root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 234
Historique | Voir | Annoter | Télécharger (90,21 ko)
1 |
r""" |
---|---|
2 |
Sage core functions needed for the implementation of SLZ. |
3 |
|
4 |
AUTHORS: |
5 |
- S.T. (2013-08): initial version |
6 |
|
7 |
Examples: |
8 |
|
9 |
TODO:: |
10 |
""" |
11 |
print "sageSLZ loading..." |
12 |
# |
13 |
import inspect |
14 |
# |
15 |
def slz_compute_binade(number): |
16 |
"""" |
17 |
For a given number, compute the "binade" that is integer m such that |
18 |
2^m <= number < 2^(m+1). If number == 0 return None. |
19 |
""" |
20 |
# Checking the parameter. |
21 |
# The exception construction is used to detect if number is a RealNumber |
22 |
# since not all numbers have |
23 |
# the mro() method. sage.rings.real_mpfr.RealNumber do. |
24 |
try: |
25 |
classTree = [number.__class__] + number.mro() |
26 |
# If the number is not a RealNumber (or offspring thereof) try |
27 |
# to transform it. |
28 |
if not sage.rings.real_mpfr.RealNumber in classTree: |
29 |
numberAsRR = RR(number) |
30 |
else: |
31 |
numberAsRR = number |
32 |
except AttributeError: |
33 |
return None |
34 |
# Zero special case. |
35 |
if numberAsRR == 0: |
36 |
return RR(-infinity) |
37 |
else: |
38 |
realField = numberAsRR.parent() |
39 |
numberLog2 = numberAsRR.abs().log2() |
40 |
floorNumberLog2 = floor(numberLog2) |
41 |
## Do not get caught by rounding of log2() both ways. |
42 |
## When numberLog2 is an integer, compare numberAsRR |
43 |
# with 2^numberLog2. |
44 |
if floorNumberLog2 == numberLog2: |
45 |
if numberAsRR.abs() < realField(2^floorNumberLog2): |
46 |
return floorNumberLog2 - 1 |
47 |
else: |
48 |
return floorNumberLog2 |
49 |
else: |
50 |
return floorNumberLog2 |
51 |
# End slz_compute_binade |
52 |
|
53 |
# |
54 |
def slz_compute_binade_bounds(number, emin, emax=sys.maxint): |
55 |
""" |
56 |
For given "real number", compute the bounds of the binade it belongs to. |
57 |
|
58 |
NOTE:: |
59 |
When number >= 2^(emax+1), we return the "fake" binade |
60 |
[2^(emax+1), +infinity]. Ditto for number <= -2^(emax+1) |
61 |
with interval [-infinity, -2^(emax+1)]. We want to distinguish |
62 |
this case from that of "really" invalid arguments. |
63 |
|
64 |
""" |
65 |
# Check the parameters. |
66 |
# RealNumbers or RealNumber offspring only. |
67 |
# The exception construction is necessary since not all objects have |
68 |
# the mro() method. sage.rings.real_mpfr.RealNumber do. |
69 |
try: |
70 |
classTree = [number.__class__] + number.mro() |
71 |
if not sage.rings.real_mpfr.RealNumber in classTree: |
72 |
return None |
73 |
except AttributeError: |
74 |
return None |
75 |
# Non zero negative integers only for emin. |
76 |
if emin >= 0 or int(emin) != emin: |
77 |
return None |
78 |
# Non zero positive integers only for emax. |
79 |
if emax <= 0 or int(emax) != emax: |
80 |
return None |
81 |
precision = number.precision() |
82 |
RF = RealField(precision) |
83 |
if number == 0: |
84 |
return (RF(0),RF(2^(emin)) - RF(2^(emin-precision))) |
85 |
# A more precise RealField is needed to avoid unwanted rounding effects |
86 |
# when computing number.log2(). |
87 |
RRF = RealField(max(2048, 2 * precision)) |
88 |
# number = 0 special case, the binade bounds are |
89 |
# [0, 2^emin - 2^(emin-precision)] |
90 |
# Begin general case |
91 |
l2 = RRF(number).abs().log2() |
92 |
# Another special one: beyond largest representable -> "Fake" binade. |
93 |
if l2 >= emax + 1: |
94 |
if number > 0: |
95 |
return (RF(2^(emax+1)), RF(+infinity) ) |
96 |
else: |
97 |
return (RF(-infinity), -RF(2^(emax+1))) |
98 |
# Regular case cont'd. |
99 |
offset = int(l2) |
100 |
# number.abs() >= 1. |
101 |
if l2 >= 0: |
102 |
if number >= 0: |
103 |
lb = RF(2^offset) |
104 |
ub = RF(2^(offset + 1) - 2^(-precision+offset+1)) |
105 |
else: #number < 0 |
106 |
lb = -RF(2^(offset + 1) - 2^(-precision+offset+1)) |
107 |
ub = -RF(2^offset) |
108 |
else: # log2 < 0, number.abs() < 1. |
109 |
if l2 < emin: # Denormal |
110 |
# print "Denormal:", l2 |
111 |
if number >= 0: |
112 |
lb = RF(0) |
113 |
ub = RF(2^(emin)) - RF(2^(emin-precision)) |
114 |
else: # number <= 0 |
115 |
lb = - RF(2^(emin)) + RF(2^(emin-precision)) |
116 |
ub = RF(0) |
117 |
elif l2 > emin: # Normal number other than +/-2^emin. |
118 |
if number >= 0: |
119 |
if int(l2) == l2: |
120 |
lb = RF(2^(offset)) |
121 |
ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
122 |
else: |
123 |
lb = RF(2^(offset-1)) |
124 |
ub = RF(2^(offset)) - RF(2^(-precision+offset)) |
125 |
else: # number < 0 |
126 |
if int(l2) == l2: # Binade limit. |
127 |
lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
128 |
ub = -RF(2^(offset)) |
129 |
else: |
130 |
lb = -RF(2^(offset) - 2^(-precision+offset)) |
131 |
ub = -RF(2^(offset-1)) |
132 |
else: # l2== emin, number == +/-2^emin |
133 |
if number >= 0: |
134 |
lb = RF(2^(offset)) |
135 |
ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
136 |
else: # number < 0 |
137 |
lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
138 |
ub = -RF(2^(offset)) |
139 |
return (lb, ub) |
140 |
# End slz_compute_binade_bounds |
141 |
# |
142 |
def slz_compute_coppersmith_reduced_polynomials(inputPolynomial, |
143 |
alpha, |
144 |
N, |
145 |
iBound, |
146 |
tBound, |
147 |
debug = False): |
148 |
""" |
149 |
For a given set of arguments (see below), compute a list |
150 |
of "reduced polynomials" that could be used to compute roots |
151 |
of the inputPolynomial. |
152 |
INPUT: |
153 |
|
154 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
155 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
156 |
- "N" -- the modulus; |
157 |
- "iBound" -- the bound on the first variable; |
158 |
- "tBound" -- the bound on the second variable. |
159 |
|
160 |
OUTPUT: |
161 |
|
162 |
A list of bivariate integer polynomial obtained using the Coppersmith |
163 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
164 |
reduced base that comply with the Coppersmith condition. |
165 |
""" |
166 |
# Arguments check. |
167 |
if iBound == 0 or tBound == 0: |
168 |
return None |
169 |
# End arguments check. |
170 |
nAtAlpha = N^alpha |
171 |
## Building polynomials for matrix. |
172 |
polyRing = inputPolynomial.parent() |
173 |
# Whatever the 2 variables are actually called, we call them |
174 |
# 'i' and 't' in all the variable names. |
175 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
176 |
#print polyVars[0], type(polyVars[0]) |
177 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
178 |
tVariable:tVariable * tBound}) |
179 |
if debug: |
180 |
polynomialsList = \ |
181 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
182 |
alpha, |
183 |
N, |
184 |
iBound, |
185 |
tBound, |
186 |
20) |
187 |
else: |
188 |
polynomialsList = \ |
189 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
190 |
alpha, |
191 |
N, |
192 |
iBound, |
193 |
tBound, |
194 |
0) |
195 |
#print "Polynomials list:", polynomialsList |
196 |
## Building the proto matrix. |
197 |
knownMonomials = [] |
198 |
protoMatrix = [] |
199 |
if debug: |
200 |
for poly in polynomialsList: |
201 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
202 |
knownMonomials, |
203 |
protoMatrix, |
204 |
20) |
205 |
else: |
206 |
for poly in polynomialsList: |
207 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
208 |
knownMonomials, |
209 |
protoMatrix, |
210 |
0) |
211 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
212 |
#print matrixToReduce |
213 |
## Reduction and checking. |
214 |
## S.T. changed 'fp' to None as of Sage 6.6 complying to |
215 |
# error message issued when previous code was used. |
216 |
#reducedMatrix = matrixToReduce.LLL(fp='fp') |
217 |
reducedMatrix = matrixToReduce.LLL(fp=None) |
218 |
isLLLReduced = reducedMatrix.is_LLL_reduced() |
219 |
if not isLLLReduced: |
220 |
return None |
221 |
monomialsCount = len(knownMonomials) |
222 |
monomialsCountSqrt = sqrt(monomialsCount) |
223 |
#print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
224 |
#print reducedMatrix |
225 |
## Check the Coppersmith condition for each row and build the reduced |
226 |
# polynomials. |
227 |
ccReducedPolynomialsList = [] |
228 |
for row in reducedMatrix.rows(): |
