomialsList = \ |
3779 |
slz_compute_coppersmith_reduced_polynomials_proj(intIntP, |
3780 |
alpha, |
3781 |
N, |
3782 |
iBound, |
3783 |
tBound) |
3784 |
print "...reduction accomplished in", cputime(reductionTime), "s." |
3785 |
if ccReducedPolynomialsList is None: |
3786 |
raise Exception("Reduction failed.") |
3787 |
reductionsFullTime += cputime(reductionTime) |
3788 |
reductionsCount += 1 |
3789 |
if len(ccReducedPolynomialsList) < 2: |
3790 |
print "Nothing to form resultants with." |
3791 |
|
3792 |
coppCondFailedCount += 1 |
3793 |
coppCondFailed = True |
3794 |
##### Apply a different shrink factor according to |
3795 |
# the number of compliant polynomials. |
3796 |
if len(ccReducedPolynomialsList) == 0: |
3797 |
ub = lb + bw * noCoppersmithIntervalShrink |
3798 |
else: # At least one compliant polynomial. |
3799 |
ub = lb + bw * oneCoppersmithIntervalShrink |
3800 |
if ub > sdub: |
3801 |
ub = sdub |
3802 |
if lb == ub: |
3803 |
raise Exception("Cant shrink interval \ |
3804 |
anymore to get Coppersmith condition.") |
3805 |
nbw = 0 |
3806 |
continue |
3807 |
#### We have at least two polynomials. |
3808 |
# Let us try to compute resultants. |
3809 |
# For each resultant computed, go for the solutions. |
3810 |
##### Build the pairs list. |
3811 |
polyPairsList = [] |
3812 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
3813 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
3814 |
len(ccReducedPolynomialsList)): |
3815 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
3816 |
ccReducedPolynomialsList[polyInnerIndex])) |
3817 |
#### Actual root search. |
3818 |
iRootsSet = set() |
3819 |
hasNonNullResultant = False |
3820 |
for polyPair in polyPairsList: |
3821 |
resultantsComputationTime = cputime() |
3822 |
currentResultantI = \ |
3823 |
slz_resultant(polyPair[0], |
3824 |
polyPair[1], |
3825 |
t) |
3826 |
resultantsComputationsCount += 1 |
3827 |
resultantsComputationsFullTime += \ |
3828 |
cputime(resultantsComputationTime) |
3829 |
#### Function slz_resultant returns None both for None and O |
3830 |
# resultants. |
3831 |
if currentResultantI is None: |
3832 |
print "Nul resultant" |
3833 |
continue # Next polyPair. |
3834 |
## We deleted the currentResultantI computation. |
3835 |
#### We have a non null resultant. From now on, whatever this |
3836 |
# root search yields, no extra root search is necessary. |
3837 |
hasNonNullResultant = True |
3838 |
#### A constant resultant leads to no root. Root search is done. |
3839 |
if currentResultantI.degree() < 1: |
3840 |
print "Resultant is constant:", currentResultantI |
3841 |
break # There is no root. |
3842 |
#### Actual iroots computation. |
3843 |
rootsComputationTime = cputime() |
3844 |
iRootsList = Zi(currentResultantI).roots() |
3845 |
rootsComputationsCount += 1 |
3846 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
3847 |
if len(iRootsList) == 0: |
3848 |
print "No roots in \"i\"." |
3849 |
#break # No roots in i. |
3850 |
else: |
3851 |
for iRoot in iRootsList: |
3852 |
# A root is given as a (value, multiplicity) tuple. |
3853 |
iRootsSet.add(iRoot[0]) |
3854 |
print "Root added." |
3855 |
#### A non null, non constant resultant has been tested |
3856 |
# for. There is no need to check for another one. Break |
3857 |
# whether roots are found or not. |
3858 |
break |
3859 |
# End loop for polyPair in polyParsList. We only loop again if a |
3860 |
# None or zero resultant is found. |
3861 |
#### Prepare for results for the current interval.. |
3862 |
intervalResultsList = [] |
3863 |
intervalResultsList.append((lb, ub)) |
3864 |
#### Check roots. |
3865 |
rootsResultsList = [] |
3866 |
for iRoot in iRootsSet: |
3867 |
specificRootResultsList = [] |
3868 |
failingBounds = [] |
3869 |
# Root qualifies for modular equation, test it for hardness to round. |
3870 |
hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor) |
