Révision 244 pobysoPythonSage/src/sageSLZ/sageRunSLZ.sage
sageRunSLZ.sage (revision 244) | ||
---|---|---|
2951 | 2951 |
print "Global CPU time:", globalCpuTime |
2952 | 2952 |
## Output counters |
2953 | 2953 |
# End srs_runSLZ-v05 |
2954 |
# |
|
2955 |
def srs_run_SLZ_v05_gram(inputFunction, |
|
2956 |
inputLowerBound, |
|
2957 |
inputUpperBound, |
|
2958 |
alpha, |
|
2959 |
degree, |
|
2960 |
precision, |
|
2961 |
emin, |
|
2962 |
emax, |
|
2963 |
targetHardnessToRound, |
|
2964 |
debug = False): |
|
2965 |
""" |
|
2966 |
changes from plain V5: |
|
2967 |
Uses Pari LLL reduction from the Gram matrix. |
|
2968 |
Changes from V4: |
|
2969 |
Approximation polynomial has coefficients rounded. |
|
2970 |
Changes from V3: |
|
2971 |
Root search is changed again: |
|
2972 |
- only resultants in i are computed; |
|
2973 |
- roots in i are searched for; |
|
2974 |
- if any, they are tested for hardness-to-round. |
|
2975 |
Changes from V2: |
|
2976 |
Root search is changed: |
|
2977 |
- we compute the resultants in i and in t; |
|
2978 |
- we compute the roots set of each of these resultants; |
|
2979 |
- we combine all the possible pairs between the two sets; |
|
2980 |
- we check these pairs in polynomials for correctness. |
|
2981 |
Changes from V1: |
|
2982 |
1- check for roots as soon as a resultant is computed; |
|
2983 |
2- once a non null resultant is found, check for roots; |
|
2984 |
3- constant resultant == no root. |
|
2985 |
""" |
|
2954 | 2986 |
|
2987 |
if debug: |
|
2988 |
print "Function :", inputFunction |
|
2989 |
print "Lower bound :", inputLowerBound |
|
2990 |
print "Upper bounds :", inputUpperBound |
|
2991 |
print "Alpha :", alpha |
|
2992 |
print "Degree :", degree |
|
2993 |
print "Precision :", precision |
|
2994 |
print "Emin :", emin |
|
2995 |
print "Emax :", emax |
|
2996 |
print "Target hardness-to-round:", targetHardnessToRound |
|
2997 |
|
|
2998 |
## Important constants. |
|
2999 |
### Stretch the interval if no error happens. |
|
3000 |
noErrorIntervalStretch = 1 + 2^(-5) |
|
3001 |
### If no vector validates the Coppersmith condition, shrink the interval |
|
3002 |
# by the following factor. |
|
3003 |
noCoppersmithIntervalShrink = 1/2 |
|
3004 |
### If only (or at least) one vector validates the Coppersmith condition, |
|
3005 |
# shrink the interval by the following factor. |
|
3006 |
oneCoppersmithIntervalShrink = 3/4 |
|
3007 |
#### If only null resultants are found, shrink the interval by the |
|
3008 |
# following factor. |
|
3009 |
onlyNullResultantsShrink = 3/4 |
|
3010 |
## Structures. |
|
3011 |
RRR = RealField(precision) |
|
3012 |
RRIF = RealIntervalField(precision) |
|
3013 |
## Converting input bound into the "right" field. |
|
3014 |
lowerBound = RRR(inputLowerBound) |
|
3015 |
upperBound = RRR(inputUpperBound) |
|
3016 |
## Before going any further, check domain and image binade conditions. |
|
3017 |
print inputFunction(1).n() |
|
3018 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
|
3019 |
if output is None: |
|
3020 |
print "Invalid domain/image binades. Domain:",\ |
|
3021 |
lowerBound, upperBound, "Images:", \ |
|
3022 |
inputFunction(lowerBound), inputFunction(upperBound) |
|
3023 |