229 |
l2Norm = row.norm(2) |
230 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
231 |
#print (l2Norm * monomialsCountSqrt).n() |
232 |
#print l2Norm.n() |
233 |
ccReducedPolynomial = \ |
234 |
slz_compute_reduced_polynomial(row, |
235 |
knownMonomials, |
236 |
iVariable, |
237 |
iBound, |
238 |
tVariable, |
239 |
tBound) |
240 |
if not ccReducedPolynomial is None: |
241 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
242 |
else: |
243 |
#print l2Norm.n() , ">", nAtAlpha |
244 |
pass |
245 |
if len(ccReducedPolynomialsList) < 2: |
246 |
print "Less than 2 Coppersmith condition compliant vectors." |
247 |
return () |
248 |
#print ccReducedPolynomialsList |
249 |
return ccReducedPolynomialsList |
250 |
# End slz_compute_coppersmith_reduced_polynomials |
251 |
|
252 |
def slz_compute_coppersmith_reduced_polynomials_with_lattice_volume(inputPolynomial, |
253 |
alpha, |
254 |
N, |
255 |
iBound, |
256 |
tBound, |
257 |
debug = False): |
258 |
""" |
259 |
For a given set of arguments (see below), compute a list |
260 |
of "reduced polynomials" that could be used to compute roots |
261 |
of the inputPolynomial. |
262 |
Print the volume of the initial basis as well. |
263 |
INPUT: |
264 |
|
265 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
266 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
267 |
- "N" -- the modulus; |
268 |
- "iBound" -- the bound on the first variable; |
269 |
- "tBound" -- the bound on the second variable. |
270 |
|
271 |
OUTPUT: |
272 |
|
273 |
A list of bivariate integer polynomial obtained using the Coppersmith |
274 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
275 |
reduced base that comply with the Coppersmith condition. |
276 |
""" |
277 |
# Arguments check. |
278 |
if iBound == 0 or tBound == 0: |
279 |
return None |
280 |
# End arguments check. |
281 |
nAtAlpha = N^alpha |
282 |
if debug: |
283 |
print "N at alpha:", nAtAlpha |
284 |
## Building polynomials for matrix. |
285 |
polyRing = inputPolynomial.parent() |
286 |
# Whatever the 2 variables are actually called, we call them |
287 |
# 'i' and 't' in all the variable names. |
288 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
289 |
#print polyVars[0], type(polyVars[0]) |
290 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
291 |
tVariable:tVariable * tBound}) |
292 |
## polynomialsList = \ |
293 |
## spo_polynomial_to_polynomials_list_8(initialPolynomial, |
294 |
## spo_polynomial_to_polynomials_list_5(initialPolynomial, |
295 |
polynomialsList = \ |
296 |
spo_polynomial_to_polynomials_list_5(initialPolynomial, |
297 |
alpha, |
298 |
N, |
299 |
iBound, |
300 |
tBound, |
301 |
0) |
302 |
#print "Polynomials list:", polynomialsList |
303 |
## Building the proto matrix. |
304 |
knownMonomials = [] |
305 |
protoMatrix = [] |
306 |
for poly in polynomialsList: |
307 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
308 |
knownMonomials, |
309 |
protoMatrix, |
310 |
0) |
311 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
312 |
matrixToReduceTranspose = matrixToReduce.transpose() |
313 |
squareMatrix = matrixToReduce * matrixToReduceTranspose |
314 |
squareMatDet = det(squareMatrix) |
315 |
latticeVolume = sqrt(squareMatDet) |
316 |
print "Lattice volume:", latticeVolume.n() |
317 |
print "Lattice volume / N:", (latticeVolume/N).n() |
318 |
#print matrixToReduce |
319 |
## Reduction and checking. |
320 |
## S.T. changed 'fp' to None as of Sage 6.6 complying to |
321 |
# error message issued when previous code was used. |
322 |
#reducedMatrix = matrixToReduce.LLL(fp='fp') |
323 |
reductionTimeStart = cputime() |
324 |
reducedMatrix = matrixToReduce.LLL(fp=None) |
325 |
reductionTime = cputime(reductionTimeStart) |
326 |
print "Reduction time:", reductionTime |
327 |
isLLLReduced = reducedMatrix.is_LLL_reduced() |
328 |
if not isLLLReduced: |
329 |
return None |
330 |
# |
331 |
if debug: |
332 |
matrixFile = file('/tmp/reducedMatrix.txt', 'w') |
333 |
for row in reducedMatrix.rows(): |
334 |
matrixFile.write(str(row) + "\n") |
335 |
matrixFile.close() |
336 |
# |
337 |
monomialsCount = len(knownMonomials) |
338 |
monomialsCountSqrt = sqrt(monomialsCount) |
339 |
#print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
340 |
#print reducedMatrix |
341 |
## Check the Coppersmith condition for each row and build the reduced |
342 |
# polynomials. |
343 |
ccVectorsCount = 0 |
344 |
ccReducedPolynomialsList = [] |
345 |
for row in reducedMatrix.rows(): |
346 |
l2Norm = row.norm(2) |
347 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
348 |
#print (l2Norm * monomialsCountSqrt).n() |
349 |
#print l2Norm.n() |
350 |
ccVectorsCount +=1 |
351 |
ccReducedPolynomial = \ |
352 |
slz_compute_reduced_polynomial(row, |
353 |
knownMonomials, |
354 |
iVariable, |
355 |
iBound, |
356 |
tVariable, |
357 |
tBound) |
358 |
if not ccReducedPolynomial is None: |
359 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
360 |
else: |
361 |
#print l2Norm.n() , ">", nAtAlpha |
362 |
pass |
363 |
if debug: |
364 |
print ccVectorsCount, "out of ", len(ccReducedPolynomialsList), |
365 |
print "took Coppersmith text." |
366 |
if len(ccReducedPolynomialsList) < 2: |
367 |
print "Less than 2 Coppersmith condition compliant vectors." |
368 |
return () |
369 |
if debug: |
370 |
print "Reduced and Coppersmith compliant polynomials list", ccReducedPolynomialsList |
371 |
return ccReducedPolynomialsList |
372 |
# End slz_compute_coppersmith_reduced_polynomials_with_lattice volume |
373 |
|
374 |
def slz_compute_initial_lattice_matrix(inputPolynomial, |
375 |
alpha, |
376 |
N, |
377 |
iBound, |
378 |
tBound, |
379 |
debug = False): |
380 |
""" |
381 |
For a given set of arguments (see below), compute the initial lattice |
382 |
that could be reduced. |
383 |
INPUT: |
384 |
|
385 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
386 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
387 |
- "N" -- the modulus; |
388 |
- "iBound" -- the bound on the first variable; |
389 |
- "tBound" -- the bound on the second variable. |
390 |
|
391 |
OUTPUT: |
392 |
|
393 |
A list of bivariate integer polynomial obtained using the Coppersmith |
394 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
395 |
reduced base that comply with the Coppersmith condition. |
396 |
""" |
397 |
# Arguments check. |
398 |
if iBound == 0 or tBound == 0: |
399 |
return None |
400 |
# End arguments check. |
401 |
nAtAlpha = N^alpha |
402 |
## Building polynomials for matrix. |
403 |
polyRing = inputPolynomial.parent() |
404 |
# Whatever the 2 variables are actually called, we call them |
405 |
# 'i' and 't' in all the variable names. |
406 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
407 |
#print polyVars[0], type(polyVars[0]) |
408 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
409 |
tVariable:tVariable * tBound}) |
410 |
polynomialsList = \ |
411 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
412 |
alpha, |
413 |
N, |
414 |
iBound, |
415 |
tBound, |
416 |
0) |
417 |
#print "Polynomials list:", polynomialsList |
418 |
## Building the proto matrix. |
419 |
knownMonomials = [] |
420 |
protoMatrix = [] |
421 |
for poly in polynomialsList: |
422 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
423 |
knownMonomials, |
424 |
protoMatrix, |
425 |
0) |
426 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
427 |
if debug: |
428 |
print "Initial basis polynomials" |
429 |
for poly in polynomialsList: |
430 |
print poly |
431 |
return matrixToReduce |
432 |
# End slz_compute_initial_lattice_matrix. |
433 |
|
434 |
def slz_compute_integer_polynomial_modular_roots(inputPolynomial, |
435 |
alpha, |
436 |
N, |
437 |
iBound, |
438 |
tBound): |
439 |
""" |
440 |
For a given set of arguments (see below), compute the polynomial modular |
441 |
roots, if any. |
442 |
|
443 |
""" |
444 |
# Arguments check. |
445 |
if iBound == 0 or tBound == 0: |
446 |
return set() |
447 |
# End arguments check. |
448 |
nAtAlpha = N^alpha |
449 |
## Building polynomials for matrix. |
450 |
polyRing = inputPolynomial.parent() |
451 |
# Whatever the 2 variables are actually called, we call them |
452 |