3871 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
3872 |
#print scalingFunction |
3873 |
scaledHardToRoundCaseAsFloat = \ |
3874 |
scalingFunction(hardToRoundCaseAsFloat) |
3875 |
print "Candidate HTRNc at x =", \ |
3876 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
3877 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
3878 |
function, |
3879 |
2^-(targetHardnessToRound), |
3880 |
RRR): |
3881 |
print hardToRoundCaseAsFloat, "is HTRN case." |
3882 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
3883 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
3884 |
print "Found in interval." |
3885 |
else: |
3886 |
print "Found out of interval." |
3887 |
# Check the i root is within the i bound. |
3888 |
if abs(iRoot) > iBound: |
3889 |
print "IRoot", iRoot, "is out of bounds for modular equation." |
3890 |
print "i bound:", iBound |
3891 |
failingBounds.append('i') |
3892 |
failingBounds.append(iRoot) |
3893 |
failingBounds.append(iBound) |
3894 |
if len(failingBounds) > 0: |
3895 |
specificRootResultsList.append(failingBounds) |
3896 |
else: # From slz_is_htrn... |
3897 |
print "is not an HTRN case." |
3898 |
if len(specificRootResultsList) > 0: |
3899 |
rootsResultsList.append(specificRootResultsList) |
3900 |
if len(rootsResultsList) > 0: |
3901 |
intervalResultsList.append(rootsResultsList) |
3902 |
### Check if a non null resultant was found. If not shrink the interval. |
3903 |
if not hasNonNullResultant: |
3904 |
print "Only null resultants for this reduction, shrinking interval." |
3905 |
resultCondFailed = True |
3906 |
resultCondFailedCount += 1 |
3907 |
### Shrink interval for next iteration. |
3908 |
ub = lb + bw * onlyNullResultantsShrink |
3909 |
if ub > sdub: |
3910 |
ub = sdub |
3911 |
nbw = 0 |
3912 |
continue |
3913 |
#### An intervalResultsList has at least the bounds. |
3914 |
globalResultsList.append(intervalResultsList) |
3915 |
#### Compute an incremented width for next upper bound, only |
3916 |
# if not Coppersmith condition nor resultant condition |
3917 |
# failed at the previous run. |
3918 |
if not coppCondFailed and not resultCondFailed: |
3919 |
nbw = noErrorIntervalStretch * bw |
3920 |
else: |
3921 |
nbw = bw |
3922 |
##### Reset the failure flags. They will be raised |
3923 |
# again if needed. |
3924 |
coppCondFailed = False |
3925 |
resultCondFailed = False |
3926 |
#### For next iteration (at end of loop) |
3927 |
#print "nbw:", nbw |
3928 |
lb = ub |
3929 |
ub += nbw |
3930 |
if ub > sdub: |
3931 |
ub = sdub |
3932 |
|
3933 |
# End while True |
3934 |
## Main loop just ended. |
3935 |
globalWallTime = walltime(wallTimeStart) |
3936 |
globalCpuTime = cputime(cpuTimeStart) |
3937 |
## Output results |
3938 |
print ; print "Intervals and HTRNs" ; print |
3939 |
for intervalResultsList in globalResultsList: |
3940 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
3941 |
"," + str(intervalResultsList[0][1]) + "]" |
3942 |
print intervalResultString, |
3943 |
if len(intervalResultsList) > 1: |
3944 |
rootsResultsList = intervalResultsList[1] |
3945 |
specificRootResultIndex = 0 |
3946 |
for specificRootResultsList in rootsResultsList: |
3947 |
if specificRootResultIndex == 0: |
3948 |
print "\t", specificRootResultsList[0], |
3949 |
else: |
3950 |
print " " * len(intervalResultString), "\t", \ |
3951 |
specificRootResultsList[0], |
3952 |
if len(specificRootResultsList) > 1: |
3953 |
print specificRootResultsList[1] |
3954 |
specificRootResultIndex += 1 |
3955 |
print ; print |
3956 |
#print globalResultsList |
3957 |
# |
3958 |
print "Timers and counters" |
3959 |
|
3960 |
print "Number of iterations:", iterCount |
3961 |
print "Taylor condition failures:", taylCondFailedCount |
3962 |
print "Coppersmith condition failures:", coppCondFailedCount |
3963 |
print "Resultant condition failures:", resultCondFailedCount |
