Révision 247
pobysoPythonSage/src/sageSLZ/runSLZ-113gram.sage (revision 247) | ||
---|---|---|
1 | 1 |
#! /opt/sage/sage |
2 |
# @file runSLZ-113.sage |
|
2 |
# @file runSLZ-113gram.sage
|
|
3 | 3 |
# |
4 |
#@par Changes from runSLZ-113.sage |
|
5 |
# LLL reduction is not performed on the matrix itself but on its Gram matrix as |
|
6 |
# an attempt for a faster reduction. |
|
7 |
# |
|
4 | 8 |
# Run SLZ for p=113 |
5 | 9 |
#from scipy.constants.codata import precision |
6 | 10 |
def initialize_env(): |
pobysoPythonSage/src/sageSLZ/sageSLZ.sage (revision 247) | ||
---|---|---|
371 | 371 |
return ccReducedPolynomialsList |
372 | 372 |
# End slz_compute_coppersmith_reduced_polynomials_gram |
373 | 373 |
# |
374 |
def slz_compute_coppersmith_reduced_polynomials_proj(inputPolynomial, |
|
375 |
alpha, |
|
376 |
N, |
|
377 |
iBound, |
|
378 |
tBound, |
|
379 |
debug = False): |
|
380 |
""" |
|
381 |
For a given set of arguments (see below), compute a list |
|
382 |
of "reduced polynomials" that could be used to compute roots |
|
383 |
of the inputPolynomial. |
|
384 |
INPUT: |
|
385 |
|
|
386 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
|
387 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
|
388 |
- "N" -- the modulus; |
|
389 |
- "iBound" -- the bound on the first variable; |
|
390 |
- "tBound" -- the bound on the second variable. |
|
391 |
|
|
392 |
OUTPUT: |
|
393 |
|
|
394 |
A list of bivariate integer polynomial obtained using the Coppersmith |
|
395 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
|
396 |
reduced base that comply with the Coppersmith condition. |
|
397 |
""" |
|
398 |
#@par Changes from runSLZ-113.sage |
|
399 |
# LLL reduction is not performed on the matrix itself but rather on the |
|
400 |
# product of the matrix with a uniform random matrix. |
|
401 |
# The reduced matrix obtained is discarded but the transformation matrix |
|
402 |
# obtained is used to multiply the original matrix in order to reduced it. |
|
403 |
# If a sufficient level of reduction is obtained, we stop here. If not |
|
404 |
# the product matrix obtained above is LLL reduced. But as it has been |
|
405 |
# pre-reduced at the above step, reduction is supposed to be much faster. |
|
406 |
# |
|
407 |
# Arguments check. |
|
408 |
if iBound == 0 or tBound == 0: |
|
409 |
return None |
|
410 |
# End arguments check. |
|
411 |
nAtAlpha = N^alpha |
|
412 |
## Building polynomials for matrix. |
|
413 |
polyRing = inputPolynomial.parent() |
|
414 |
# Whatever the 2 variables are actually called, we call them |
|
415 |
# 'i' and 't' in all the variable names. |
|
416 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
|
417 |
#print polyVars[0], type(polyVars[0]) |
|
418 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
|
419 |
tVariable:tVariable * tBound}) |
|
420 |
if debug: |
|
421 |
polynomialsList = \ |
|
422 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
|
423 |
alpha, |
|
424 |
N, |
|
425 |
iBound, |
|
426 |
tBound, |
|
427 |
20) |
|
428 |
else: |
|
429 |
polynomialsList = \ |
|
430 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
|
431 |
alpha, |
|
432 |
N, |
|
433 |
iBound, |
|
434 |
tBound, |
|
435 |
0) |
|
436 |
#print "Polynomials list:", polynomialsList |
|
437 |
## Building the proto matrix. |
|
438 |
knownMonomials = [] |
|
439 |
protoMatrix = [] |
|
440 |
if debug: |
|
441 |
for poly in polynomialsList: |
|
442 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
|
443 |
knownMonomials, |
|
444 |
protoMatrix, |
|
445 |
20) |
|
446 |
else: |
|
447 |
for poly in polynomialsList: |
|
448 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
|
449 |
knownMonomials, |
|
450 |
protoMatrix, |
|
451 |
0) |
|
452 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
|
453 |
#print matrixToReduce |
|
454 |
## Reduction and checking. |
|
455 |
### Reduction with projection |
|
456 |
(reducedMatrix1, reductionMatrix1) = \ |
|
457 |
slz_reduce_lll_proj(matrixToReduce, 2^16) |
|
458 |
#print "Reduced matrix:" |
|
459 |
matrixIsReducedEnough = reducedMatrix1.is_LLL_reduced() |
|
460 |
# |
|
461 |
if not matrixIsReducedEnough: |
|
462 |
reducedMatrix = reducedMatrix1.LLL(algorithm='fpLLL:wrapper') |
|
463 |
isLLLReduced = reducedMatrix.is_LLL_reduced() |
|
464 |
else: |
|
465 |
reducedMatrix = reducedMatrix1 |
|
466 |
isLLLReduced = matrixIsReducedEnough |
|
467 |
#for row in reducedMatrix.rows(): |
|
468 |
# print row |
|
469 |
if not isLLLReduced: |
|
470 |
return None |
|
471 |
monomialsCount = len(knownMonomials) |
|
472 |
monomialsCountSqrt = sqrt(monomialsCount) |
|
473 |
#print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
|
474 |
#print reducedMatrix |
|
475 |
## Check the Coppersmith condition for each row and build the reduced |
|
476 |
# polynomials. |
|
477 |
ccReducedPolynomialsList = [] |
|
478 |
for row in reducedMatrix.rows(): |
|
479 |
l2Norm = row.norm(2) |
|
480 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
|
481 |
#print (l2Norm * monomialsCountSqrt).n() |
|
482 |
#print l2Norm.n() |
|
483 |
ccReducedPolynomial = \ |
|
484 |
slz_compute_reduced_polynomial(row, |
|
485 |
knownMonomials, |
|
486 |
iVariable, |
|
487 |
iBound, |
|
488 |
tVariable, |
|
489 |
tBound) |
|
490 |
if not ccReducedPolynomial is None: |
|
491 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
|
492 |
else: |
|
493 |
#print l2Norm.n() , ">", nAtAlpha |
|
494 |
pass |
|
495 |
if len(ccReducedPolynomialsList) < 2: |
|
496 |
print "Less than 2 Coppersmith condition compliant vectors." |
|
497 |
return () |
|
498 |
#print ccReducedPolynomialsList |