# 'i' and 't' in all the variable names. |
453 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
454 |
ccReducedPolynomialsList = \ |
455 |
slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
456 |
alpha, |
457 |
N, |
458 |
iBound, |
459 |
tBound) |
460 |
if len(ccReducedPolynomialsList) == 0: |
461 |
return set() |
462 |
## Create the valid (poly1 and poly2 are algebraically independent) |
463 |
# resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
464 |
# Try to mix and match all the polynomial pairs built from the |
465 |
# ccReducedPolynomialsList to obtain non zero resultants. |
466 |
resultantsInITuplesList = [] |
467 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
468 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
469 |
len(ccReducedPolynomialsList)): |
470 |
# Compute the resultant in resultants in the |
471 |
# first variable (is it the optimal choice?). |
472 |
resultantInI = \ |
473 |
ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
474 |
ccReducedPolynomialsList[0].parent(str(iVariable))) |
475 |
#print "Resultant", resultantInI |
476 |
# Test algebraic independence. |
477 |
if not resultantInI.is_zero(): |
478 |
resultantsInITuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
479 |
ccReducedPolynomialsList[polyInnerIndex], |
480 |
resultantInI)) |
481 |
# If no non zero resultant was found: we can't get no algebraically |
482 |
# independent polynomials pair. Give up! |
483 |
if len(resultantsInITuplesList) == 0: |
484 |
return set() |
485 |
#print resultantsInITuplesList |
486 |
# Compute the roots. |
487 |
Zi = ZZ[str(iVariable)] |
488 |
Zt = ZZ[str(tVariable)] |
489 |
polynomialRootsSet = set() |
490 |
# First, solve in the second variable since resultants are in the first |
491 |
# variable. |
492 |
for resultantInITuple in resultantsInITuplesList: |
493 |
tRootsList = Zt(resultantInITuple[2]).roots() |
494 |
# For each tRoot, compute the corresponding iRoots and check |
495 |
# them in the input polynomial. |
496 |
for tRoot in tRootsList: |
497 |
#print "tRoot:", tRoot |
498 |
# Roots returned by root() are (value, multiplicity) tuples. |
499 |
iRootsList = \ |
500 |
Zi(resultantInITuple[0].subs({resultantInITuple[0].variables()[1]:tRoot[0]})).roots() |
501 |
print iRootsList |
502 |
# The iRootsList can be empty, hence the test. |
503 |
if len(iRootsList) != 0: |
504 |
for iRoot in iRootsList: |
505 |
polyEvalModN = inputPolynomial(iRoot[0], tRoot[0]) / N |
506 |
# polyEvalModN must be an integer. |
507 |
if polyEvalModN == int(polyEvalModN): |
508 |
polynomialRootsSet.add((iRoot[0],tRoot[0])) |
509 |
return polynomialRootsSet |
510 |
# End slz_compute_integer_polynomial_modular_roots. |
511 |
# |
512 |
def slz_compute_integer_polynomial_modular_roots_2(inputPolynomial, |
513 |
alpha, |
514 |
N, |
515 |
iBound, |
516 |
tBound): |
517 |
""" |
518 |
For a given set of arguments (see below), compute the polynomial modular |
519 |
roots, if any. |
520 |
This version differs in the way resultants are computed. |
521 |
""" |
522 |
# Arguments check. |
523 |
if iBound == 0 or tBound == 0: |
524 |
return set() |
525 |
# End arguments check. |
526 |
nAtAlpha = N^alpha |
527 |
## Building polynomials for matrix. |
528 |
polyRing = inputPolynomial.parent() |
529 |
# Whatever the 2 variables are actually called, we call them |
530 |
# 'i' and 't' in all the variable names. |
531 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
532 |
#print polyVars[0], type(polyVars[0]) |
533 |
ccReducedPolynomialsList = \ |
534 |
slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
535 |
alpha, |
536 |
N, |
537 |
iBound, |
538 |
tBound) |
539 |
if len(ccReducedPolynomialsList) == 0: |
540 |
return set() |
541 |
## Create the valid (poly1 and poly2 are algebraically independent) |
542 |
# resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
543 |
# Try to mix and match all the polynomial pairs built from the |
544 |
# ccReducedPolynomialsList to obtain non zero resultants. |
545 |
resultantsInTTuplesList = [] |
546 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
547 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
548 |
len(ccReducedPolynomialsList)): |
549 |
# Compute the resultant in resultants in the |
550 |
# first variable (is it the optimal choice?). |
551 |
resultantInT = \ |
552 |
ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
553 |
ccReducedPolynomialsList[0].parent(str(tVariable))) |
554 |
#print "Resultant", resultantInT |
555 |
# Test algebraic independence. |
556 |
if not resultantInT.is_zero(): |
557 |
resultantsInTTuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
558 |
ccReducedPolynomialsList[polyInnerIndex], |
559 |
resultantInT)) |
560 |
# If no non zero resultant was found: we can't get no algebraically |
561 |
# independent polynomials pair. Give up! |
562 |
if len(resultantsInTTuplesList) == 0: |
563 |
return set() |
564 |
#print resultantsInITuplesList |
565 |
# Compute the roots. |
566 |
Zi = ZZ[str(iVariable)] |
567 |
Zt = ZZ[str(tVariable)] |
568 |
polynomialRootsSet = set() |
569 |
# First, solve in the second variable since resultants are in the first |
570 |
# variable. |
571 |
for resultantInTTuple in resultantsInTTuplesList: |
572 |
iRootsList = Zi(resultantInTTuple[2]).roots() |
573 |
# For each iRoot, compute the corresponding tRoots and check |
574 |
# them in the input polynomial. |
575 |
for iRoot in iRootsList: |
576 |
#print "iRoot:", iRoot |
577 |
# Roots returned by root() are (value, multiplicity) tuples. |
578 |
tRootsList = \ |
579 |
Zt(resultantInTTuple[0].subs({resultantInTTuple[0].variables()[0]:iRoot[0]})).roots() |
580 |
print tRootsList |
581 |
# The tRootsList can be empty, hence the test. |
582 |
if len(tRootsList) != 0: |
583 |
for tRoot in tRootsList: |
584 |
polyEvalModN = inputPolynomial(iRoot[0],tRoot[0]) / N |
585 |
# polyEvalModN must be an integer. |
586 |
if polyEvalModN == int(polyEvalModN): |
587 |
polynomialRootsSet.add((iRoot[0],tRoot[0])) |
588 |
return polynomialRootsSet |
589 |
# End slz_compute_integer_polynomial_modular_roots_2. |
590 |
# |
591 |
def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
592 |
upperBoundSa, approxAccurSa, |
593 |
precSa=None): |
594 |
""" |
595 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
596 |
a polynomial that approximates the function on a an interval starting |
597 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
598 |
approximates with the expected precision. |
599 |
The interval upper bound is lowered until the expected approximation |
600 |
precision is reached. |
601 |
The polynomial, the bounds, the center of the interval and the error |
602 |
are returned. |
603 |
OUTPUT: |
604 |
A tuple made of 4 Sollya objects: |
605 |
- a polynomial; |
606 |
- an range (an interval, not in the sense of number given as an interval); |
607 |
- the center of the interval; |
608 |
- the maximum error in the approximation of the input functionSo by the |
609 |
output polynomial ; this error <= approxAccurSaS. |
610 |
|
611 |
""" |
612 |
#print"In slz_compute_polynomial_and_interval..." |
613 |
## Superficial argument check. |
614 |
if lowerBoundSa > upperBoundSa: |
615 |
return None |
616 |
## Change Sollya precision, if requested. |
617 |
if precSa is None: |
618 |
precSa = ceil((RR('1.5') * abs(RR(approxAccurSa).log2())) / 64) * 64 |
619 |
#print "Computed internal precision:", precSa |
620 |
if precSa < 192: |
621 |
precSa = 192 |
622 |
sollyaPrecChanged = False |
623 |
(initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
624 |
if precSa > initialSollyaPrecSa: |
625 |
if precSa <= 2: |
626 |
print inspect.stack()[0][3], ": precision change <=2 requested." |
627 |
pobyso_set_prec_sa_so(precSa) |
628 |
sollyaPrecChanged = True |
629 |
RRR = lowerBoundSa.parent() |
630 |
intervalShrinkConstFactorSa = RRR('0.9') |
631 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
632 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
633 |
currentUpperBoundSa = upperBoundSa |
634 |
currentLowerBoundSa = lowerBoundSa |
635 |
# What we want here is the polynomial without the variable change, |
636 |
# since our actual variable will be x-intervalCenter defined over the |
637 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