raise Exception("Invalid domain/image binades.") |
|
3024 |
lb = output[0] ; ub = output[1] |
|
3025 |
if lb != lowerBound or ub != upperBound: |
|
3026 |
print "lb:", lb, " - ub:", ub |
|
3027 |
print "Invalid domain/image binades. Domain:",\ |
|
3028 |
lowerBound, upperBound, "Images:", \ |
|
3029 |
inputFunction(lowerBound), inputFunction(upperBound) |
|
3030 |
raise Exception("Invalid domain/image binades.") |
|
3031 |
# |
|
3032 |
## Progam initialization |
|
3033 |
### Approximation polynomial accuracy and hardness to round. |
|
3034 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
|
3035 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
|
3036 |
### Significand to integer conversion ratio. |
|
3037 |
toIntegerFactor = 2^(precision-1) |
|
3038 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
|
3039 |
### Variables and rings for polynomials and root searching. |
|
3040 |
i=var('i') |
|
3041 |
t=var('t') |
|
3042 |
inputFunctionVariable = inputFunction.variables()[0] |
|
3043 |
function = inputFunction.subs({inputFunctionVariable:i}) |
|
3044 |
# Polynomial Rings over the integers, for root finding. |
|
3045 |
Zi = ZZ[i] |
|
3046 |
Zt = ZZ[t] |
|
3047 |
Zit = ZZ[i,t] |
|
3048 |
## Number of iterations limit. |
|
3049 |
maxIter = 100000 |
|
3050 |
# |
|
3051 |
## Set the variable name in Sollya. |
|
3052 |
pobyso_name_free_variable_sa_so(str(function.variables()[0])) |
|
3053 |
## Compute the scaled function and the degree, in their Sollya version |
|
3054 |
# once for all. |
|
3055 |
(scaledf, sdlb, sdub, silb, siub) = \ |
|
3056 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
|
3057 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
|
3058 |
#print "Scaled bounds:", sdlb, sdub |
|
3059 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
|
3060 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
|
3061 |
# |
|
3062 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
|
3063 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
|
3064 |
(unscalingFunction, scalingFunction) = \ |
|
3065 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
|
3066 |
#print scalingFunction, unscalingFunction |
|
3067 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
|
3068 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
|
3069 |
if internalSollyaPrec < 192: |
|
3070 |
internalSollyaPrec = 192 |
|
3071 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
|
3072 |
print "Sollya internal precision:", internalSollyaPrec |
|
3073 |
## Some variables. |
|
3074 |
### General variables |
|
3075 |
lb = sdlb |
|
3076 |
ub = sdub |
|
3077 |
nbw = 0 |
|
3078 |
intervalUlp = ub.ulp() |
|
3079 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
|
3080 |
ic = 0 |
|
3081 |
icAsInt = 0 # Set from ic. |
|
3082 |
solutionsSet = set() |
|
3083 |
tsErrorWidth = [] |
|
3084 |
csErrorVectors = [] |
|
3085 |
csVectorsResultants = [] |
|
3086 |
floatP = 0 # Taylor polynomial. |
|
3087 |
floatPcv = 0 # Ditto with variable change. |
|
3088 |
intvl = "" # Taylor interval |
|
3089 |
terr = 0 # Taylor error. |
|
3090 |
iterCount = 0 |
|
3091 |
htrnSet = set() |
|
3092 |
### Timers and counters. |
|
3093 |
wallTimeStart = 0 |
|
3094 |
cpuTimeStart = 0 |
|