3964 |
print "Iterations count: ", iterCount |
3965 |
print "Number of intervals:", len(globalResultsList) |
3966 |
print "Number of basis constructions:", basisConstructionsCount |
3967 |
print "Total CPU time spent in basis constructions:", \ |
3968 |
basisConstructionsFullTime |
3969 |
if basisConstructionsCount != 0: |
3970 |
print "Average basis construction CPU time:", \ |
3971 |
basisConstructionsFullTime/basisConstructionsCount |
3972 |
print "Number of reductions:", reductionsCount |
3973 |
print "Total CPU time spent in reductions:", reductionsFullTime |
3974 |
if reductionsCount != 0: |
3975 |
print "Average reduction CPU time:", \ |
3976 |
reductionsFullTime/reductionsCount |
3977 |
print "Number of resultants computation rounds:", \ |
3978 |
resultantsComputationsCount |
3979 |
print "Total CPU time spent in resultants computation rounds:", \ |
3980 |
resultantsComputationsFullTime |
3981 |
if resultantsComputationsCount != 0: |
3982 |
print "Average resultants computation round CPU time:", \ |
3983 |
resultantsComputationsFullTime/resultantsComputationsCount |
3984 |
print "Number of root finding rounds:", rootsComputationsCount |
3985 |
print "Total CPU time spent in roots finding rounds:", \ |
3986 |
rootsComputationsFullTime |
3987 |
if rootsComputationsCount != 0: |
3988 |
print "Average roots finding round CPU time:", \ |
3989 |
rootsComputationsFullTime/rootsComputationsCount |
3990 |
print "Global Wall time:", globalWallTime |
3991 |
print "Global CPU time:", globalCpuTime |
3992 |
## Output counters |
3993 |
# End srs_runSLZ-v05_proj |
3994 |
# |
3995 |
def srs_run_SLZ_v06(inputFunction, |
3996 |
inputLowerBound, |
3997 |
inputUpperBound, |
3998 |
alpha, |
3999 |
degree, |
4000 |
precision, |
4001 |
emin, |
4002 |
emax, |
4003 |
targetHardnessToRound, |
4004 |
debug = True): |
4005 |
""" |
4006 |
Changes from V5: |
4007 |
Very verbose |
4008 |
Changes from V4: |
4009 |
Approximation polynomial has coefficients rounded. |
4010 |
Changes from V3: |
4011 |
Root search is changed again: |
4012 |
- only resultants in i are computed; |
4013 |
- roots in i are searched for; |
4014 |
- if any, they are tested for hardness-to-round. |
4015 |
Changes from V2: |
4016 |
Root search is changed: |
4017 |
- we compute the resultants in i and in t; |
4018 |
- we compute the roots set of each of these resultants; |
4019 |
- we combine all the possible pairs between the two sets; |
4020 |
- we check these pairs in polynomials for correctness. |
4021 |
Changes from V1: |
4022 |
1- check for roots as soon as a resultant is computed; |
4023 |
2- once a non null resultant is found, check for roots; |
4024 |
3- constant resultant == no root. |
4025 |
""" |
4026 |
if debug: |
4027 |
print "Function :", inputFunction |
4028 |
print "Lower bound :", inputLowerBound |
4029 |
print "Upper bounds :", inputUpperBound |
4030 |
print "Alpha :", alpha |
4031 |
print "Degree :", degree |
4032 |
print "Precision :", precision |
4033 |
print "Emin :", emin |
4034 |
print "Emax :", emax |
4035 |
print "Target hardness-to-round:", targetHardnessToRound |
4036 |
|
4037 |
## Important constants. |
4038 |
### Stretch the interval if no error happens. |
4039 |
noErrorIntervalStretch = 1 + 2^(-5) |
4040 |
### If no vector validates the Coppersmith condition, shrink the interval |
4041 |
# by the following factor. |
4042 |
noCoppersmithIntervalShrink = 1/2 |
4043 |
### If only (or at least) one vector validates the Coppersmith condition, |
4044 |
# shrink the interval by the following factor. |
4045 |
oneCoppersmithIntervalShrink = 3/4 |
4046 |
#### If only null resultants are found, shrink the interval by the |
4047 |
# following factor. |
4048 |
onlyNullResultantsShrink = 3/4 |
4049 |
## Structures. |
4050 |
RRR = RealField(precision) |
4051 |
RRIF = RealIntervalField(precision) |