638 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
639 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
640 |
currentRangeSo, |
641 |
absoluteErrorTypeSo) |
642 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
643 |
while maxErrorSa > approxAccurSa: |
644 |
print "++Approximation error:", maxErrorSa.n() |
645 |
sollya_lib_clear_obj(polySo) |
646 |
sollya_lib_clear_obj(intervalCenterSo) |
647 |
sollya_lib_clear_obj(maxErrorSo) |
648 |
# Very empirical shrinking factor. |
649 |
shrinkFactorSa = 1 / (maxErrorSa/approxAccurSa).log2().abs() |
650 |
print "Shrink factor:", \ |
651 |
shrinkFactorSa.n(), \ |
652 |
intervalShrinkConstFactorSa |
653 |
|
654 |
#errorRatioSa = approxAccurSa/maxErrorSa |
655 |
#print "Error ratio: ", errorRatioSa |
656 |
# Make sure interval shrinks. |
657 |
if shrinkFactorSa > intervalShrinkConstFactorSa: |
658 |
actualShrinkFactorSa = intervalShrinkConstFactorSa |
659 |
#print "Fixed" |
660 |
else: |
661 |
actualShrinkFactorSa = shrinkFactorSa |
662 |
#print "Computed",shrinkFactorSa,maxErrorSa |
663 |
#print shrinkFactorSa, maxErrorSa |
664 |
#print "Shrink factor", actualShrinkFactorSa |
665 |
currentUpperBoundSa = currentLowerBoundSa + \ |
666 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
667 |
actualShrinkFactorSa |
668 |
#print "Current upper bound:", currentUpperBoundSa |
669 |
sollya_lib_clear_obj(currentRangeSo) |
670 |
# Check what is left with the bounds. |
671 |
if currentUpperBoundSa <= currentLowerBoundSa or \ |
672 |
currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
673 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
674 |
print "Can't find an interval." |
675 |
print "Use either or both a higher polynomial degree or a higher", |
676 |
print "internal precision." |
677 |
print "Aborting!" |
678 |
if sollyaPrecChanged: |
679 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
680 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
681 |
return None |
682 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
683 |
currentUpperBoundSa) |
684 |
# print "New interval:", |
685 |
# pobyso_autoprint(currentRangeSo) |
686 |
#print "Second Taylor expansion call." |
687 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
688 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
689 |
currentRangeSo, |
690 |
absoluteErrorTypeSo) |
691 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
692 |
#print "Max errorSo:", |
693 |
#pobyso_autoprint(maxErrorSo) |
694 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
695 |
#print "Max errorSa:", maxErrorSa |
696 |
#print "Sollya prec:", |
697 |
#pobyso_autoprint(sollya_lib_get_prec(None)) |
698 |
# End while |
699 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
700 |
if sollyaPrecChanged: |
701 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
702 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
703 |
return (polySo, currentRangeSo, intervalCenterSo, maxErrorSo) |
704 |
# End slz_compute_polynomial_and_interval |
705 |
|
706 |
def slz_compute_polynomial_and_interval_01(functionSo, degreeSo, lowerBoundSa, |
707 |
upperBoundSa, approxAccurSa, |
708 |
sollyaPrecSa=None, debug=False): |
709 |
""" |
710 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
711 |
a polynomial that approximates the function on a an interval starting |
712 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
713 |
approximates with the expected precision. |
714 |
The interval upper bound is lowered until the expected approximation |
715 |
precision is reached. |
716 |
The polynomial, the bounds, the center of the interval and the error |
717 |
are returned. |
718 |
OUTPUT: |
719 |
A tuple made of 4 Sollya objects: |
720 |
- a polynomial; |
721 |
- an range (an interval, not in the sense of number given as an interval); |
722 |
- the center of the interval; |
723 |
- the maximum error in the approximation of the input functionSo by the |
724 |
output polynomial ; this error <= approxAccurSaS. |
725 |
|
726 |
""" |
727 |
#print"In slz_compute_polynomial_and_interval..." |
728 |
## Superficial argument check. |
729 |
if lowerBoundSa > upperBoundSa: |
730 |
print inspect.stack()[0][3], ": lower bound is larger than upper bound. " |
731 |
return None |
732 |
## Change Sollya precision, if requested. |
733 |
(initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
734 |
sollyaPrecChangedSa = False |
735 |
if sollyaPrecSa is None: |
736 |
sollyaPrecSa = initialSollyaPrecSa |
737 |
else: |
738 |
if sollyaPrecSa > initialSollyaPrecSa: |
739 |
if sollyaPrecSa <= 2: |
740 |
print inspect.stack()[0][3], ": precision change <= 2 requested." |
741 |
pobyso_set_prec_sa_so(sollyaPrecSa) |
742 |
sollyaPrecChangedSa = True |
743 |
## Other initializations and data recovery. |
744 |
RRR = lowerBoundSa.parent() |
745 |
intervalShrinkConstFactorSa = RRR('0.9') |
746 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
747 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
748 |
currentUpperBoundSa = upperBoundSa |
749 |
currentLowerBoundSa = lowerBoundSa |
750 |
# What we want here is the polynomial without the variable change, |
751 |
# since our actual variable will be x-intervalCenter defined over the |
752 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
753 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
754 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
755 |
currentRangeSo, |
756 |
absoluteErrorTypeSo) |
757 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
758 |
while maxErrorSa > approxAccurSa: |
759 |
print "++Approximation error:", maxErrorSa.n() |
760 |
sollya_lib_clear_obj(polySo) |
761 |
sollya_lib_clear_obj(intervalCenterSo) |
762 |
sollya_lib_clear_obj(maxErrorSo) |
763 |
# Very empirical shrinking factor. |
764 |
shrinkFactorSa = 1 / (maxErrorSa/approxAccurSa).log2().abs() |
765 |
print "Shrink factor:", \ |
766 |
shrinkFactorSa.n(), \ |
767 |
intervalShrinkConstFactorSa |
768 |
|
769 |
#errorRatioSa = approxAccurSa/maxErrorSa |
770 |
#print "Error ratio: ", errorRatioSa |
771 |
# Make sure interval shrinks. |
772 |
if shrinkFactorSa > intervalShrinkConstFactorSa: |
773 |
actualShrinkFactorSa = intervalShrinkConstFactorSa |
774 |
#print "Fixed" |
775 |
else: |
776 |
actualShrinkFactorSa = shrinkFactorSa |
777 |
#print "Computed",shrinkFactorSa,maxErrorSa |
778 |
#print shrinkFactorSa, maxErrorSa |
779 |
#print "Shrink factor", actualShrinkFactorSa |
780 |
currentUpperBoundSa = currentLowerBoundSa + \ |
781 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
782 |
actualShrinkFactorSa |
783 |
#print "Current upper bound:", currentUpperBoundSa |
784 |
sollya_lib_clear_obj(currentRangeSo) |
785 |
# Check what is left with the bounds. |
786 |
if currentUpperBoundSa <= currentLowerBoundSa or \ |
787 |
currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
788 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
789 |
print "Can't find an interval." |
790 |
print "Use either or both a higher polynomial degree or a higher", |
791 |
print "internal precision." |
792 |
print "Aborting!" |
793 |
if sollyaPrecChangedSa: |
794 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
795 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
796 |
return None |
797 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
798 |
currentUpperBoundSa) |
799 |
# print "New interval:", |
800 |
# pobyso_autoprint(currentRangeSo) |
801 |
#print "Second Taylor expansion call." |
802 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
803 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
804 |
currentRangeSo, |
805 |
absoluteErrorTypeSo) |
806 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
807 |
#print "Max errorSo:", |
808 |
#pobyso_autoprint(maxErrorSo) |
809 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
810 |
#print "Max errorSa:", maxErrorSa |
811 |
#print "Sollya prec:", |
812 |
#pobyso_autoprint(sollya_lib_get_prec(None)) |
813 |
# End while |
814 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
815 |
itpSo = pobyso_constant_from_int_sa_so(floor(sollyaPrecSa/3)) |
816 |
ftpSo = pobyso_constant_from_int_sa_so(floor(2*sollyaPrecSa/3)) |
817 |