3095 |
taylCondFailedCount = 0 |
|
3096 |
coppCondFailedCount = 0 |
|
3097 |
resultCondFailedCount = 0 |
|
3098 |
coppCondFailed = False |
|
3099 |
resultCondFailed = False |
|
3100 |
globalResultsList = [] |
|
3101 |
basisConstructionsCount = 0 |
|
3102 |
basisConstructionsFullTime = 0 |
|
3103 |
basisConstructionTime = 0 |
|
3104 |
reductionsCount = 0 |
|
3105 |
reductionsFullTime = 0 |
|
3106 |
reductionTime = 0 |
|
3107 |
resultantsComputationsCount = 0 |
|
3108 |
resultantsComputationsFullTime = 0 |
|
3109 |
resultantsComputationTime = 0 |
|
3110 |
rootsComputationsCount = 0 |
|
3111 |
rootsComputationsFullTime = 0 |
|
3112 |
rootsComputationTime = 0 |
|
3113 |
|
|
3114 |
## Global times are started here. |
|
3115 |
wallTimeStart = walltime() |
|
3116 |
cpuTimeStart = cputime() |
|
3117 |
## Main loop. |
|
3118 |
while True: |
|
3119 |
if lb >= sdub: |
|
3120 |
print "Lower bound reached upper bound." |
|
3121 |
break |
|
3122 |
if iterCount == maxIter: |
|
3123 |
print "Reached maxIter. Aborting" |
|
3124 |
break |
|
3125 |
iterCount += 1 |
|
3126 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
|
3127 |
"log2(numbers)." |
|
3128 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
|
3129 |
prceSo = slz_compute_polynomial_and_interval_01(scaledfSo, |
|
3130 |
degreeSo, |
|
3131 |
lb, |
|
3132 |
ub, |
|
3133 |
polyApproxAccur) |
|
3134 |
if debug: |
|
3135 |
print "Approximation polynomial computed." |
|
3136 |
if prceSo is None: |
|
3137 |
raise Exception("Could not compute an approximation polynomial.") |
|
3138 |
### Convert back the data into Sage space. |
|
3139 |
(floatP, floatPcv, intvl, ic, terr) = \ |
|
3140 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
|
3141 |
prceSo[1], prceSo[2], |
|
3142 |
prceSo[3])) |
|
3143 |
intvl = RRIF(intvl) |
|
3144 |
## Clean-up Sollya stuff. |
|
3145 |
for elem in prceSo: |
|
3146 |
sollya_lib_clear_obj(elem) |
|
3147 |
#print floatP, floatPcv, intvl, ic, terr |
|
3148 |
#print floatP |
|
3149 |
#print intvl.endpoints()[0].n(), \ |
|
3150 |
# ic.n(), |
|
3151 |
#intvl.endpoints()[1].n() |
|
3152 |
### Check returned data. |
|
3153 |
#### Is approximation error OK? |
|
3154 |
if terr > polyApproxAccur: |
|
3155 |
exceptionErrorMess = \ |
|
3156 |
"Approximation failed - computed error:" + \ |
|
3157 |
str(terr) + " - target error: " |
|
3158 |
exceptionErrorMess += \ |
|
3159 |
str(polyApproxAccur) + ". Aborting!" |
|
3160 |
raise Exception(exceptionErrorMess) |
|
3161 |
#### Is lower bound OK? |
|
3162 |
if lb != intvl.endpoints()[0]: |
|
3163 |
exceptionErrorMess = "Wrong lower bound:" + \ |
|
3164 |
str(lb) + ". Aborting!" |
|
3165 |
raise Exception(exceptionErrorMess) |
|
3166 |
#### Set upper bound. |
|
3167 |
if ub > intvl.endpoints()[1]: |
|
3168 |
ub = intvl.endpoints()[1] |
|
3169 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
|
3170 |
"log2(numbers)." |
|
3171 |
taylCondFailedCount += 1 |
|
3172 |
#### Is interval not degenerate? |
|
3173 |
if lb >= ub: |
|
3174 |
exceptionErrorMess = "Degenerate interval: " + \ |
|
3175 |
"lowerBound(" + str(lb) +\ |
|
3176 |
")>= upperBound(" + str(ub) + \ |
|
3177 |
"). Aborting!" |
|
3178 |
raise Exception(exceptionErrorMess) |
|
3179 |