4052 |
## Converting input bound into the "right" field. |
4053 |
lowerBound = RRR(inputLowerBound) |
4054 |
upperBound = RRR(inputUpperBound) |
4055 |
## Before going any further, check domain and image binade conditions. |
4056 |
print inputFunction(1).n() |
4057 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
4058 |
if output is None: |
4059 |
print "Invalid domain/image binades. Domain:",\ |
4060 |
lowerBound, upperBound, "Images:", \ |
4061 |
inputFunction(lowerBound), inputFunction(upperBound) |
4062 |
raise Exception("Invalid domain/image binades.") |
4063 |
lb = output[0] ; ub = output[1] |
4064 |
if lb != lowerBound or ub != upperBound: |
4065 |
print "lb:", lb, " - ub:", ub |
4066 |
print "Invalid domain/image binades. Domain:",\ |
4067 |
lowerBound, upperBound, "Images:", \ |
4068 |
inputFunction(lowerBound), inputFunction(upperBound) |
4069 |
raise Exception("Invalid domain/image binades.") |
4070 |
# |
4071 |
## Progam initialization |
4072 |
### Approximation polynomial accuracy and hardness to round. |
4073 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
4074 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
4075 |
### Significand to integer conversion ratio. |
4076 |
toIntegerFactor = 2^(precision-1) |
4077 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
4078 |
### Variables and rings for polynomials and root searching. |
4079 |
i=var('i') |
4080 |
t=var('t') |
4081 |
inputFunctionVariable = inputFunction.variables()[0] |
4082 |
function = inputFunction.subs({inputFunctionVariable:i}) |
4083 |
# Polynomial Rings over the integers, for root finding. |
4084 |
Zi = ZZ[i] |
4085 |
## Number of iterations limit. |
4086 |
maxIter = 100000 |
4087 |
# |
4088 |
## Set the variable name in Sollya. |
4089 |
pobyso_name_free_variable_sa_so(str(function.variables()[0])) |
4090 |
## Compute the scaled function and the degree, in their Sollya version |
4091 |
# once for all. |
4092 |
(scaledf, sdlb, sdub, silb, siub) = \ |
4093 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
4094 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
4095 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
4096 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
4097 |
# |
4098 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
4099 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
4100 |
(unscalingFunction, scalingFunction) = \ |
4101 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
4102 |
#print scalingFunction, unscalingFunction |
4103 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
4104 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
4105 |
if internalSollyaPrec < 192: |
4106 |
internalSollyaPrec = 192 |
4107 |
pobyso_lib_init() |
4108 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
4109 |
print "Sollya internal precision:", internalSollyaPrec |
4110 |
targetPlusOnePrecRF = RealField(RRR.prec()+1) |
4111 |
if internalSollyaPrec < 1024: |
4112 |
quasiExactRF = RealField(1014) |
4113 |
else: |
4114 |
quasiExactRF = RealField(internalSollyaPrec) |
4115 |
## Some variables. |
4116 |
### General variables |
4117 |
lb = sdlb |
4118 |
ub = sdub |
4119 |
nbw = 0 |
4120 |
intervalUlp = ub.ulp() |
4121 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
4122 |
ic = 0 |
4123 |
icAsInt = 0 # Set from ic. |
4124 |
solutionsSet = set() |
4125 |
tsErrorWidth = [] |
4126 |
csErrorVectors = [] |
4127 |
csVectorsResultants = [] |
4128 |
floatP = 0 # Taylor polynomial. |
4129 |
floatPcv = 0 # Ditto with variable change. |
4130 |
intvl = "" # Taylor interval |
4131 |
terr = 0 # Taylor error. |
4132 |
iterCount = 0 |
4133 |
htrnSet = set() |
4134 |
### Timers and counters. |
4135 |
wallTimeStart = 0 |
4136 |
cpuTimeStart = 0 |
4137 |
taylCondFailedCount = 0 |
4138 |
coppCondFailedCount = 0 |
4139 |
resultCondFailedCount = 0 |
4140 |
coppCondFailed = False |