maxPrecSo = pobyso_constant_from_int_sa_so(sollyaPrecSa) |
818 |
approxAccurSo = pobyso_constant_sa_so(RR(approxAccurSa)) |
819 |
if debug: |
820 |
print inspect.stack()[0][3], "SollyaPrecSa:", sollyaPrecSa |
821 |
print "About to call polynomial rounding with:" |
822 |
print "polySo: ", ; pobyso_autoprint(polySo) |
823 |
print "functionSo: ", ; pobyso_autoprint(functionSo) |
824 |
print "intervalCenterSo: ", ; pobyso_autoprint(intervalCenterSo) |
825 |
print "currentRangeSo: ", ; pobyso_autoprint(currentRangeSo) |
826 |
print "itpSo: ", ; pobyso_autoprint(itpSo) |
827 |
print "ftpSo: ", ; pobyso_autoprint(ftpSo) |
828 |
print "maxPrecSo: ", ; pobyso_autoprint(maxPrecSo) |
829 |
print "approxAccurSo: ", ; pobyso_autoprint(approxAccurSo) |
830 |
""" |
831 |
# Naive rounding. |
832 |
(roundedPolySo, roundedPolyMaxErrSo) = \ |
833 |
pobyso_polynomial_coefficients_progressive_round_so_so(polySo, |
834 |
functionSo, |
835 |
intervalCenterSo, |
836 |
currentRangeSo, |
837 |
itpSo, |
838 |
ftpSo, |
839 |
maxPrecSo, |
840 |
approxAccurSo) |
841 |
""" |
842 |
# Proved rounding. |
843 |
(roundedPolySo, roundedPolyMaxErrSo) = \ |
844 |
pobyso_round_coefficients_progressive_so_so(polySo, |
845 |
functionSo, |
846 |
maxPrecSo, |
847 |
currentRangeSo, |
848 |
intervalCenterSo, |
849 |
maxErrorSo, |
850 |
approxAccurSo, |
851 |
debug=False) |
852 |
#### Comment out the two next lines when polynomial rounding is activated. |
853 |
#roundedPolySo = sollya_lib_copy_obj(polySo) |
854 |
#roundedPolyMaxErrSo = sollya_lib_copy_obj(maxErrorSo) |
855 |
sollya_lib_clear_obj(polySo) |
856 |
sollya_lib_clear_obj(maxErrorSo) |
857 |
sollya_lib_clear_obj(itpSo) |
858 |
sollya_lib_clear_obj(ftpSo) |
859 |
sollya_lib_clear_obj(approxAccurSo) |
860 |
if sollyaPrecChangedSa: |
861 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
862 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
863 |
if debug: |
864 |
print "1: ", ; pobyso_autoprint(roundedPolySo) |
865 |
print "2: ", ; pobyso_autoprint(currentRangeSo) |
866 |
print "3: ", ; pobyso_autoprint(intervalCenterSo) |
867 |
print "4: ", ; pobyso_autoprint(roundedPolyMaxErrSo) |
868 |
return (roundedPolySo, currentRangeSo, intervalCenterSo, roundedPolyMaxErrSo) |
869 |
# End slz_compute_polynomial_and_interval_01 |
870 |
|
871 |
def slz_compute_polynomial_and_interval_02(functionSo, degreeSo, lowerBoundSa, |
872 |
upperBoundSa, approxAccurSa, |
873 |
sollyaPrecSa=None, debug=True ): |
874 |
""" |
875 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
876 |
a polynomial that approximates the function on a an interval starting |
877 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
878 |
approximates with the expected precision. |
879 |
The interval upper bound is lowered until the expected approximation |
880 |
precision is reached. |
881 |
The polynomial, the bounds, the center of the interval and the error |
882 |
are returned. |
883 |
OUTPUT: |
884 |
A tuple made of 4 Sollya objects: |
885 |
- a polynomial; |
886 |
- an range (an interval, not in the sense of number given as an interval); |
887 |
- the center of the interval; |
888 |
- the maximum error in the approximation of the input functionSo by the |
889 |
output polynomial ; this error <= approxAccurSaS. |
890 |
Changes fom v 01: |
891 |
extra verbose. |
892 |
""" |
893 |
print"In slz_compute_polynomial_and_interval..." |
894 |
## Superficial argument check. |
895 |
if lowerBoundSa > upperBoundSa: |
896 |
return None |
897 |
## Change Sollya precision, if requested. |
898 |
sollyaPrecChanged = False |
899 |
(initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
900 |
#print "Initial Sollya prec:", initialSollyaPrecSa, type(initialSollyaPrecSa) |
901 |
if sollyaPrecSa is None: |
902 |
sollyaPrecSa = initialSollyaPrecSa |
903 |
else: |
904 |
if sollyaPrecSa <= 2: |
905 |
print inspect.stack()[0][3], ": precision change <=2 requested." |
906 |
pobyso_set_prec_sa_so(sollyaPrecSa) |
907 |
sollyaPrecChanged = True |
908 |
RRR = lowerBoundSa.parent() |
909 |
intervalShrinkConstFactorSa = RRR('0.9') |
910 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
911 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
912 |
currentUpperBoundSa = upperBoundSa |
913 |
currentLowerBoundSa = lowerBoundSa |
914 |
#pobyso_autoprint(functionSo) |
915 |
#pobyso_autoprint(degreeSo) |
916 |
#pobyso_autoprint(currentRangeSo) |
917 |
#pobyso_autoprint(absoluteErrorTypeSo) |
918 |
## What we want here is the polynomial without the variable change, |
919 |
# since our actual variable will be x-intervalCenter defined over the |
920 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
921 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
922 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
923 |
currentRangeSo, |
924 |
absoluteErrorTypeSo) |
925 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
926 |
print "...after Taylor expansion." |
927 |
while maxErrorSa > approxAccurSa: |
928 |
print "++Approximation error:", maxErrorSa.n() |
929 |
sollya_lib_clear_obj(polySo) |
930 |
sollya_lib_clear_obj(intervalCenterSo) |
931 |
sollya_lib_clear_obj(maxErrorSo) |
932 |
# Very empirical shrinking factor. |
933 |
shrinkFactorSa = 1 / (maxErrorSa/approxAccurSa).log2().abs() |
934 |
print "Shrink factor:", \ |
935 |
shrinkFactorSa.n(), \ |
936 |
intervalShrinkConstFactorSa |
937 |
|
938 |
#errorRatioSa = approxAccurSa/maxErrorSa |
939 |
#print "Error ratio: ", errorRatioSa |
940 |
# Make sure interval shrinks. |
941 |
if shrinkFactorSa > intervalShrinkConstFactorSa: |
942 |
actualShrinkFactorSa = intervalShrinkConstFactorSa |
943 |
#print "Fixed" |
944 |
else: |
945 |
actualShrinkFactorSa = shrinkFactorSa |
946 |
#print "Computed",shrinkFactorSa,maxErrorSa |
947 |
#print shrinkFactorSa, maxErrorSa |
948 |
#print "Shrink factor", actualShrinkFactorSa |
949 |
currentUpperBoundSa = currentLowerBoundSa + \ |
950 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
951 |
actualShrinkFactorSa |
952 |
#print "Current upper bound:", currentUpperBoundSa |
953 |
sollya_lib_clear_obj(currentRangeSo) |
954 |
# Check what is left with the bounds. |
955 |
if currentUpperBoundSa <= currentLowerBoundSa or \ |
956 |
currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
957 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
958 |
print "Can't find an interval." |
959 |
print "Use either or both a higher polynomial degree or a higher", |
960 |
print "internal precision." |
961 |
print "Aborting!" |
962 |
if sollyaPrecChanged: |
963 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
964 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
965 |
return None |
966 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
967 |
currentUpperBoundSa) |
968 |
# print "New interval:", |
969 |
# pobyso_autoprint(currentRangeSo) |
970 |
#print "Second Taylor expansion call." |
971 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
972 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
973 |
currentRangeSo, |
974 |
absoluteErrorTypeSo) |
975 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
976 |
#print "Max errorSo:", |
977 |
#pobyso_autoprint(maxErrorSo) |
978 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
979 |
#print "Max errorSa:", maxErrorSa |
980 |
#print "Sollya prec:", |
981 |
#pobyso_autoprint(sollya_lib_get_prec(None)) |
982 |
# End while |
983 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
984 |
itpSo = pobyso_constant_from_int_sa_so(floor(sollyaPrecSa/3)) |
985 |
ftpSo = pobyso_constant_from_int_sa_so(floor(2*sollyaPrecSa/3)) |
986 |
maxPrecSo = pobyso_constant_from_int_sa_so(sollyaPrecSa) |
987 |
approxAccurSo = pobyso_constant_sa_so(RR(approxAccurSa)) |
988 |
print "About to call polynomial rounding with:" |
989 |
print "polySo: ", ; pobyso_autoprint(polySo) |
990 |
print "functionSo: ", ; pobyso_autoprint(functionSo) |
991 |
print "intervalCenterSo: ", ; pobyso_autoprint(intervalCenterSo) |
992 |
print "currentRangeSo: ", ; pobyso_autoprint(currentRangeSo) |
993 |
print "itpSo: ", ; pobyso_autoprint(itpSo) |
994 |
print "ftpSo: ", ; pobyso_autoprint(ftpSo) |
995 |
print "maxPrecSo: ", ; pobyso_autoprint(maxPrecSo) |
996 |