#### Is interval center ok? |
|
3180 |
if ic <= lb or ic >= ub: |
|
3181 |
exceptionErrorMess = "Invalid interval center for " + \ |
|
3182 |
str(lb) + ',' + str(ic) + ',' + \ |
|
3183 |
str(ub) + ". Aborting!" |
|
3184 |
raise Exception(exceptionErrorMess) |
|
3185 |
##### Current interval width and reset future interval width. |
|
3186 |
bw = ub - lb |
|
3187 |
nbw = 0 |
|
3188 |
icAsInt = int(ic * toIntegerFactor) |
|
3189 |
#### The following ratio is always >= 1. In case we may want to |
|
3190 |
# enlarge the interval |
|
3191 |
curTaylErrRat = polyApproxAccur / terr |
|
3192 |
### Make the integral transformations. |
|
3193 |
#### Bounds and interval center. |
|
3194 |
intIc = int(ic * toIntegerFactor) |
|
3195 |
intLb = int(lb * toIntegerFactor) - intIc |
|
3196 |
intUb = int(ub * toIntegerFactor) - intIc |
|
3197 |
# |
|
3198 |
#### Polynomials |
|
3199 |
basisConstructionTime = cputime() |
|
3200 |
##### To a polynomial with rational coefficients with rational arguments |
|
3201 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
|
3202 |
##### To a polynomial with rational coefficients with integer arguments |
|
3203 |
ratIntP = \ |
|
3204 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
|
3205 |
##### Ultimately a multivariate polynomial with integer coefficients |
|
3206 |
# with integer arguments. |
|
3207 |
coppersmithTuple = \ |
|
3208 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
|
3209 |
precision, |
|
3210 |
targetHardnessToRound, |
|
3211 |
i, t) |
|
3212 |
#### Recover Coppersmith information. |
|
3213 |
intIntP = coppersmithTuple[0] |
|
3214 |
N = coppersmithTuple[1] |
|
3215 |
nAtAlpha = N^alpha |
|
3216 |
tBound = coppersmithTuple[2] |
|
3217 |
leastCommonMultiple = coppersmithTuple[3] |
|
3218 |
iBound = max(abs(intLb),abs(intUb)) |
|
3219 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
|
3220 |
basisConstructionsCount += 1 |
|
3221 |
#### Compute the matrix to reduce for debug purpose. Otherwise |
|
3222 |
# slz_compute_coppersmith_reduced_polynomials does the job |
|
3223 |
# invisibly. |
|
3224 |
if debug: |
|
3225 |
matrixToReduce = slz_compute_initial_lattice_matrix(intIntP, |
|
3226 |
alpha, |
|
3227 |
N, |
|
3228 |
iBound, |
|
3229 |
tBound) |
|
3230 |
maxNorm = 0 |
|
3231 |
latticeSize = 0 |
|
3232 |
matrixFile = file('/tmp/matrixToReduce.txt', 'w') |
|
3233 |
for row in matrixToReduce.rows(): |
|
3234 |
currentNorm = row.norm() |
|
3235 |
if currentNorm > maxNorm: |
|
3236 |
maxNorm = currentNorm |
|
3237 |
latticeSize += 1 |
|
3238 |
for elem in row: |
|
3239 |
matrixFile.write(elem.str(base=2) + ",") |
|
3240 |
matrixFile.write("\n") |
|
3241 |
#matrixFile.write(matrixToReduce.str(radix="2") + "\n") |
|
3242 |
matrixFile.close() |
|
3243 |
#### We use here binary length as defined in LLL princepts. |
|
3244 |
binaryLength = latticeSize * log(maxNorm) |
|
3245 |
print "Binary length:", binaryLength.n() |
|
3246 |
raise Exception("Deliberate stop here.") |
|
3247 |
# End if debug |
|
3248 |
reductionTime = cputime() |
|
3249 |
#### Compute the reduced polynomials. |
|
3250 |
print "Starting reduction..." |
|
3251 |
ccReducedPolynomialsList = \ |
|
3252 |
slz_compute_coppersmith_reduced_polynomials_gram(intIntP, |