4141 |
resultCondFailed = False |
4142 |
globalResultsList = [] |
4143 |
basisConstructionsCount = 0 |
4144 |
basisConstructionsFullTime = 0 |
4145 |
basisConstructionTime = 0 |
4146 |
reductionsCount = 0 |
4147 |
reductionsFullTime = 0 |
4148 |
reductionTime = 0 |
4149 |
resultantsComputationsCount = 0 |
4150 |
resultantsComputationsFullTime = 0 |
4151 |
resultantsComputationTime = 0 |
4152 |
rootsComputationsCount = 0 |
4153 |
rootsComputationsFullTime = 0 |
4154 |
rootsComputationTime = 0 |
4155 |
|
4156 |
## Global times are started here. |
4157 |
wallTimeStart = walltime() |
4158 |
cpuTimeStart = cputime() |
4159 |
## Main loop. |
4160 |
while True: |
4161 |
if lb >= sdub: |
4162 |
print "Lower bound reached upper bound." |
4163 |
break |
4164 |
if iterCount == maxIter: |
4165 |
print "Reached maxIter. Aborting" |
4166 |
break |
4167 |
iterCount += 1 |
4168 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
4169 |
"log2(numbers)." |
4170 |
#print "Debugging..." |
4171 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
4172 |
prceSo = slz_compute_polynomial_and_interval_02(scaledfSo, |
4173 |
degreeSo, |
4174 |
lb, |
4175 |
ub, |
4176 |
polyApproxAccur, |
4177 |
debug=True) |
4178 |
if debug: |
4179 |
print "Sollya Taylor polynomial:", ; pobyso_autoprint(prceSo[0]) |
4180 |
print "Sollya interval :", ; pobyso_autoprint(prceSo[1]) |
4181 |
print "Sollya interval center :", ; pobyso_autoprint(prceSo[2]) |
4182 |
print "Sollya Taylor error :", ; pobyso_autoprint(prceSo[3]) |
4183 |
|
4184 |
### Convert back the data into Sage space. |
4185 |
(floatP, floatPcv, intvl, ic, terr) = \ |
4186 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
4187 |
prceSo[1], prceSo[2], |
4188 |
prceSo[3])) |
4189 |
print "Sage Taylor polynomial:", floatP, floatP.parent() |
4190 |
floatPcoeffs = floatP.coefficients() |
4191 |
for coeff in floatPcoeffs: |
4192 |
print coeff.n(prec=coeff.parent().prec()).str(base=2) |
4193 |
print coeff.n(prec=coeff.parent().prec()) |
4194 |
intvl = RRIF(intvl) |
4195 |
## Clean-up Sollya stuff. |
4196 |
for elem in prceSo: |
4197 |
sollya_lib_clear_obj(elem) |
4198 |
#print floatP, floatPcv, intvl, ic, terr |
4199 |
#print floatP |
4200 |
#print intvl.endpoints()[0].n(), \ |
4201 |
# ic.n(), |
4202 |
#intvl.endpoints()[1].n() |
4203 |
### Check returned data. |
4204 |
#### Is approximation error OK? |
4205 |
if terr > polyApproxAccur: |
4206 |
exceptionErrorMess = \ |
4207 |
"Approximation failed - computed error:" + \ |
4208 |
str(terr) + " - target error: " |
4209 |
exceptionErrorMess += \ |
4210 |
str(polyApproxAccur) + ". Aborting!" |
4211 |
raise Exception(exceptionErrorMess) |
4212 |
#### Is lower bound OK? |
4213 |
if lb != intvl.endpoints()[0]: |
4214 |
exceptionErrorMess = "Wrong lower bound:" + \ |
4215 |
str(lb) + ". Aborting!" |
4216 |
raise Exception(exceptionErrorMess) |
4217 |
#### Set upper bound. |
4218 |
if ub > intvl.endpoints()[1]: |
4219 |
ub = intvl.endpoints()[1] |
4220 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
4221 |
"log2(numbers)." |
4222 |
taylCondFailedCount += 1 |
4223 |
#### Is interval not degenerate? |
4224 |
if lb >= ub: |
4225 |
exceptionErrorMess = "Degenerate interval: " + \ |
4226 |
"lowerBound(" + str(lb) +\ |
4227 |
")>= upperBound(" + str(ub) + \ |
4228 |
"). Aborting!" |
4229 |
raise Exception(exceptionErrorMess) |
4230 |
#### Is interval center ok? |
4231 |
if ic <= lb or ic >= ub: |
4232 |
exceptionErrorMess = "Invalid interval center for " + \ |
4233 |
str(lb) + ',' + str(ic) + ',' + \ |
4234 |
str(ub) + ". Aborting!" |
4235 |
raise Exception(exceptionErrorMess) |
4236 |
##### Current interval width and reset future interval width. |
4237 |
bw = ub - lb |
4238 |
nbw = 0 |
4239 |
icAsInt = int(ic * toIntegerFactor) |
4240 |
#### The following ratio is always >= 1. In case we may want to |
4241 |