print "approxAccurSo: ", ; pobyso_autoprint(approxAccurSo) |
997 |
(roundedPolySo, roundedPolyMaxErrSo) = \ |
998 |
pobyso_round_coefficients_progressive_so_so(polySo, |
999 |
functionSo, |
1000 |
maxPrecSo, |
1001 |
currentRangeSo, |
1002 |
intervalCenterSo, |
1003 |
maxErrorSo, |
1004 |
approxAccurSo, |
1005 |
debug = True) |
1006 |
|
1007 |
sollya_lib_clear_obj(polySo) |
1008 |
sollya_lib_clear_obj(maxErrorSo) |
1009 |
sollya_lib_clear_obj(itpSo) |
1010 |
sollya_lib_clear_obj(ftpSo) |
1011 |
sollya_lib_clear_obj(approxAccurSo) |
1012 |
if sollyaPrecChanged: |
1013 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
1014 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
1015 |
print "1: ", ; pobyso_autoprint(roundedPolySo) |
1016 |
print "2: ", ; pobyso_autoprint(currentRangeSo) |
1017 |
print "3: ", ; pobyso_autoprint(intervalCenterSo) |
1018 |
print "4: ", ; pobyso_autoprint(roundedPolyMaxErrSo) |
1019 |
return (roundedPolySo, currentRangeSo, intervalCenterSo, roundedPolyMaxErrSo) |
1020 |
# End slz_compute_polynomial_and_interval_02 |
1021 |
|
1022 |
def slz_compute_reduced_polynomial(matrixRow, |
1023 |
knownMonomials, |
1024 |
var1, |
1025 |
var1Bound, |
1026 |
var2, |
1027 |
var2Bound): |
1028 |
""" |
1029 |
Compute a polynomial from a single reduced matrix row. |
1030 |
This function was introduced in order to avoid the computation of the |
1031 |
all the polynomials from the full matrix (even those built from rows |
1032 |
that do no verify the Coppersmith condition) as this may involves |
1033 |
expensive operations over (large) integers. |
1034 |
""" |
1035 |
## Check arguments. |
1036 |
if len(knownMonomials) == 0: |
1037 |
return None |
1038 |
# varNounds can be zero since 0^0 returns 1. |
1039 |
if (var1Bound < 0) or (var2Bound < 0): |
1040 |
return None |
1041 |
## Initialisations. |
1042 |
polynomialRing = knownMonomials[0].parent() |
1043 |
currentPolynomial = polynomialRing(0) |
1044 |
# TODO: use zip instead of indices. |
1045 |
for colIndex in xrange(0, len(knownMonomials)): |
1046 |
currentCoefficient = matrixRow[colIndex] |
1047 |
if currentCoefficient != 0: |
1048 |
#print "Current coefficient:", currentCoefficient |
1049 |
currentMonomial = knownMonomials[colIndex] |
1050 |
#print "Monomial as multivariate polynomial:", \ |
1051 |
#currentMonomial, type(currentMonomial) |
1052 |
degreeInVar1 = currentMonomial.degree(var1) |
1053 |
#print "Degree in var1", var1, ":", degreeInVar1 |
1054 |
degreeInVar2 = currentMonomial.degree(var2) |
1055 |
#print "Degree in var2", var2, ":", degreeInVar2 |
1056 |
if degreeInVar1 > 0: |
1057 |
currentCoefficient = \ |
1058 |
currentCoefficient / (var1Bound^degreeInVar1) |
1059 |
#print "varBound1 in degree:", var1Bound^degreeInVar1 |
1060 |
#print "Current coefficient(1)", currentCoefficient |
1061 |
if degreeInVar2 > 0: |
1062 |
currentCoefficient = \ |
1063 |
currentCoefficient / (var2Bound^degreeInVar2) |
1064 |
#print "Current coefficient(2)", currentCoefficient |
1065 |
#print "Current reduced monomial:", (currentCoefficient * \ |
1066 |
# currentMonomial) |
1067 |
currentPolynomial += (currentCoefficient * currentMonomial) |
1068 |
#print "Current polynomial:", currentPolynomial |
1069 |
# End if |
1070 |
# End for colIndex. |
1071 |
#print "Type of the current polynomial:", type(currentPolynomial) |
1072 |
return(currentPolynomial) |
1073 |
# End slz_compute_reduced_polynomial |
1074 |
# |
1075 |
def slz_compute_reduced_polynomials(reducedMatrix, |
1076 |
knownMonomials, |
1077 |
var1, |
1078 |
var1Bound, |
1079 |
var2, |
1080 |
var2Bound): |
1081 |
""" |
1082 |
Legacy function, use slz_compute_reduced_polynomials_list |
1083 |
""" |
1084 |
return(slz_compute_reduced_polynomials_list(reducedMatrix, |
1085 |
knownMonomials, |
1086 |
var1, |
1087 |
var1Bound, |
1088 |
var2, |
1089 |
var2Bound) |
1090 |
) |
1091 |
# |
1092 |
def slz_compute_reduced_polynomials_list(reducedMatrix, |
1093 |
knownMonomials, |
1094 |
var1, |
1095 |
var1Bound, |
1096 |
var2, |
1097 |
var2Bound): |
1098 |
""" |
1099 |
From a reduced matrix, holding the coefficients, from a monomials list, |
1100 |
from the bounds of each variable, compute the corresponding polynomials |
1101 |
scaled back by dividing by the "right" powers of the variables bounds. |
1102 |
|
1103 |
The elements in knownMonomials must be of the "right" polynomial type. |
1104 |
They set the polynomial type of the output polynomials in list. |
1105 |
@param reducedMatrix: the reduced matrix as output from LLL; |
1106 |
@param kwnonMonomials: the ordered list of the monomials used to |
1107 |
build the polynomials; |
1108 |
@param var1: the first variable (of the "right" type); |
1109 |
@param var1Bound: the first variable bound; |
1110 |
@param var2: the second variable (of the "right" type); |
1111 |
@param var2Bound: the second variable bound. |
1112 |
@return: a list of polynomials obtained with the reduced coefficients |
1113 |
and scaled down with the bounds |
1114 |
""" |
1115 |
|
1116 |
# TODO: check input arguments. |
1117 |
reducedPolynomials = [] |
1118 |
#print "type var1:", type(var1), " - type var2:", type(var2) |
1119 |
for matrixRow in reducedMatrix.rows(): |
1120 |
currentPolynomial = 0 |
1121 |
for colIndex in xrange(0, len(knownMonomials)): |
1122 |
currentCoefficient = matrixRow[colIndex] |
1123 |
if currentCoefficient != 0: |
1124 |
#print "Current coefficient:", currentCoefficient |
1125 |
currentMonomial = knownMonomials[colIndex] |
1126 |
parentRing = currentMonomial.parent() |
1127 |
#print "Monomial as multivariate polynomial:", \ |
1128 |
#currentMonomial, type(currentMonomial) |
1129 |
degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
1130 |
#print "Degree in var", var1, ":", degreeInVar1 |
1131 |
degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
1132 |
#print "Degree in var", var2, ":", degreeInVar2 |
1133 |
if degreeInVar1 > 0: |
1134 |
currentCoefficient /= var1Bound^degreeInVar1 |
1135 |
#print "varBound1 in degree:", var1Bound^degreeInVar1 |
1136 |
#print "Current coefficient(1)", currentCoefficient |
1137 |
if degreeInVar2 > 0: |
1138 |
currentCoefficient /= var2Bound^degreeInVar2 |
1139 |
#print "Current coefficient(2)", currentCoefficient |
1140 |
#print "Current reduced monomial:", (currentCoefficient * \ |
1141 |
# currentMonomial) |
1142 |
currentPolynomial += (currentCoefficient * currentMonomial) |
1143 |
#if degreeInVar1 == 0 and degreeInVar2 == 0: |
1144 |
#print "!!!! constant term !!!!" |
1145 |
#print "Current polynomial:", currentPolynomial |
1146 |
# End if |
1147 |
# End for colIndex. |
1148 |
#print "Type of the current polynomial:", type(currentPolynomial) |
1149 |
reducedPolynomials.append(currentPolynomial) |
1150 |
return reducedPolynomials |
1151 |
# End slz_compute_reduced_polynomials_list. |
1152 |
|
1153 |
def slz_compute_reduced_polynomials_list_from_rows(rowsList, |
1154 |
knownMonomials, |
1155 |
var1, |
1156 |
var1Bound, |
1157 |
var2, |
1158 |
var2Bound): |
1159 |
""" |
1160 |
From a list of rows, holding the coefficients, from a monomials list, |
1161 |
from the bounds of each variable, compute the corresponding polynomials |
1162 |
scaled back by dividing by the "right" powers of the variables bounds. |
1163 |
|
1164 |
The elements in knownMonomials must be of the "right" polynomial type. |
1165 |
They set the polynomial type of the output polynomials in list. |
1166 |
@param rowsList: the reduced matrix as output from LLL; |
1167 |
@param kwnonMonomials: the ordered list of the monomials used to |
1168 |
build the polynomials; |
1169 |
@param var1: the first variable (of the "right" type); |
1170 |
@param var1Bound: the first variable bound; |
1171 |
@param var2: the second variable (of the "right" type); |
1172 |
@param var2Bound: the second variable bound. |
1173 |
@return: a list of polynomials obtained with the reduced coefficients |
1174 |
and scaled down with the bounds |
1175 |
""" |
1176 |
|
1177 |
# TODO: check input arguments. |
1178 |
reducedPolynomials = [] |
1179 |
#print "type var1:", type(var1), " - type var2:", type(var2) |
1180 |
for matrixRow in rowsList: |
1181 |
currentPolynomial = 0 |
1182 |