|
499 |
return ccReducedPolynomialsList |
|
500 |
# End slz_compute_coppersmith_reduced_polynomials_proj |
|
501 |
# |
|
374 | 502 |
def slz_compute_coppersmith_reduced_polynomials_with_lattice_volume(inputPolynomial, |
375 | 503 |
alpha, |
376 | 504 |
N, |
... | ... | |
1941 | 2069 |
# abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue).n(prec=100).str(base=2) |
1942 | 2070 |
return False |
1943 | 2071 |
# End slz_is_htrn |
1944 |
|
|
2072 |
# |
|
2073 |
def slz_pm1(): |
|
2074 |
""" |
|
2075 |
Compute a uniform RV in {-1, 1}. |
|
2076 |
""" |
|
2077 |
## function getrandbits(N) generates a long int with N random bits. |
|
2078 |
return getrandbits(1) * 2-1 |
|
2079 |
# End slz_pm1. |
|
2080 |
# |
|
2081 |
def slz_random_proj_pm1(r, c): |
|
2082 |
""" |
|
2083 |
r x c matrix with \pm 1 ({-1, 1}) coefficients |
|
2084 |
""" |
|
2085 |
M = matrix(r, c) |
|
2086 |
for i in range(0, r): |
|
2087 |
for j in range (0, c): |
|
2088 |
M[i,j] = slz_pm1() |
|
2089 |
return M |
|
2090 |
# End random_proj_pm1. |
|
2091 |
# |
|
2092 |
def slz_random_proj_uniform(n, r, c): |
|
2093 |
""" |
|
2094 |
r x c integer matrix with uniform n-bit integer coefficients |
|
2095 |
""" |
|
2096 |
M = matrix(r, c) |
|
2097 |
for i in range(0, r): |
|
2098 |
for j in range (0, c): |
|
2099 |
M[i,j] = slz_uniform(n) |
|
2100 |
return M |
|
2101 |
# End slz_random_proj_uniform. |
|
2102 |
# |
|
1945 | 2103 |
def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
1946 | 2104 |
precision, |
1947 | 2105 |
targetHardnessToRound, |
... | ... | |
2054 | 2212 |
return ccComplientRowsList |
2055 | 2213 |
# End slz_reduce_and_test_base |
2056 | 2214 |
|
2215 |
def slz_reduce_lll_proj(matToReduce, n): |
|
2216 |
""" |
|
2217 |
Compute the transformation matrix that realizes an LLL reduction on |
|
2218 |
the random uniform projected matrix. |
|
2219 |
Return both the initial matrix "reduced" by the transformation matrix and |
|
2220 |
the transformation matrix itself. |
|
2221 |
""" |
|
2222 |
## Compute the projected matrix. |
|
2223 |
matProjector = slz_random_proj_uniform(n, |
|
2224 |
matToReduce.ncols(), |
|
2225 |
matToReduce.nrows()) |
|
2226 |
matProjected = matToReduce * matProjector |
|
2227 |
## Build the argument matrix for LLL in such a way that the transformation |
|
2228 |
# matrix is also returned. This matrix is obtained at almost no extra |
|
2229 |
# cost. An identity matrix must be appended to |
|
2230 |
# the left of the initial matrix. The transformation matrix will |
|
2231 |
# will be recovered at the same location from the returned matrix . |
|
2232 |
idMat = identity_matrix(matProjected.nrows()) |
|
2233 |
augmentedMatToReduce = idMat.augment(matProjected) |
|
2234 |
reducedProjMat = \ |
|
2235 |
augmentedMatToReduce.LLL(algorithm='fpLLL:wrapper') |
|
2236 |
## Recover the transformation matrix (the left part of the reduced matrix). |
|
2237 |
# We discard the reduced matrix itself. |
|
2238 |
transMat = reducedProjMat.submatrix(0, |
|
2239 |
0, |
|
2240 |
reducedProjMat.nrows(), |
|
2241 |
reducedProjMat.nrows()) |
|
2242 |
## Return the initial matrix "reduced" and the transformation matrix tuple. |
|
2243 |
return (transMat * matToReduce, transMat) |
|
2244 |
# End slz_reduce_lll_proj. |
|
2245 |
# |
|
2057 | 2246 |
def slz_resultant(poly1, poly2, elimVar, debug = False): |
2058 | 2247 |
""" |
2059 | 2248 |
Compute the resultant for two polynomials for a given variable |
... | ... | |
2098 | 2287 |
return (poly1, poly2, resultantInElimVar) |
2099 | 2288 |
# End slz_resultant_tuple. |
2100 | 2289 |
# |
2290 |
def slz_uniform(n): |
|
2291 |
""" |
|
2292 |
Compute a uniform RV in {-1, 1}. |
|
2293 |
""" |
|
2294 |
## function getrandbits(n) generates a long int with n random bits. |
|
2295 |
return getrandbits(n) - 2^(n-1) |
|
2296 |
# End slz_uniform. |
|
2297 |
# |
|
2101 | 2298 |
sys.stderr.write("\t...sageSLZ loaded\n") |
2102 | 2299 |
|
pobysoPythonSage/src/sageSLZ/runSLZ-113proj.sage (revision 247) | ||
---|---|---|
1 |
#! /opt/sage/sage |
|
2 |
# @file runSLZ-113proj.sage |
|
3 |
# |
|
4 |
#@par Changes from runSLZ-113.sage |
|
5 |
# LLL reduction is not performed on the matrix itself but rather on the |
|
6 |
# product of the matrix with a uniform random matrix. |
|
7 |
# The reduced matrix obtained is discarded but the transformation matrix |
|
8 |
# obtained is used to multiply the original matrix in order to reduced it. |
|
9 |
# If a sufficient level of reduction is obtained, we stop here. If not |
|
10 |
# the product matrix obtained above is LLL reduced. But as it has been |
|
11 |
# pre-reduced at the above step, reduction is supposed to be much faster. |
|
12 |
# |
|
13 |
# Both reductions combined should hopefully be faster than a straight single |
|
14 |
# reduction. |
|
15 |
# |
|
16 |
# Run SLZ for p=113 |
|
17 |
#from scipy.constants.codata import precision |
|
18 |
def initialize_env(): |
|
19 |
""" |
|
20 |
Load all necessary modules. |
|
21 |
""" |
|
22 |
compiledSpyxDir = "/home/storres/recherche/arithmetique/pobysoPythonSage/compiledSpyx" |
|
23 |
if compiledSpyxDir not in sys.path: |
|
24 |
sys.path.append(compiledSpyxDir) |
|
25 |
if not 'mpfi' in sage.misc.cython.standard_libs: |
|
26 |
sage.misc.cython.standard_libs.append('mpfi') |
|
27 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sollya_lib.sage") |
|
28 |
# load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageMpfr.spyx") |
|
29 |
# load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageGMP.spyx") |
|
30 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/pobyso.py") |