|
3253 |
alpha, |
|
3254 |
N, |
|
3255 |
iBound, |
|
3256 |
tBound) |
|
3257 |
print "...reduction accomplished in", cputime(reductionTime), "s." |
|
3258 |
if ccReducedPolynomialsList is None: |
|
3259 |
raise Exception("Reduction failed.") |
|
3260 |
reductionsFullTime += cputime(reductionTime) |
|
3261 |
reductionsCount += 1 |
|
3262 |
if len(ccReducedPolynomialsList) < 2: |
|
3263 |
print "Nothing to form resultants with." |
|
3264 |
|
|
3265 |
coppCondFailedCount += 1 |
|
3266 |
coppCondFailed = True |
|
3267 |
##### Apply a different shrink factor according to |
|
3268 |
# the number of compliant polynomials. |
|
3269 |
if len(ccReducedPolynomialsList) == 0: |
|
3270 |
ub = lb + bw * noCoppersmithIntervalShrink |
|
3271 |
else: # At least one compliant polynomial. |
|
3272 |
ub = lb + bw * oneCoppersmithIntervalShrink |
|
3273 |
if ub > sdub: |
|
3274 |
ub = sdub |
|
3275 |
if lb == ub: |
|
3276 |
raise Exception("Cant shrink interval \ |
|
3277 |
anymore to get Coppersmith condition.") |
|
3278 |
nbw = 0 |
|
3279 |
continue |
|
3280 |
#### We have at least two polynomials. |
|
3281 |
# Let us try to compute resultants. |
|
3282 |
# For each resultant computed, go for the solutions. |
|
3283 |
##### Build the pairs list. |
|
3284 |
polyPairsList = [] |
|
3285 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
|
3286 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
|
3287 |
len(ccReducedPolynomialsList)): |
|
3288 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
|
3289 |
ccReducedPolynomialsList[polyInnerIndex])) |
|
3290 |
#### Actual root search. |
|
3291 |
iRootsSet = set() |
|
3292 |
hasNonNullResultant = False |
|
3293 |
for polyPair in polyPairsList: |
|
3294 |
resultantsComputationTime = cputime() |
|
3295 |
currentResultantI = \ |
|
3296 |
slz_resultant(polyPair[0], |
|
3297 |
polyPair[1], |
|
3298 |
t) |
|
3299 |
resultantsComputationsCount += 1 |
|
3300 |
resultantsComputationsFullTime += \ |
|
3301 |
cputime(resultantsComputationTime) |
|
3302 |
#### Function slz_resultant returns None both for None and O |
|
3303 |
# resultants. |
|
3304 |
if currentResultantI is None: |
|
3305 |
print "Nul resultant" |
|
3306 |
continue # Next polyPair. |
|
3307 |
## We deleted the currentResultantI computation. |
|
3308 |
#### We have a non null resultant. From now on, whatever this |
|
3309 |
# root search yields, no extra root search is necessary. |
|
3310 |
hasNonNullResultant = True |
|
3311 |
#### A constant resultant leads to no root. Root search is done. |
|
3312 |
if currentResultantI.degree() < 1: |
|
3313 |
print "Resultant is constant:", currentResultantI |
|
3314 |
break # There is no root. |
|
3315 |
#### Actual iroots computation. |
|
3316 |
rootsComputationTime = cputime() |
|
3317 |
iRootsList = Zi(currentResultantI).roots() |
|
3318 |
rootsComputationsCount += 1 |
|
3319 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
|
3320 |
if len(iRootsList) == 0: |
|
3321 |
print "No roots in \"i\"." |
|
3322 |
break # No roots in i. |
|
3323 |
else: |
|
3324 |
for iRoot in iRootsList: |
|
3325 |
# A root is given as a (value, multiplicity) tuple. |
|
3326 |
iRootsSet.add(iRoot[0]) |
|
3327 |