for colIndex in xrange(0, len(knownMonomials)): |
1183 |
currentCoefficient = matrixRow[colIndex] |
1184 |
if currentCoefficient != 0: |
1185 |
#print "Current coefficient:", currentCoefficient |
1186 |
currentMonomial = knownMonomials[colIndex] |
1187 |
parentRing = currentMonomial.parent() |
1188 |
#print "Monomial as multivariate polynomial:", \ |
1189 |
#currentMonomial, type(currentMonomial) |
1190 |
degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
1191 |
#print "Degree in var", var1, ":", degreeInVar1 |
1192 |
degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
1193 |
#print "Degree in var", var2, ":", degreeInVar2 |
1194 |
if degreeInVar1 > 0: |
1195 |
currentCoefficient /= var1Bound^degreeInVar1 |
1196 |
#print "varBound1 in degree:", var1Bound^degreeInVar1 |
1197 |
#print "Current coefficient(1)", currentCoefficient |
1198 |
if degreeInVar2 > 0: |
1199 |
currentCoefficient /= var2Bound^degreeInVar2 |
1200 |
#print "Current coefficient(2)", currentCoefficient |
1201 |
#print "Current reduced monomial:", (currentCoefficient * \ |
1202 |
# currentMonomial) |
1203 |
currentPolynomial += (currentCoefficient * currentMonomial) |
1204 |
#if degreeInVar1 == 0 and degreeInVar2 == 0: |
1205 |
#print "!!!! constant term !!!!" |
1206 |
#print "Current polynomial:", currentPolynomial |
1207 |
# End if |
1208 |
# End for colIndex. |
1209 |
#print "Type of the current polynomial:", type(currentPolynomial) |
1210 |
reducedPolynomials.append(currentPolynomial) |
1211 |
return reducedPolynomials |
1212 |
# End slz_compute_reduced_polynomials_list_from_rows. |
1213 |
# |
1214 |
def slz_compute_scaled_function(functionSa, |
1215 |
lowerBoundSa, |
1216 |
upperBoundSa, |
1217 |
floatingPointPrecSa, |
1218 |
debug=False): |
1219 |
""" |
1220 |
From a function, compute the scaled function whose domain |
1221 |
is included in [1, 2) and whose image is also included in [1,2). |
1222 |
Return a tuple: |
1223 |
[0]: the scaled function |
1224 |
[1]: the scaled domain lower bound |
1225 |
[2]: the scaled domain upper bound |
1226 |
[3]: the scaled image lower bound |
1227 |
[4]: the scaled image upper bound |
1228 |
""" |
1229 |
## The variable can be called anything. |
1230 |
x = functionSa.variables()[0] |
1231 |
# Scalling the domain -> [1,2[. |
1232 |
boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
1233 |
domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
1234 |
(invDomainScalingExpressionSa, domainScalingExpressionSa) = \ |
1235 |
slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
1236 |
if debug: |
1237 |
print "domainScalingExpression for argument :", \ |
1238 |
invDomainScalingExpressionSa |
1239 |
print "function: ", functionSa |
1240 |
ff = functionSa.subs({x : domainScalingExpressionSa}) |
1241 |
## Bless expression as a function. |
1242 |
ff = ff.function(x) |
1243 |
#ff = f.subs_expr(x==domainScalingExpressionSa) |
1244 |
#domainScalingFunction(x) = invDomainScalingExpressionSa |
1245 |
domainScalingFunction = invDomainScalingExpressionSa.function(x) |
1246 |
scaledLowerBoundSa = \ |
1247 |
domainScalingFunction(lowerBoundSa).n(prec=floatingPointPrecSa) |
1248 |
scaledUpperBoundSa = \ |
1249 |
domainScalingFunction(upperBoundSa).n(prec=floatingPointPrecSa) |
1250 |
if debug: |
1251 |
print 'ff:', ff, "- Domain:", scaledLowerBoundSa, \ |
1252 |
scaledUpperBoundSa |
1253 |
# |
1254 |
# Scalling the image -> [1,2[. |
1255 |
flbSa = ff(scaledLowerBoundSa).n(prec=floatingPointPrecSa) |
1256 |
fubSa = ff(scaledUpperBoundSa).n(prec=floatingPointPrecSa) |
1257 |
if flbSa <= fubSa: # Increasing |
1258 |
imageBinadeBottomSa = floor(flbSa.log2()) |
1259 |
else: # Decreasing |
1260 |
imageBinadeBottomSa = floor(fubSa.log2()) |
1261 |
if debug: |
1262 |
print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
1263 |
imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
1264 |
(invImageScalingExpressionSa,imageScalingExpressionSa) = \ |
1265 |
slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
1266 |
if debug: |
1267 |
print "imageScalingExpression for argument :", \ |
1268 |
invImageScalingExpressionSa |
1269 |
iis = invImageScalingExpressionSa.function(x) |
1270 |
fff = iis.subs({x:ff}) |
1271 |
if debug: |
1272 |
print "fff:", fff, |
1273 |
print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
1274 |
return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
1275 |
fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
1276 |
# End slz_compute_scaled_function |
1277 |
|
1278 |
def slz_fix_bounds_for_binades(lowerBound, |
1279 |
upperBound, |
1280 |
func = None, |
1281 |
domainDirection = -1, |
1282 |
imageDirection = -1): |
1283 |
""" |
1284 |
Assuming the function is increasing or decreasing over the |
1285 |
[lowerBound, upperBound] interval, return a lower bound lb and |
1286 |
an upper bound ub such that: |
1287 |
- lb and ub belong to the same binade; |
1288 |
- func(lb) and func(ub) belong to the same binade. |
1289 |
domainDirection indicate how bounds move to fit into the same binade: |
1290 |
- a negative value move the upper bound down; |
1291 |
- a positive value move the lower bound up. |
1292 |
imageDirection indicate how bounds move in order to have their image |
1293 |
fit into the same binade, variation of the function is also condidered. |
1294 |
For an increasing function: |
1295 |
- negative value moves the upper bound down (and its image value as well); |
1296 |
- a positive values moves the lower bound up (and its image value as well); |
1297 |
For a decreasing function it is the other way round. |
1298 |
""" |
1299 |
## Arguments check |
1300 |
if lowerBound > upperBound: |
1301 |
return None |
1302 |
if lowerBound == upperBound: |
1303 |
return (lowerBound, upperBound) |
1304 |
if func is None: |
1305 |
return None |
1306 |
# |
1307 |
#varFunc = func.variables()[0] |
1308 |
lb = lowerBound |
1309 |
ub = upperBound |
1310 |
lbBinade = slz_compute_binade(lb) |
1311 |
ubBinade = slz_compute_binade(ub) |
1312 |
## Domain binade. |
1313 |
while lbBinade != ubBinade: |
1314 |
newIntervalWidth = (ub - lb) / 2 |
1315 |
if domainDirection < 0: |
1316 |
ub = lb + newIntervalWidth |
1317 |
ubBinade = slz_compute_binade(ub) |
1318 |
else: |
1319 |
lb = lb + newIntervalWidth |
1320 |
lbBinade = slz_compute_binade(lb) |
1321 |
## Image binade. |
1322 |
if lb == ub: |
1323 |
return (lb, ub) |
1324 |
lbImg = func(lb) |
1325 |
ubImg = func(ub) |
1326 |
funcIsInc = (ubImg >= lbImg) |
1327 |
lbImgBinade = slz_compute_binade(lbImg) |
1328 |
ubImgBinade = slz_compute_binade(ubImg) |
1329 |
while lbImgBinade != ubImgBinade: |
1330 |
newIntervalWidth = (ub - lb) / 2 |
1331 |
if imageDirection < 0: |
1332 |
if funcIsInc: |
1333 |
ub = lb + newIntervalWidth |
1334 |
ubImgBinade = slz_compute_binade(func(ub)) |
1335 |
#print ubImgBinade |
1336 |
else: |
1337 |
lb = lb + newIntervalWidth |
1338 |
lbImgBinade = slz_compute_binade(func(lb)) |
1339 |
#print lbImgBinade |
1340 |
else: |
1341 |
if funcIsInc: |
1342 |
lb = lb + newIntervalWidth |
1343 |
lbImgBinade = slz_compute_binade(func(lb)) |
1344 |
#print lbImgBinade |
1345 |
else: |
1346 |
ub = lb + newIntervalWidth |
1347 |
ubImgBinade = slz_compute_binade(func(ub)) |
1348 |
#print ubImgBinade |
1349 |
# End while lbImgBinade != ubImgBinade: |
1350 |
return (lb, ub) |
1351 |
# End slz_fix_bounds_for_binades. |
1352 |
|
1353 |
def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
1354 |
# Create a polynomial over the rationals. |
1355 |
ratPolynomialRing = QQ[str(polyOfFloat.variables()[0])] |
1356 |
return(ratPolynomialRing(polyOfFloat)) |
1357 |
# End slz_float_poly_of_float_to_rat_poly_of_rat. |
1358 |
|
1359 |
def slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(polyOfFloat): |
1360 |
""" |
1361 |
Create a polynomial over the rationals where all denominators are |
1362 |
powers of two. |
1363 |
""" |
1364 |
polyVariable = polyOfFloat.variables()[0] |
1365 |
RPR = QQ[str(polyVariable)] |
1366 |
polyCoeffs = polyOfFloat.coefficients() |
1367 |
#print polyCoeffs |
1368 |
polyExponents = polyOfFloat.exponents() |
1369 |
#print polyExponents |
1370 |
polyDenomPtwoCoeffs = [] |
1371 |
for coeff in polyCoeffs: |
1372 |