|
31 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageSLZ.sage") |
|
32 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageNumericalOperations.sage") |
|
33 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageRationalOperations.sage") |
|
34 |
# Matrix operations are loaded by polynomial operations. |
|
35 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sagePolynomialOperations.sage") |
|
36 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageRunSLZ.sage") |
|
37 |
|
|
38 |
|
|
39 |
print "Running SLZ..." |
|
40 |
initialize_env() |
|
41 |
from sageMpfr import * |
|
42 |
from sageGMP import * |
|
43 |
import sys |
|
44 |
from subprocess import call |
|
45 |
# |
|
46 |
## Main variables and parameters. |
|
47 |
x = var('x') |
|
48 |
func(x) = exp(x) |
|
49 |
precision = 113 |
|
50 |
emin = -16382 |
|
51 |
emax = 16383 |
|
52 |
RRR = RealField(precision) |
|
53 |
degree = 0 |
|
54 |
alpha = 0 |
|
55 |
htrn = 0 |
|
56 |
intervalCenter = 0 |
|
57 |
intervalRadius = 0 |
|
58 |
debugMode = False |
|
59 |
## Local functions |
|
60 |
# |
|
61 |
def usage(): |
|
62 |
write = sys.stderr.write |
|
63 |
write("\nUsage:\n") |
|
64 |
write(" " + scriptName + " <degree> <alpha> <htrn> <intervalCenter>\n") |
|
65 |
write(" <numberOfNumbers> [debug]\n") |
|
66 |
write("\nArguments:\n") |
|
67 |
write(" degree the degree of the polynomial (integer)\n") |
|
68 |
write(" alpha alpha (integer)\n") |
|
69 |
write(" htrn hardness-to-round - a number of bits (integer)\n") |
|
70 |
write(" intervalCenter the interval center (a floating-point number)\n") |
|
71 |
write(" numberOfNumbers the number of floating-point numbers in the interval\n") |
|
72 |
write(" as a positive integral expression\n") |
|
73 |
write(" debug debug mode (\"debug\", in any case)\n\n") |
|
74 |
sys.exit(2) |
|
75 |
# End usage. |
|
76 |
# |
|
77 |
argsCount = len(sys.argv) |
|
78 |
scriptName = os.path.basename(__file__) |
|
79 |
if argsCount < 5: |
|
80 |
usage() |
|
81 |
for index in xrange(1,argsCount): |
|
82 |
if index == 1: |
|
83 |
degree = int(sys.argv[index]) |
|
84 |
elif index == 2: |
|
85 |
alpha = int(sys.argv[index]) |
|
86 |
elif index == 3: |
|
87 |
htrn = int(eval(sys.argv[index])) |
|
88 |
elif index == 4: |
|
89 |
try: |
|
90 |
intervalCenter = QQ(sage_eval(sys.argv[index])) |
|
91 |
except: |
|
92 |
intervalCenter = RRR(sys.argv[index]) |
|
93 |
intervalCenter = RRR(intervalCenter) |
|
94 |
elif index == 5: |
|
95 |
## Can be read as rational number but must end up as an integer. |
|
96 |
numberOfNumbers = QQ(sage_eval(sys.argv[index])) |
|
97 |
if numberOfNumbers != numberOfNumbers.round(): |
|
98 |
raise Exception("Invalid number of numbers: " + sys.argv[index] + ".") |
|
99 |
numberOfNumbers = numberOfNumbers.round() |
|
100 |
## The number must be strictly positive. |
|
101 |
if numberOfNumbers <= 0: |
|
102 |
raise Exception("Invalid number of numbers: " + sys.argv[index] + ".") |
|
103 |
elif index == 6: |
|
104 |
debugMode = sys.argv[index].upper() |
|
105 |
debugMode = (debugMode == "DEBUG") |
|
106 |
# Done with command line arguments collection. |
|
107 |
# |
|
108 |
## Debug printing |
|
109 |
print "degree :", degree |
|
110 |
print "alpha :", alpha |
|
111 |
print "htrn :", htrn |
|
112 |
print "interval center:", intervalCenter.n(prec=10).str(truncate=False) |
|
113 |
print "num of nums :", RR(numberOfNumbers).log2().n(prec=10).str(truncate=False) |
|
114 |
print "debug mode :", debugMode |
|
115 |
|
|
116 |
# |
|
117 |
## Set the terminal window title. |
|
118 |
terminalWindowTitle = ['stt', str(degree), str(alpha), str(htrn), |
|
119 |
intervalCenter.n(prec=10).str(truncate=False), |
|
120 |
RRR(numberOfNumbers).log2().n(prec=10).str(truncate=False)] |
|
121 |
call(terminalWindowTitle) |
|
122 |
# |
|
123 |
intervalCenterBinade = slz_compute_binade(intervalCenter) |
|
124 |
intervalRadius = \ |
|
125 |
2^intervalCenterBinade * 2^(-precision + 1) * numberOfNumbers / 2 |
|
126 |
srs_run_SLZ_v05_gram(inputFunction=func, |
|
127 |
inputLowerBound = intervalCenter - intervalRadius, |
|
128 |
inputUpperBound = intervalCenter + intervalRadius, |
|
129 |
alpha = alpha, |
|
130 |
degree = degree, |
|
131 |
precision = precision, |
|
132 |
emin = emin, |
|
133 |
emax = emax, |
|
134 |
targetHardnessToRound = htrn, |
|
135 |
debug = debugMode) |
|
136 |
|
|
0 | 137 |
pobysoPythonSage/src/sageSLZ/runSLZ-113gram.sage.py (revision 247) | ||
---|---|---|
1 |
# This file was *autogenerated* from the file ./runSLZ-113gram.sage |
|
2 |
from sage.all_cmdline import * # import sage library |
|
3 |
_sage_const_3 = Integer(3); _sage_const_2 = Integer(2); _sage_const_1 = Integer(1); _sage_const_0 = Integer(0); _sage_const_6 = Integer(6); _sage_const_5 = Integer(5); _sage_const_4 = Integer(4); _sage_const_113 = Integer(113); _sage_const_10 = Integer(10); _sage_const_16383 = Integer(16383); _sage_const_16382 = Integer(16382)#! /opt/sage/sage |
|
4 |
# @file runSLZ-113.sage |
|
5 |
# |
|
6 |
# Run SLZ for p=113 |
|
7 |
#from scipy.constants.codata import precision |
|
8 |
def initialize_env(): |
|
9 |
""" |
|
10 |
Load all necessary modules. |
|
11 |
""" |
|
12 |
compiledSpyxDir = "/home/storres/recherche/arithmetique/pobysoPythonSage/compiledSpyx" |
|
13 |
if compiledSpyxDir not in sys.path: |
|
14 |
sys.path.append(compiledSpyxDir) |
|
15 |
if not 'mpfi' in sage.misc.cython.standard_libs: |
|
16 |
sage.misc.cython.standard_libs.append('mpfi') |
|
17 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sollya_lib.sage") |
|
18 |
# load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageMpfr.spyx") |
|