# End loop for polyPair in polyParsList. We only loop again if a |
|
3328 |
# None or zero resultant is found. |
|
3329 |
#### Prepare for results for the current interval.. |
|
3330 |
intervalResultsList = [] |
|
3331 |
intervalResultsList.append((lb, ub)) |
|
3332 |
#### Check roots. |
|
3333 |
rootsResultsList = [] |
|
3334 |
for iRoot in iRootsSet: |
|
3335 |
specificRootResultsList = [] |
|
3336 |
failingBounds = [] |
|
3337 |
# Root qualifies for modular equation, test it for hardness to round. |
|
3338 |
hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor) |
|
3339 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
|
3340 |
#print scalingFunction |
|
3341 |
scaledHardToRoundCaseAsFloat = \ |
|
3342 |
scalingFunction(hardToRoundCaseAsFloat) |
|
3343 |
print "Candidate HTRNc at x =", \ |
|
3344 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
|
3345 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
|
3346 |
function, |
|
3347 |
2^-(targetHardnessToRound), |
|
3348 |
RRR): |
|
3349 |
print hardToRoundCaseAsFloat, "is HTRN case." |
|
3350 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
|
3351 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
|
3352 |
print "Found in interval." |
|
3353 |
else: |
|
3354 |
print "Found out of interval." |
|
3355 |
# Check the i root is within the i bound. |
|
3356 |
if abs(iRoot) > iBound: |
|
3357 |
print "IRoot", iRoot, "is out of bounds for modular equation." |
|
3358 |
print "i bound:", iBound |
|
3359 |
failingBounds.append('i') |
|
3360 |
failingBounds.append(iRoot) |
|
3361 |
failingBounds.append(iBound) |
|
3362 |
if len(failingBounds) > 0: |
|
3363 |
specificRootResultsList.append(failingBounds) |
|
3364 |
else: # From slz_is_htrn... |
|
3365 |
print "is not an HTRN case." |
|
3366 |
if len(specificRootResultsList) > 0: |
|
3367 |
rootsResultsList.append(specificRootResultsList) |
|
3368 |
if len(rootsResultsList) > 0: |
|
3369 |
intervalResultsList.append(rootsResultsList) |
|
3370 |
### Check if a non null resultant was found. If not shrink the interval. |
|
3371 |
if not hasNonNullResultant: |
|
3372 |
print "Only null resultants for this reduction, shrinking interval." |
|
3373 |
resultCondFailed = True |
|
3374 |
resultCondFailedCount += 1 |
|
3375 |
### Shrink interval for next iteration. |
|
3376 |
ub = lb + bw * onlyNullResultantsShrink |
|
3377 |
if ub > sdub: |
|
3378 |
ub = sdub |
|
3379 |
nbw = 0 |
|
3380 |
continue |
|
3381 |
#### An intervalResultsList has at least the bounds. |
|
3382 |
globalResultsList.append(intervalResultsList) |
|
3383 |
#### Compute an incremented width for next upper bound, only |
|
3384 |
# if not Coppersmith condition nor resultant condition |
|
3385 |
# failed at the previous run. |
|
3386 |
if not coppCondFailed and not resultCondFailed: |
|
3387 |
nbw = noErrorIntervalStretch * bw |
|
3388 |
else: |
|
3389 |
nbw = bw |
|
3390 |
##### Reset the failure flags. They will be raised |
|
3391 |
# again if needed. |
|
3392 |
coppCondFailed = False |
|
3393 |
resultCondFailed = False |
|
3394 |
#### For next iteration (at end of loop) |
|
3395 |
#print "nbw:", nbw |
|
3396 |
lb = ub |
|
3397 |
ub += nbw |
|
3398 |
if ub > sdub: |
|
3399 |
ub = sdub |