# enlarge the interval |
4242 |
curTaylErrRat = polyApproxAccur / terr |
4243 |
### Make the integral transformations. |
4244 |
#### Bounds and interval center. |
4245 |
intIc = int(ic * toIntegerFactor) |
4246 |
intLb = int(lb * toIntegerFactor) - intIc |
4247 |
intUb = int(ub * toIntegerFactor) - intIc |
4248 |
# |
4249 |
#### Polynomials |
4250 |
basisConstructionTime = cputime() |
4251 |
##### To a polynomial with rational coefficients with rational arguments |
4252 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
4253 |
if debug: |
4254 |
print "Polynomial: rational coefficients for rational argument:" |
4255 |
print ratRatP |
4256 |
##### To a polynomial with rational coefficients with integer arguments |
4257 |
ratIntP = \ |
4258 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
4259 |
if debug: |
4260 |
print "Polynomial: rational coefficients for integer argument:" |
4261 |
print ratIntP |
4262 |
##### Ultimately a multivariate polynomial with integer coefficients |
4263 |
# with integer arguments. |
4264 |
coppersmithTuple = \ |
4265 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
4266 |
precision, |
4267 |
targetHardnessToRound, |
4268 |
i, t) |
4269 |
#### Recover Coppersmith information. |
4270 |
intIntP = coppersmithTuple[0] |
4271 |
N = coppersmithTuple[1] |
4272 |
nAtAlpha = N^alpha |
4273 |
tBound = coppersmithTuple[2] |
4274 |
leastCommonMultiple = coppersmithTuple[3] |
4275 |
iBound = max(abs(intLb),abs(intUb)) |
4276 |
if debug: |
4277 |
print "Polynomial: integer coefficients for integer argument:" |
4278 |
print intIntP |
4279 |
print "N:", N |
4280 |
print "t bound:", tBound |
4281 |
print "i bound:", iBound |
4282 |
print "Least common multiple:", leastCommonMultiple |
4283 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
4284 |
basisConstructionsCount += 1 |
4285 |
|
4286 |
#### Compute the matrix to reduce. |
4287 |
matrixToReduce = slz_compute_initial_lattice_matrix(intIntP, |
4288 |
alpha, |
4289 |
N, |
4290 |
iBound, |
4291 |
tBound, |
4292 |
True) |
4293 |
matrixFile = file('/tmp/matrixToReduce.txt', 'w') |
4294 |
for row in matrixToReduce.rows(): |
4295 |
matrixFile.write(str(row) + "\n") |
4296 |
matrixFile.close() |
4297 |
#raise Exception("Deliberate stop here.") |
4298 |
|
4299 |
reductionTime = cputime() |
4300 |
#### Compute the reduced polynomials. |
4301 |
ccReducedPolynomialsList = \ |
4302 |
slz_compute_coppersmith_reduced_polynomials_with_lattice_volume(intIntP, |
4303 |
alpha, |
4304 |
N, |
4305 |
iBound, |
4306 |
tBound, |
4307 |
True) |
4308 |
if ccReducedPolynomialsList is None: |
4309 |
raise Exception("Reduction failed.") |
4310 |
reductionsFullTime += cputime(reductionTime) |
4311 |
reductionsCount += 1 |
4312 |
if len(ccReducedPolynomialsList) < 2: |
4313 |
print "Nothing to form resultants with." |
4314 |
|
4315 |
coppCondFailedCount += 1 |
4316 |
coppCondFailed = True |
4317 |
##### Apply a different shrink factor according to |
4318 |
# the number of compliant polynomials. |
4319 |
if len(ccReducedPolynomialsList) == 0: |
4320 |
ub = lb + bw * noCoppersmithIntervalShrink |
4321 |
else: # At least one compliant polynomial. |
4322 |
ub = lb + bw * oneCoppersmithIntervalShrink |
4323 |
if ub > sdub: |
4324 |
ub = sdub |
4325 |
if lb == ub: |
4326 |
raise Exception("Cant shrink interval \ |
4327 |
anymore to get Coppersmith condition.") |
4328 |
nbw = 0 |
4329 |
continue |
4330 |
#### We have at least two polynomials. |
4331 |
# Let us try to compute resultants. |
4332 |
# For each resultant computed, go for the solutions. |
4333 |
##### Build the pairs list. |
4334 |
polyPairsList = [] |
4335 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
4336 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
4337 |
len(ccReducedPolynomialsList)): |
4338 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
4339 |