19 |
# load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageGMP.spyx") |
|
20 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/pobyso.py") |
|
21 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageSLZ.sage") |
|
22 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageNumericalOperations.sage") |
|
23 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageRationalOperations.sage") |
|
24 |
# Matrix operations are loaded by polynomial operations. |
|
25 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sagePolynomialOperations.sage") |
|
26 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageRunSLZ.sage") |
|
27 |
|
|
28 |
|
|
29 |
print "Running SLZ..." |
|
30 |
initialize_env() |
|
31 |
from sageMpfr import * |
|
32 |
from sageGMP import * |
|
33 |
import sys |
|
34 |
from subprocess import call |
|
35 |
# |
|
36 |
## Main variables and parameters. |
|
37 |
x = var('x') |
|
38 |
__tmp__=var("x"); func = symbolic_expression(exp(x)).function(x) |
|
39 |
precision = _sage_const_113 |
|
40 |
emin = -_sage_const_16382 |
|
41 |
emax = _sage_const_16383 |
|
42 |
RRR = RealField(precision) |
|
43 |
degree = _sage_const_0 |
|
44 |
alpha = _sage_const_0 |
|
45 |
htrn = _sage_const_0 |
|
46 |
intervalCenter = _sage_const_0 |
|
47 |
intervalRadius = _sage_const_0 |
|
48 |
debugMode = False |
|
49 |
## Local functions |
|
50 |
# |
|
51 |
def usage(): |
|
52 |
write = sys.stderr.write |
|
53 |
write("\nUsage:\n") |
|
54 |
write(" " + scriptName + " <degree> <alpha> <htrn> <intervalCenter>\n") |
|
55 |
write(" <numberOfNumbers> [debug]\n") |
|
56 |
write("\nArguments:\n") |
|
57 |
write(" degree the degree of the polynomial (integer)\n") |
|
58 |
write(" alpha alpha (integer)\n") |
|
59 |
write(" htrn hardness-to-round - a number of bits (integer)\n") |
|
60 |
write(" intervalCenter the interval center (a floating-point number)\n") |
|
61 |
write(" numberOfNumbers the number of floating-point numbers in the interval\n") |
|
62 |
write(" as a positive integral expression\n") |
|
63 |
write(" debug debug mode (\"debug\", in any case)\n\n") |
|
64 |
sys.exit(_sage_const_2 ) |
|
65 |
# End usage. |
|
66 |
# |
|
67 |
argsCount = len(sys.argv) |
|
68 |
scriptName = os.path.basename(__file__) |
|
69 |
if argsCount < _sage_const_5 : |
|
70 |
usage() |
|
71 |
for index in xrange(_sage_const_1 ,argsCount): |
|
72 |
if index == _sage_const_1 : |
|
73 |
degree = int(sys.argv[index]) |
|
74 |
elif index == _sage_const_2 : |
|
75 |
alpha = int(sys.argv[index]) |
|
76 |
elif index == _sage_const_3 : |
|
77 |
htrn = int(eval(sys.argv[index])) |
|
78 |
elif index == _sage_const_4 : |
|
79 |
try: |
|
80 |
intervalCenter = QQ(sage_eval(sys.argv[index])) |
|
81 |
except: |
|
82 |
intervalCenter = RRR(sys.argv[index]) |
|
83 |
intervalCenter = RRR(intervalCenter) |
|
84 |
elif index == _sage_const_5 : |
|
85 |
## Can be read as rational number but must end up as an integer. |
|
86 |
numberOfNumbers = QQ(sage_eval(sys.argv[index])) |
|
87 |
if numberOfNumbers != numberOfNumbers.round(): |
|
88 |
raise Exception("Invalid number of numbers: " + sys.argv[index] + ".") |
|
89 |
numberOfNumbers = numberOfNumbers.round() |
|
90 |
## The number must be strictly positive. |
|
91 |
if numberOfNumbers <= _sage_const_0 : |
|
92 |
raise Exception("Invalid number of numbers: " + sys.argv[index] + ".") |
|
93 |
elif index == _sage_const_6 : |
|
94 |
debugMode = sys.argv[index].upper() |
|
95 |
debugMode = (debugMode == "DEBUG") |
|
96 |
# Done with command line arguments collection. |
|
97 |
# |
|
98 |
## Debug printing |
|
99 |
print "degree :", degree |
|
100 |
print "alpha :", alpha |
|
101 |
print "htrn :", htrn |
|
102 |
print "interval center:", intervalCenter.n(prec=_sage_const_10 ).str(truncate=False) |
|
103 |
print "num of nums :", RR(numberOfNumbers).log2().n(prec=_sage_const_10 ).str(truncate=False) |
|
104 |
print "debug mode :", debugMode |
|
105 |
|
|
106 |
# |
|
107 |
## Set the terminal window title. |
|
108 |
terminalWindowTitle = ['stt', str(degree), str(alpha), str(htrn), |
|
109 |
intervalCenter.n(prec=_sage_const_10 ).str(truncate=False), |
|
110 |
RRR(numberOfNumbers).log2().n(prec=_sage_const_10 ).str(truncate=False)] |
|
111 |
call(terminalWindowTitle) |
|
112 |
# |
|
113 |
intervalCenterBinade = slz_compute_binade(intervalCenter) |
|
114 |
intervalRadius = \ |
|
115 |
_sage_const_2 **intervalCenterBinade * _sage_const_2 **(-precision + _sage_const_1 ) * numberOfNumbers / _sage_const_2 |
|
116 |
srs_run_SLZ_v05_gram(inputFunction=func, |
|
117 |
inputLowerBound = intervalCenter - intervalRadius, |
|
118 |
inputUpperBound = intervalCenter + intervalRadius, |
|
119 |
alpha = alpha, |
|
120 |
degree = degree, |
|
121 |
precision = precision, |
|
122 |
emin = emin, |
|
123 |
emax = emax, |
|
124 |
targetHardnessToRound = htrn, |
|
125 |
debug = debugMode) |
|
126 |
|
|
0 | 127 |
pobysoPythonSage/src/sageSLZ/sageRunSLZ.sage (revision 247) | ||
---|---|---|
3460 | 3460 |
## Output counters |
3461 | 3461 |
# End srs_runSLZ-v05_gram |
3462 | 3462 |
# |
3463 |
def srs_run_SLZ_v05_proj(inputFunction, |
|
3464 |
inputLowerBound, |
|
3465 |
inputUpperBound, |
|
3466 |
alpha, |
|
3467 |
degree, |
|
3468 |
precision, |
|
3469 |
emin, |
|
3470 |
emax, |
|
3471 |
targetHardnessToRound, |
|
3472 |
debug = False): |
|
3473 |
""" |
|
3474 |
changes from plain V5: |
|
3475 |
LLL reduction is not performed on the matrix itself but rather on the |
|
3476 |
product of the matrix with a uniform random matrix. |
|
3477 |
The reduced matrix obtained is discarded but the transformation matrix |