|
3400 |
|
|
3401 |
# End while True |
|
3402 |
## Main loop just ended. |
|
3403 |
globalWallTime = walltime(wallTimeStart) |
|
3404 |
globalCpuTime = cputime(cpuTimeStart) |
|
3405 |
## Output results |
|
3406 |
print ; print "Intervals and HTRNs" ; print |
|
3407 |
for intervalResultsList in globalResultsList: |
|
3408 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
|
3409 |
"," + str(intervalResultsList[0][1]) + "]" |
|
3410 |
print intervalResultString, |
|
3411 |
if len(intervalResultsList) > 1: |
|
3412 |
rootsResultsList = intervalResultsList[1] |
|
3413 |
specificRootResultIndex = 0 |
|
3414 |
for specificRootResultsList in rootsResultsList: |
|
3415 |
if specificRootResultIndex == 0: |
|
3416 |
print "\t", specificRootResultsList[0], |
|
3417 |
else: |
|
3418 |
print " " * len(intervalResultString), "\t", \ |
|
3419 |
specificRootResultsList[0], |
|
3420 |
if len(specificRootResultsList) > 1: |
|
3421 |
print specificRootResultsList[1] |
|
3422 |
specificRootResultIndex += 1 |
|
3423 |
print ; print |
|
3424 |
#print globalResultsList |
|
3425 |
# |
|
3426 |
print "Timers and counters" |
|
3427 |
|
|
3428 |
print "Number of iterations:", iterCount |
|
3429 |
print "Taylor condition failures:", taylCondFailedCount |
|
3430 |
print "Coppersmith condition failures:", coppCondFailedCount |
|
3431 |
print "Resultant condition failures:", resultCondFailedCount |
|
3432 |
print "Iterations count: ", iterCount |
|
3433 |
print "Number of intervals:", len(globalResultsList) |
|
3434 |
print "Number of basis constructions:", basisConstructionsCount |
|
3435 |
print "Total CPU time spent in basis constructions:", \ |
|
3436 |
basisConstructionsFullTime |
|
3437 |
if basisConstructionsCount != 0: |
|
3438 |
print "Average basis construction CPU time:", \ |
|
3439 |
basisConstructionsFullTime/basisConstructionsCount |
|
3440 |
print "Number of reductions:", reductionsCount |
|
3441 |
print "Total CPU time spent in reductions:", reductionsFullTime |
|
3442 |
if reductionsCount != 0: |
|
3443 |
print "Average reduction CPU time:", \ |
|
3444 |
reductionsFullTime/reductionsCount |
|
3445 |
print "Number of resultants computation rounds:", \ |
|
3446 |
resultantsComputationsCount |
|
3447 |
print "Total CPU time spent in resultants computation rounds:", \ |
|
3448 |
resultantsComputationsFullTime |
|
3449 |
if resultantsComputationsCount != 0: |
|
3450 |
print "Average resultants computation round CPU time:", \ |
|
3451 |
resultantsComputationsFullTime/resultantsComputationsCount |
|
3452 |
print "Number of root finding rounds:", rootsComputationsCount |
|
3453 |
print "Total CPU time spent in roots finding rounds:", \ |
|
3454 |
rootsComputationsFullTime |
|
3455 |
if rootsComputationsCount != 0: |
|
3456 |
print "Average roots finding round CPU time:", \ |
|
3457 |
rootsComputationsFullTime/rootsComputationsCount |
|
3458 |
print "Global Wall time:", globalWallTime |
|
3459 |
print "Global CPU time:", globalCpuTime |
|
3460 |
## Output counters |
|
3461 |
# End srs_runSLZ-v05_gram |
|
3462 |
# |
|
2955 | 3463 |
def srs_run_SLZ_v06(inputFunction, |
2956 | 3464 |
inputLowerBound, |
2957 | 3465 |
inputUpperBound, |
Formats disponibles : Unified diff