ccReducedPolynomialsList[polyInnerIndex])) |
4340 |
#### Actual root search. |
4341 |
iRootsSet = set() |
4342 |
hasNonNullResultant = False |
4343 |
for polyPair in polyPairsList: |
4344 |
resultantsComputationTime = cputime() |
4345 |
currentResultantI = \ |
4346 |
slz_resultant(polyPair[0], |
4347 |
polyPair[1], |
4348 |
t, |
4349 |
debug=True) |
4350 |
resultantsComputationsCount += 1 |
4351 |
resultantsComputationsFullTime += \ |
4352 |
cputime(resultantsComputationTime) |
4353 |
#### Function slz_resultant returns None both for None and O |
4354 |
# resultants. |
4355 |
if currentResultantI is None: |
4356 |
print "Nul resultant" |
4357 |
continue # Next polyPair. |
4358 |
## We deleted the currentResultantI computation. |
4359 |
#### We have a non null resultant. From now on, whatever this |
4360 |
# root search yields, no extra root search is necessary. |
4361 |
hasNonNullResultant = True |
4362 |
#### A constant resultant leads to no root. Root search is done. |
4363 |
if currentResultantI.degree() < 1: |
4364 |
print "Resultant is constant:", currentResultantI |
4365 |
break # There is no root. |
4366 |
#### Actual iroots computation. |
4367 |
rootsComputationTime = cputime() |
4368 |
iRootsList = Zi(currentResultantI).roots() |
4369 |
rootsComputationsCount += 1 |
4370 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
4371 |
if len(iRootsList) == 0: |
4372 |
print "No roots in \"i\"." |
4373 |
break # No roots in i. |
4374 |
else: |
4375 |
for iRoot in iRootsList: |
4376 |
# A root is given as a (value, multiplicity) tuple. |
4377 |
iRootsSet.add(iRoot[0]) |
4378 |
# End loop for polyPair in polyParsList. We only loop again if a |
4379 |
# None or zero resultant is found. |
4380 |
#### Prepare for results for the current interval.. |
4381 |
intervalResultsList = [] |
4382 |
intervalResultsList.append((lb, ub)) |
4383 |
#### Check roots. |
4384 |
rootsResultsList = [] |
4385 |
for iRoot in iRootsSet: |
4386 |
specificRootResultsList = [] |
4387 |
failingBounds = [] |
4388 |
# Root qualifies for modular equation, test it for hardness to round. |
4389 |
hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor) |
4390 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
4391 |
#print scalingFunction |
4392 |
scaledHardToRoundCaseAsFloat = \ |
4393 |
scalingFunction(hardToRoundCaseAsFloat) |
4394 |
print "Candidate HTRNc at x =", \ |
4395 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
4396 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
4397 |
function, |
4398 |
2^-(targetHardnessToRound), |
4399 |
RRR, |
4400 |
targetPlusOnePrecRF, |
4401 |
quasiExactRF): |
4402 |
print hardToRoundCaseAsFloat, "is HTRN case." |
4403 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
4404 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
4405 |
print "Found in interval." |
4406 |
else: |
4407 |
print "Found out of interval." |
4408 |
# Check the i root is within the i bound. |
4409 |
if abs(iRoot) > iBound: |
4410 |
print "IRoot", iRoot, "is out of bounds for modular equation." |
4411 |
print "i bound:", iBound |
4412 |
failingBounds.append('i') |
4413 |
failingBounds.append(iRoot) |
4414 |
failingBounds.append(iBound) |
4415 |
if len(failingBounds) > 0: |
4416 |
specificRootResultsList.append(failingBounds) |
4417 |
else: # From slz_is_htrn... |
4418 |
print "is not an HTRN case for integer value:", iRoot |
4419 |
if len(specificRootResultsList) > 0: |
4420 |
rootsResultsList.append(specificRootResultsList) |
4421 |
if len(rootsResultsList) > 0: |
4422 |
intervalResultsList.append(rootsResultsList) |
4423 |
### Check if a non null resultant was found. If not shrink the interval. |
4424 |
if not hasNonNullResultant: |
4425 |
print "Only null resultants for this reduction, shrinking interval." |
4426 |
resultCondFailed = True |
4427 |
resultCondFailedCount += 1 |
4428 |