|
3478 |
obtained is used to multiply the original matrix in order to reduced it. |
|
3479 |
If a sufficient level of reduction is obtained, we stop here. If not |
|
3480 |
the product matrix obtained above is LLL reduced. But as it has been |
|
3481 |
pre-reduced at the above step, reduction is supposed to be much fastet. |
|
3482 |
Both reductions combined should hopefully be faster than a straight |
|
3483 |
single reduction. |
|
3484 |
Changes from V4: |
|
3485 |
Approximation polynomial has coefficients rounded. |
|
3486 |
Changes from V3: |
|
3487 |
Root search is changed again: |
|
3488 |
- only resultants in i are computed; |
|
3489 |
- roots in i are searched for; |
|
3490 |
- if any, they are tested for hardness-to-round. |
|
3491 |
Changes from V2: |
|
3492 |
Root search is changed: |
|
3493 |
- we compute the resultants in i and in t; |
|
3494 |
- we compute the roots set of each of these resultants; |
|
3495 |
- we combine all the possible pairs between the two sets; |
|
3496 |
- we check these pairs in polynomials for correctness. |
|
3497 |
Changes from V1: |
|
3498 |
1- check for roots as soon as a resultant is computed; |
|
3499 |
2- once a non null resultant is found, check for roots; |
|
3500 |
3- constant resultant == no root. |
|
3501 |
""" |
|
3502 |
|
|
3503 |
if debug: |
|
3504 |
print "Function :", inputFunction |
|
3505 |
print "Lower bound :", inputLowerBound |
|
3506 |
print "Upper bounds :", inputUpperBound |
|
3507 |
print "Alpha :", alpha |
|
3508 |
print "Degree :", degree |
|
3509 |
print "Precision :", precision |
|
3510 |
print "Emin :", emin |
|
3511 |
print "Emax :", emax |
|
3512 |
print "Target hardness-to-round:", targetHardnessToRound |
|
3513 |
|
|
3514 |
## Important constants. |
|
3515 |
### Stretch the interval if no error happens. |
|
3516 |
noErrorIntervalStretch = 1 + 2^(-5) |
|
3517 |
### If no vector validates the Coppersmith condition, shrink the interval |
|
3518 |
# by the following factor. |
|
3519 |
noCoppersmithIntervalShrink = 1/2 |
|
3520 |
### If only (or at least) one vector validates the Coppersmith condition, |
|
3521 |
# shrink the interval by the following factor. |
|
3522 |
oneCoppersmithIntervalShrink = 3/4 |
|
3523 |
#### If only null resultants are found, shrink the interval by the |
|
3524 |
# following factor. |
|
3525 |
onlyNullResultantsShrink = 3/4 |
|
3526 |
## Structures. |
|
3527 |
RRR = RealField(precision) |
|
3528 |
RRIF = RealIntervalField(precision) |
|
3529 |
## Converting input bound into the "right" field. |
|
3530 |
lowerBound = RRR(inputLowerBound) |
|
3531 |
upperBound = RRR(inputUpperBound) |
|
3532 |
## Before going any further, check domain and image binade conditions. |
|
3533 |
print inputFunction(1).n() |
|
3534 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
|
3535 |
if output is None: |
|
3536 |
print "Invalid domain/image binades. Domain:",\ |
|
3537 |
lowerBound, upperBound, "Images:", \ |
|
3538 |
inputFunction(lowerBound), inputFunction(upperBound) |
|
3539 |
raise Exception("Invalid domain/image binades.") |
|
3540 |
lb = output[0] ; ub = output[1] |
|
3541 |
if lb != lowerBound or ub != upperBound: |
|
3542 |
print "lb:", lb, " - ub:", ub |
|
3543 |
print "Invalid domain/image binades. Domain:",\ |
|
3544 |
lowerBound, upperBound, "Images:", \ |
|
3545 |
inputFunction(lowerBound), inputFunction(upperBound) |
|
3546 |
raise Exception("Invalid domain/image binades.") |
|
3547 |
# |
|
3548 |
## Progam initialization |
|
3549 |
### Approximation polynomial accuracy and hardness to round. |
|
3550 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
|
3551 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
|
3552 |
### Significand to integer conversion ratio. |
|
3553 |
toIntegerFactor = 2^(precision-1) |
|
3554 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
|
3555 |
### Variables and rings for polynomials and root searching. |
|
3556 |
i=var('i') |
|
3557 |
t=var('t') |
|
3558 |
inputFunctionVariable = inputFunction.variables()[0] |
|
3559 |
function = inputFunction.subs({inputFunctionVariable:i}) |
|
3560 |
# Polynomial Rings over the integers, for root finding. |
|
3561 |
Zi = ZZ[i] |
|
3562 |
Zt = ZZ[t] |
|
3563 |
Zit = ZZ[i,t] |
|
3564 |
## Number of iterations limit. |
|
3565 |
maxIter = 100000 |
|
3566 |
# |
|
3567 |
## Set the variable name in Sollya. |
|
3568 |
pobyso_name_free_variable_sa_so(str(function.variables()[0])) |
|
3569 |
## Compute the scaled function and the degree, in their Sollya version |
|
3570 |
# once for all. |
|
3571 |
(scaledf, sdlb, sdub, silb, siub) = \ |
|
3572 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
|
3573 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
|
3574 |
#print "Scaled bounds:", sdlb, sdub |
|
3575 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
|
3576 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
|
3577 |
# |
|
3578 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
|
3579 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
|
3580 |
(unscalingFunction, scalingFunction) = \ |
|
3581 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
|
3582 |
#print scalingFunction, unscalingFunction |
|
3583 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
|
3584 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
|
3585 |
if internalSollyaPrec < 192: |
|
3586 |
internalSollyaPrec = 192 |
|
3587 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
|
3588 |
print "Sollya internal precision:", internalSollyaPrec |
|
3589 |
## Some variables. |
|
3590 |
### General variables |
|
3591 |
lb = sdlb |
|
3592 |
ub = sdub |
|
3593 |
nbw = 0 |
|
3594 |
intervalUlp = ub.ulp() |
|
3595 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
|
3596 |
ic = 0 |
|
3597 |
icAsInt = 0 # Set from ic. |
|
3598 |
solutionsSet = set() |
|
3599 |
tsErrorWidth = [] |
|
3600 |
csErrorVectors = [] |
|
3601 |
csVectorsResultants = [] |
|
3602 |
floatP = 0 # Taylor polynomial. |
|
3603 |
floatPcv = 0 # Ditto with variable change. |
|
3604 |
intvl = "" # Taylor interval |
|
3605 |
terr = 0 # Taylor error. |
|
3606 |
iterCount = 0 |
|
3607 |
htrnSet = set() |
|
3608 |
### Timers and counters. |
|
3609 |
wallTimeStart = 0 |
|
3610 |
cpuTimeStart = 0 |
|
3611 |
taylCondFailedCount = 0 |
|
3612 |
coppCondFailedCount = 0 |
|
3613 |
resultCondFailedCount = 0 |
|
3614 |
coppCondFailed = False |
|
3615 |
resultCondFailed = False |
|
3616 |
globalResultsList = [] |
|
3617 |
basisConstructionsCount = 0 |
|
3618 |
basisConstructionsFullTime = 0 |
|
3619 |
basisConstructionTime = 0 |
|
3620 |
reductionsCount = 0 |
|
3621 |
reductionsFullTime = 0 |
|
3622 |
reductionTime = 0 |
|
3623 |
resultantsComputationsCount = 0 |
|
3624 |
resultantsComputationsFullTime = 0 |
|
3625 |
resultantsComputationTime = 0 |
|
3626 |
rootsComputationsCount = 0 |
|
3627 |
rootsComputationsFullTime = 0 |
|
3628 |
rootsComputationTime = 0 |
|
3629 |
|
|
3630 |
## Global times are started here. |
|
3631 |
wallTimeStart = walltime() |
|
3632 |
cpuTimeStart = cputime() |
|
3633 |
## Main loop. |
|
3634 |
while True: |
|
3635 |
if lb >= sdub: |
|
3636 |
print "Lower bound reached upper bound." |
|
3637 |
break |
|
3638 |
if iterCount == maxIter: |
|
3639 |
print "Reached maxIter. Aborting" |
|
3640 |
break |
|
3641 |
iterCount += 1 |
|
3642 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
|
3643 |
"log2(numbers)." |
|
3644 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
|
3645 |
prceSo = slz_compute_polynomial_and_interval_01(scaledfSo, |
|
3646 |
degreeSo, |
|
3647 |
lb, |
|
3648 |
ub, |
|
3649 |
polyApproxAccur) |
|
3650 |
if debug: |
|
3651 |
print "Approximation polynomial computed." |
|
3652 |
if prceSo is None: |
|
3653 |
raise Exception("Could not compute an approximation polynomial.") |
|
3654 |
### Convert back the data into Sage space. |
|
3655 |
(floatP, floatPcv, intvl, ic, terr) = \ |
|
3656 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
|
3657 |
prceSo[1], prceSo[2], |
|
3658 |
prceSo[3])) |
|
3659 |
intvl = RRIF(intvl) |
|
3660 |
## Clean-up Sollya stuff. |
|
3661 |
for elem in prceSo: |
|
3662 |
sollya_lib_clear_obj(elem) |
|
3663 |
#print floatP, floatPcv, intvl, ic, terr |
|
3664 |
#print floatP |
|
3665 |
#print intvl.endpoints()[0].n(), \ |
|
3666 |
# ic.n(), |
|
3667 |
#intvl.endpoints()[1].n() |
|
3668 |
### Check returned data. |
|
3669 |
#### Is approximation error OK? |
|
3670 |
if terr > polyApproxAccur: |
|
3671 |
exceptionErrorMess = \ |
|
3672 |
"Approximation failed - computed error:" + \ |
|
3673 |
str(terr) + " - target error: " |
|
3674 |
exceptionErrorMess += \ |
|
3675 |
str(polyApproxAccur) + ". Aborting!" |
|
3676 |
raise Exception(exceptionErrorMess) |
|
3677 |
#### Is lower bound OK? |
|
3678 |
if lb != intvl.endpoints()[0]: |
|
3679 |
exceptionErrorMess = "Wrong lower bound:" + \ |
|
3680 |
str(lb) + ". Aborting!" |
|
3681 |
raise Exception(exceptionErrorMess) |
|
3682 |
#### Set upper bound. |
|
3683 |
if ub > intvl.endpoints()[1]: |
|
3684 |
ub = intvl.endpoints()[1] |
|
3685 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
|
3686 |
"log2(numbers)." |
|
3687 |
taylCondFailedCount += 1 |
|
3688 |
#### Is interval not degenerate? |
|
3689 |
if lb >= ub: |
|
3690 |
exceptionErrorMess = "Degenerate interval: " + \ |
|
3691 |
"lowerBound(" + str(lb) +\ |
|
3692 |
")>= upperBound(" + str(ub) + \ |
|
3693 |
"). Aborting!" |
|
3694 |
raise Exception(exceptionErrorMess) |
|
3695 |
#### Is interval center ok? |
|
3696 |
if ic <= lb or ic >= ub: |
|
3697 |
exceptionErrorMess = "Invalid interval center for " + \ |
|
3698 |
str(lb) + ',' + str(ic) + ',' + \ |
|
3699 |
str(ub) + ". Aborting!" |
|
3700 |
raise Exception(exceptionErrorMess) |
|
3701 |
##### Current interval width and reset future interval width. |
|
3702 |
bw = ub - lb |
|
3703 |
nbw = 0 |
|
3704 |
icAsInt = int(ic * toIntegerFactor) |
|
3705 |
#### The following ratio is always >= 1. In case we may want to |
|
3706 |
# enlarge the interval |
|
3707 |
curTaylErrRat = polyApproxAccur / terr |
|
3708 |
### Make the integral transformations. |
|
3709 |
#### Bounds and interval center. |
|
3710 |
intIc = int(ic * toIntegerFactor) |
|
3711 |
intLb = int(lb * toIntegerFactor) - intIc |
|
3712 |
intUb = int(ub * toIntegerFactor) - intIc |
|
3713 |
# |
|
3714 |
#### Polynomials |
|
3715 |
basisConstructionTime = cputime() |
|
3716 |
##### To a polynomial with rational coefficients with rational arguments |
|
3717 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
|
3718 |
##### To a polynomial with rational coefficients with integer arguments |
|
3719 |
ratIntP = \ |
|
3720 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
|
3721 |
##### Ultimately a multivariate polynomial with integer coefficients |
|
3722 |
# with integer arguments. |
|
3723 |
coppersmithTuple = \ |
|
3724 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
|
3725 |
precision, |
|
3726 |
targetHardnessToRound, |
|
3727 |
i, t) |
|
3728 |
#### Recover Coppersmith information. |
|
3729 |
intIntP = coppersmithTuple[0] |
|
3730 |
N = coppersmithTuple[1] |
|
3731 |
nAtAlpha = N^alpha |
|
3732 |