### Shrink interval for next iteration. |
4429 |
ub = lb + bw * onlyNullResultantsShrink |
4430 |
if ub > sdub: |
4431 |
ub = sdub |
4432 |
nbw = 0 |
4433 |
continue |
4434 |
#### An intervalResultsList has at least the bounds. |
4435 |
globalResultsList.append(intervalResultsList) |
4436 |
#### Compute an incremented width for next upper bound, only |
4437 |
# if not Coppersmith condition nor resultant condition |
4438 |
# failed at the previous run. |
4439 |
if not coppCondFailed and not resultCondFailed: |
4440 |
nbw = noErrorIntervalStretch * bw |
4441 |
else: |
4442 |
nbw = bw |
4443 |
##### Reset the failure flags. They will be raised |
4444 |
# again if needed. |
4445 |
coppCondFailed = False |
4446 |
resultCondFailed = False |
4447 |
#### For next iteration (at end of loop) |
4448 |
#print "nbw:", nbw |
4449 |
lb = ub |
4450 |
ub += nbw |
4451 |
if ub > sdub: |
4452 |
ub = sdub |
4453 |
|
4454 |
# End while True |
4455 |
## Main loop just ended. |
4456 |
globalWallTime = walltime(wallTimeStart) |
4457 |
globalCpuTime = cputime(cpuTimeStart) |
4458 |
## Output results |
4459 |
print ; print "Intervals and HTRNs" ; print |
4460 |
for intervalResultsList in globalResultsList: |
4461 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
4462 |
"," + str(intervalResultsList[0][1]) + "]" |
4463 |
print intervalResultString, |
4464 |
if len(intervalResultsList) > 1: |
4465 |
rootsResultsList = intervalResultsList[1] |
4466 |
specificRootResultIndex = 0 |
4467 |
for specificRootResultsList in rootsResultsList: |
4468 |
if specificRootResultIndex == 0: |
4469 |
print "\t", specificRootResultsList[0], |
4470 |
else: |
4471 |
print " " * len(intervalResultString), "\t", \ |
4472 |
specificRootResultsList[0], |
4473 |
if len(specificRootResultsList) > 1: |
4474 |
print specificRootResultsList[1] |
4475 |
specificRootResultIndex += 1 |
4476 |
print ; print |
4477 |
#print globalResultsList |
4478 |
# |
4479 |
print "Timers and counters" |
4480 |
|
4481 |
print "Number of iterations:", iterCount |
4482 |
print "Taylor condition failures:", taylCondFailedCount |
4483 |
print "Coppersmith condition failures:", coppCondFailedCount |
4484 |
print "Resultant condition failures:", resultCondFailedCount |
4485 |
print "Iterations count: ", iterCount |
4486 |
print "Number of intervals:", len(globalResultsList) |
4487 |
print "Number of basis constructions:", basisConstructionsCount |
4488 |
print "Total CPU time spent in basis constructions:", \ |
4489 |
basisConstructionsFullTime |
4490 |
if basisConstructionsCount != 0: |
4491 |
print "Average basis construction CPU time:", \ |
4492 |
basisConstructionsFullTime/basisConstructionsCount |
4493 |
print "Number of reductions:", reductionsCount |
4494 |
print "Total CPU time spent in reductions:", reductionsFullTime |
4495 |
if reductionsCount != 0: |
4496 |
print "Average reduction CPU time:", \ |
4497 |
reductionsFullTime/reductionsCount |
4498 |
print "Number of resultants computation rounds:", \ |
4499 |
resultantsComputationsCount |
4500 |
print "Total CPU time spent in resultants computation rounds:", \ |
4501 |
resultantsComputationsFullTime |
4502 |
if resultantsComputationsCount != 0: |
4503 |
print "Average resultants computation round CPU time:", \ |
4504 |
resultantsComputationsFullTime/resultantsComputationsCount |
4505 |
print "Number of root finding rounds:", rootsComputationsCount |
4506 |
print "Total CPU time spent in roots finding rounds:", \ |
4507 |
rootsComputationsFullTime |
4508 |
if rootsComputationsCount != 0: |
4509 |
print "Average roots finding round CPU time:", \ |
4510 |
rootsComputationsFullTime/rootsComputationsCount |
4511 |
print "Global Wall time:", globalWallTime |
4512 |
print "Global CPU time:", globalCpuTime |
4513 |
## Output counters |
4514 |
# End srs_runSLZ-v06 |
4515 |
sys.stderr.write("\t...sage Runtime SLZ loaded.\n") |