tBound = coppersmithTuple[2] |
|
3733 |
leastCommonMultiple = coppersmithTuple[3] |
|
3734 |
iBound = max(abs(intLb),abs(intUb)) |
|
3735 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
|
3736 |
basisConstructionsCount += 1 |
|
3737 |
#### Compute the matrix to reduce for debug purpose. Otherwise |
|
3738 |
# slz_compute_coppersmith_reduced_polynomials does the job |
|
3739 |
# invisibly. |
|
3740 |
if debug: |
|
3741 |
matrixToReduce = slz_compute_initial_lattice_matrix(intIntP, |
|
3742 |
alpha, |
|
3743 |
N, |
|
3744 |
iBound, |
|
3745 |
tBound) |
|
3746 |
maxNorm = 0 |
|
3747 |
latticeSize = 0 |
|
3748 |
matrixFile = file('/tmp/matrixToReduce.txt', 'w') |
|
3749 |
for row in matrixToReduce.rows(): |
|
3750 |
currentNorm = row.norm() |
|
3751 |
if currentNorm > maxNorm: |
|
3752 |
maxNorm = currentNorm |
|
3753 |
latticeSize += 1 |
|
3754 |
for elem in row: |
|
3755 |
matrixFile.write(elem.str(base=2) + ",") |
|
3756 |
matrixFile.write("\n") |
|
3757 |
#matrixFile.write(matrixToReduce.str(radix="2") + "\n") |
|
3758 |
matrixFile.close() |
|
3759 |
#### We use here binary length as defined in LLL princepts. |
|
3760 |
binaryLength = latticeSize * log(maxNorm) |
|
3761 |
print "Binary length:", binaryLength.n() |
|
3762 |
raise Exception("Deliberate stop here.") |
|
3763 |
# End if debug |
|
3764 |
reductionTime = cputime() |
|
3765 |
#### Compute the reduced polynomials. |
|
3766 |
print "Starting reduction..." |
|
3767 |
ccReducedPolynomialsList = \ |
|
3768 |
slz_compute_coppersmith_reduced_polynomials_proj(intIntP, |
|
3769 |
alpha, |
|
3770 |
N, |
|
3771 |
iBound, |
|
3772 |
tBound) |
|
3773 |
print "...reduction accomplished in", cputime(reductionTime), "s." |
|
3774 |
if ccReducedPolynomialsList is None: |
|
3775 |
raise Exception("Reduction failed.") |
|
3776 |
reductionsFullTime += cputime(reductionTime) |
|
3777 |
reductionsCount += 1 |
|
3778 |
if len(ccReducedPolynomialsList) < 2: |
|
3779 |
print "Nothing to form resultants with." |
|
3780 |
|
|
3781 |
coppCondFailedCount += 1 |
|
3782 |
coppCondFailed = True |
|
3783 |
##### Apply a different shrink factor according to |
|
3784 |
# the number of compliant polynomials. |
|
3785 |
if len(ccReducedPolynomialsList) == 0: |
|
3786 |
ub = lb + bw * noCoppersmithIntervalShrink |
|
3787 |
else: # At least one compliant polynomial. |
|
3788 |
ub = lb + bw * oneCoppersmithIntervalShrink |
|
3789 |
if ub > sdub: |
|
3790 |
ub = sdub |
|
3791 |
if lb == ub: |
|
3792 |
raise Exception("Cant shrink interval \ |
|
3793 |
anymore to get Coppersmith condition.") |
|
3794 |
nbw = 0 |
|
3795 |
continue |
|
3796 |
#### We have at least two polynomials. |
|
3797 |
# Let us try to compute resultants. |
|
3798 |
# For each resultant computed, go for the solutions. |
|
3799 |
##### Build the pairs list. |
|
3800 |
polyPairsList = [] |
|
3801 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
|
3802 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
|
3803 |
len(ccReducedPolynomialsList)): |
|
3804 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
|
3805 |
ccReducedPolynomialsList[polyInnerIndex])) |
|
3806 |
#### Actual root search. |
|
3807 |
iRootsSet = set() |
|
3808 |
hasNonNullResultant = False |
|
3809 |
for polyPair in polyPairsList: |
|
3810 |
resultantsComputationTime = cputime() |
|
3811 |
currentResultantI = \ |
|
3812 |
slz_resultant(polyPair[0], |
|
3813 |
polyPair[1], |
|
3814 |
t) |
|
3815 |
resultantsComputationsCount += 1 |
|
3816 |
resultantsComputationsFullTime += \ |
|
3817 |
cputime(resultantsComputationTime) |
|
3818 |
#### Function slz_resultant returns None both for None and O |
|
3819 |
# resultants. |
|
3820 |
if currentResultantI is None: |
|
3821 |
print "Nul resultant" |
|
3822 |
continue # Next polyPair. |
|
3823 |
## We deleted the currentResultantI computation. |
|
3824 |
#### We have a non null resultant. From now on, whatever this |
|
3825 |
# root search yields, no extra root search is necessary. |
|
3826 |
hasNonNullResultant = True |
|
3827 |
#### A constant resultant leads to no root. Root search is done. |
|
3828 |
if currentResultantI.degree() < 1: |
|
3829 |
print "Resultant is constant:", currentResultantI |
|
3830 |
break # There is no root. |
|
3831 |
#### Actual iroots computation. |
|
3832 |
rootsComputationTime = cputime() |
|
3833 |
iRootsList = Zi(currentResultantI).roots() |
|
3834 |
rootsComputationsCount += 1 |
|
3835 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
|
3836 |
if len(iRootsList) == 0: |
|
3837 |
print "No roots in \"i\"." |
|
3838 |
break # No roots in i. |
|
3839 |
else: |
|
3840 |
for iRoot in iRootsList: |
|
3841 |
# A root is given as a (value, multiplicity) tuple. |
|
3842 |
iRootsSet.add(iRoot[0]) |
|
3843 |
# End loop for polyPair in polyParsList. We only loop again if a |
|
3844 |
# None or zero resultant is found. |
|
3845 |
#### Prepare for results for the current interval.. |
|
3846 |
intervalResultsList = [] |
|
3847 |
intervalResultsList.append((lb, ub)) |
|
3848 |
#### Check roots. |
|
3849 |
rootsResultsList = [] |
|
3850 |
for iRoot in iRootsSet: |
|
3851 |
specificRootResultsList = [] |
|
3852 |
failingBounds = [] |
|
3853 |
# Root qualifies for modular equation, test it for hardness to round. |
|
3854 |
hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor) |
|
3855 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
|
3856 |
#print scalingFunction |
|
3857 |
scaledHardToRoundCaseAsFloat = \ |
|
3858 |
scalingFunction(hardToRoundCaseAsFloat) |
|
3859 |
print "Candidate HTRNc at x =", \ |
|
3860 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
|
3861 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
|
3862 |
function, |
|
3863 |
2^-(targetHardnessToRound), |
|
3864 |
RRR): |
|
3865 |
print hardToRoundCaseAsFloat, "is HTRN case." |
|
3866 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
|
3867 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
|
3868 |
print "Found in interval." |
|
3869 |
else: |
|
3870 |
print "Found out of interval." |
|
3871 |
# Check the i root is within the i bound. |
|
3872 |
if abs(iRoot) > iBound: |
|
3873 |
print "IRoot", iRoot, "is out of bounds for modular equation." |
|
3874 |
print "i bound:", iBound |
|
3875 |
failingBounds.append('i') |
|
3876 |
failingBounds.append(iRoot) |
|
3877 |
failingBounds.append(iBound) |
|
3878 |
if len(failingBounds) > 0: |
|
3879 |
specificRootResultsList.append(failingBounds) |
|
3880 |
else: # From slz_is_htrn... |
|
3881 |
print "is not an HTRN case." |
|
3882 |
if len(specificRootResultsList) > 0: |
|
3883 |
rootsResultsList.append(specificRootResultsList) |
|
3884 |
if len(rootsResultsList) > 0: |
|
3885 |
intervalResultsList.append(rootsResultsList) |
|
3886 |
### Check if a non null resultant was found. If not shrink the interval. |
|
3887 |
if not hasNonNullResultant: |
|
3888 |
print "Only null resultants for this reduction, shrinking interval." |
|
3889 |
resultCondFailed = True |
|
3890 |
resultCondFailedCount += 1 |
|
3891 |
### Shrink interval for next iteration. |
|
3892 |
ub = lb + bw * onlyNullResultantsShrink |
|
3893 |
if ub > sdub: |
|
3894 |
ub = sdub |
|
3895 |
nbw = 0 |
|
3896 |
continue |
|
3897 |
#### An intervalResultsList has at least the bounds. |
|
3898 |
globalResultsList.append(intervalResultsList) |
|
3899 |
#### Compute an incremented width for next upper bound, only |
|
3900 |
# if not Coppersmith condition nor resultant condition |
|
3901 |
# failed at the previous run. |
|
3902 |
if not coppCondFailed and not resultCondFailed: |
|
3903 |
nbw = noErrorIntervalStretch * bw |
|
3904 |
else: |
|
3905 |
nbw = bw |
|
3906 |
##### Reset the failure flags. They will be raised |
|
3907 |
# again if needed. |
|
3908 |
coppCondFailed = False |
|
3909 |
resultCondFailed = False |
|
3910 |
#### For next iteration (at end of loop) |
|
3911 |
#print "nbw:", nbw |
|
3912 |
lb = ub |
|
3913 |
ub += nbw |
|
3914 |
if ub > sdub: |
|
3915 |
ub = sdub |
|
3916 |
|
|
3917 |
# End while True |
|
3918 |
## Main loop just ended. |
|
3919 |
globalWallTime = walltime(wallTimeStart) |
|
3920 |
globalCpuTime = cputime(cpuTimeStart) |
|
3921 |
## Output results |
|
3922 |
print ; print "Intervals and HTRNs" ; print |
|
3923 |
for intervalResultsList in globalResultsList: |
|
3924 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
|
3925 |
"," + str(intervalResultsList[0][1]) + "]" |
|
3926 |
print intervalResultString, |
|
3927 |
if len(intervalResultsList) > 1: |
|
3928 |
rootsResultsList = intervalResultsList[1] |
|
3929 |
specificRootResultIndex = 0 |
|
3930 |
for specificRootResultsList in rootsResultsList: |
|
3931 |
if specificRootResultIndex == 0: |
|
3932 |
print "\t", specificRootResultsList[0], |
|
3933 |
else: |
|
3934 |
print " " * len(intervalResultString), "\t", \ |
|
3935 |
specificRootResultsList[0], |
|
3936 |
if len(specificRootResultsList) > 1: |
|
3937 |
print specificRootResultsList[1] |
|
3938 |
specificRootResultIndex += 1 |
|
3939 |
print ; print |
|
3940 |
#print globalResultsList |
|
3941 |
# |
|
3942 |
print "Timers and counters" |
|
3943 |
|
|
3944 |
print "Number of iterations:", iterCount |
|
3945 |
print "Taylor condition failures:", taylCondFailedCount |
|
3946 |
print "Coppersmith condition failures:", coppCondFailedCount |
|
3947 |
print "Resultant condition failures:", resultCondFailedCount |
|
3948 |
print "Iterations count: ", iterCount |
|
3949 |
print "Number of intervals:", len(globalResultsList) |
|
3950 |
print "Number of basis constructions:", basisConstructionsCount |
|
3951 |
print "Total CPU time spent in basis constructions:", \ |
|
3952 |
basisConstructionsFullTime |
|
3953 |
if basisConstructionsCount != 0: |
|
3954 |
print "Average basis construction CPU time:", \ |
|
3955 |
basisConstructionsFullTime/basisConstructionsCount |
|
3956 |
print "Number of reductions:", reductionsCount |
|
3957 |
print "Total CPU time spent in reductions:", reductionsFullTime |
|
3958 |
if reductionsCount != 0: |
|
3959 |
print "Average reduction CPU time:", \ |
|
3960 |
reductionsFullTime/reductionsCount |
|
3961 |
print "Number of resultants computation rounds:", \ |
|
3962 |
resultantsComputationsCount |
|
3963 |
print "Total CPU time spent in resultants computation rounds:", \ |
|
3964 |
resultantsComputationsFullTime |
|
3965 |
if resultantsComputationsCount != 0: |
|
3966 |
print "Average resultants computation round CPU time:", \ |
|
3967 |
resultantsComputationsFullTime/resultantsComputationsCount |
|
3968 |
print "Number of root finding rounds:", rootsComputationsCount |
|
3969 |
print "Total CPU time spent in roots finding rounds:", \ |
|
3970 |
rootsComputationsFullTime |
|
3971 |
if rootsComputationsCount != 0: |
|
3972 |
print "Average roots finding round CPU time:", \ |
|
3973 |
rootsComputationsFullTime/rootsComputationsCount |
|
3974 |
print "Global Wall time:", globalWallTime |
|
3975 |
print "Global CPU time:", globalCpuTime |
|
3976 |
## Output counters |
|
3977 |
# End srs_runSLZ-v05_proj |
|
3978 |
# |
|
3463 | 3979 |
def srs_run_SLZ_v06(inputFunction, |
3464 | 3980 |
inputLowerBound, |
3465 | 3981 |
inputUpperBound, |
Formats disponibles : Unified diff