polyDenomPtwoCoeffs.append(sno_float_to_rat_pow_of_two_denom(coeff)) |
1373 |
#print "Converted coefficient:", sno_float_to_rat_pow_of_two_denom(coeff), |
1374 |
#print type(sno_float_to_rat_pow_of_two_denom(coeff)) |
1375 |
ratPoly = RPR(0) |
1376 |
#print type(ratPoly) |
1377 |
## !!! CAUTION !!! Do not use the RPR(coeff * polyVariagle^exponent) |
1378 |
# The coefficient becomes plainly wrong when exponent == 0. |
1379 |
# No clue as to why. |
1380 |
for coeff, exponent in zip(polyDenomPtwoCoeffs, polyExponents): |
1381 |
ratPoly += coeff * RPR(polyVariable^exponent) |
1382 |
return ratPoly |
1383 |
# End slz_float_poly_of_float_to_rat_poly_of_rat. |
1384 |
|
1385 |
def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
1386 |
lowerBoundSa, |
1387 |
upperBoundSa, floatingPointPrecSa, |
1388 |
internalSollyaPrecSa, approxPrecSa): |
1389 |
""" |
1390 |
Under the assumption that: |
1391 |
- functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
1392 |
- lowerBound and upperBound belong to the same binade. |
1393 |
from a: |
1394 |
- function; |
1395 |
- a degree |
1396 |
- a pair of bounds; |
1397 |
- the floating-point precision we work on; |
1398 |
- the internal Sollya precision; |
1399 |
- the requested approximation error |
1400 |
The initial interval is, possibly, splitted into smaller intervals. |
1401 |
It return a list of tuples, each made of: |
1402 |
- a first polynomial (without the changed variable f(x) = p(x-x0)); |
1403 |
- a second polynomial (with a changed variable f(x) = q(x)) |
1404 |
- the approximation interval; |
1405 |
- the center, x0, of the interval; |
1406 |
- the corresponding approximation error. |
1407 |
TODO: fix endless looping for some parameters sets. |
1408 |
""" |
1409 |
resultArray = [] |
1410 |
# Set Sollya to the necessary internal precision. |
1411 |
sollyaPrecChangedSa = False |
1412 |
(initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
1413 |
if internalSollyaPrecSa > currentSollyaPrecSa: |
1414 |
if internalSollyaPrecSa <= 2: |
1415 |
print inspect.stack()[0][3], ": precision change <=2 requested." |
1416 |
pobyso_set_prec_sa_so(internalSollyaPrecSa) |
1417 |
sollyaPrecChangedSa = True |
1418 |
# |
1419 |
x = functionSa.variables()[0] # Actual variable name can be anything. |
1420 |
# Scaled function: [1=,2] -> [1,2]. |
1421 |
(fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
1422 |
scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
1423 |
slz_compute_scaled_function(functionSa, \ |
1424 |
lowerBoundSa, \ |
1425 |
upperBoundSa, \ |
1426 |
floatingPointPrecSa) |
1427 |
# In case bounds were in the negative real one may need to |
1428 |
# switch scaled bounds. |
1429 |
if scaledLowerBoundSa > scaledUpperBoundSa: |
1430 |
scaledLowerBoundSa, scaledUpperBoundSa = \ |
1431 |
scaledUpperBoundSa, scaledLowerBoundSa |
1432 |
#print "Switching!" |
1433 |
print "Approximation accuracy: ", RR(approxAccurSa) |
1434 |
# Prepare the arguments for the Taylor expansion computation with Sollya. |
1435 |
functionSo = \ |
1436 |
pobyso_parse_string_sa_so(fff._assume_str().replace('_SAGE_VAR_', '')) |
1437 |
degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
1438 |
scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
1439 |
scaledUpperBoundSa) |
1440 |
|
1441 |
realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
1442 |
upperBoundSa.parent().precision())) |
1443 |
currentScaledLowerBoundSa = scaledLowerBoundSa |
1444 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
1445 |
while True: |
1446 |
## Compute the first Taylor expansion. |
1447 |
print "Computing a Taylor expansion..." |
1448 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
1449 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
1450 |
currentScaledLowerBoundSa, |
1451 |
currentScaledUpperBoundSa, |
1452 |
approxAccurSa, internalSollyaPrecSa) |
1453 |
print "...done." |
1454 |
## If slz_compute_polynomial_and_interval fails, it returns None. |
1455 |
# This value goes to the first variable: polySo. Other variables are |
1456 |
# not assigned and should not be tested. |
1457 |
if polySo is None: |
1458 |
print "slz_get_intervals_and_polynomials: Aborting and returning None!" |
1459 |
if precChangedSa: |
1460 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
1461 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
1462 |
sollya_lib_clear_obj(functionSo) |
1463 |
sollya_lib_clear_obj(degreeSo) |
1464 |
sollya_lib_clear_obj(scaledBoundsSo) |
1465 |
return None |
1466 |
## Add to the result array. |
1467 |
### Change variable stuff in Sollya x -> x0-x. |
1468 |
changeVarExpressionSo = \ |
1469 |
sollya_lib_build_function_sub( \ |
1470 |
sollya_lib_build_function_free_variable(), |
1471 |
sollya_lib_copy_obj(intervalCenterSo)) |
1472 |
polyVarChangedSo = \ |
1473 |
sollya_lib_evaluate(polySo, changeVarExpressionSo) |
1474 |
#### Get rid of the variable change Sollya stuff. |
1475 |
sollya_lib_clear_obj(changeVarExpressionSo) |
1476 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, |
1477 |
intervalCenterSo, maxErrorSo)) |
1478 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
1479 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
1480 |
print "Computed approximation error:", errorSa.n(digits=10) |
1481 |
# If the error and interval are OK a the first try, just return. |
1482 |
if (boundsSa.endpoints()[1] >= scaledUpperBoundSa) and \ |
1483 |
(errorSa <= approxAccurSa): |
1484 |
if precChangedSa: |
1485 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
1486 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
1487 |
sollya_lib_clear_obj(functionSo) |
1488 |
sollya_lib_clear_obj(degreeSo) |
1489 |
sollya_lib_clear_obj(scaledBoundsSo) |
1490 |
#print "Approximation error:", errorSa |
1491 |
return resultArray |
1492 |
## The returned interval upper bound does not reach the requested upper |
1493 |
# upper bound: compute the next upper bound. |
1494 |
## The following ratio is always >= 1. If errorSa, we may want to |
1495 |
# enlarge the interval |
1496 |
currentErrorRatio = approxAccurSa / errorSa |
1497 |
## --|--------------------------------------------------------------|-- |
1498 |
# --|--------------------|-------------------------------------------- |
1499 |
# --|----------------------------|------------------------------------ |
1500 |
## Starting point for the next upper bound. |
1501 |
boundsWidthSa = boundsSa.endpoints()[1] - boundsSa.endpoints()[0] |
1502 |
# Compute the increment. |
1503 |
newBoundsWidthSa = \ |
1504 |
((currentErrorRatio.log() / 10) + 1) * boundsWidthSa |
1505 |
currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
1506 |
currentScaledUpperBoundSa = boundsSa.endpoints()[1] + newBoundsWidthSa |
1507 |
# Take into account the original interval upper bound. |
1508 |
if currentScaledUpperBoundSa > scaledUpperBoundSa: |
1509 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
1510 |
if currentScaledUpperBoundSa == currentScaledLowerBoundSa: |
1511 |
print "Can't shrink the interval anymore!" |
1512 |
print "You should consider increasing the Sollya internal precision" |
1513 |
print "or the polynomial degree." |
1514 |
print "Giving up!" |
1515 |
if precChangedSa: |
1516 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
1517 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
1518 |
sollya_lib_clear_obj(functionSo) |
1519 |
sollya_lib_clear_obj(degreeSo) |
1520 |
sollya_lib_clear_obj(scaledBoundsSo) |
1521 |
return None |
1522 |
# Compute the other expansions. |
1523 |
# Test for insufficient precision. |
1524 |
# End slz_get_intervals_and_polynomials |
1525 |
|
1526 |
def slz_interval_scaling_expression(boundsInterval, expVar): |
1527 |
""" |
1528 |
Compute the scaling expression to map an interval that spans at most |
1529 |
a single binade into [1, 2) and the inverse expression as well. |
1530 |
If the interval spans more than one binade, result is wrong since |
1531 |
scaling is only based on the lower bound. |
1532 |
Not very sure that the transformation makes sense for negative numbers. |
1533 |
""" |
1534 |
# The "one of the bounds is 0" special case. Here we consider |
1535 |
# the interval as the subnormals binade. |
1536 |
if boundsInterval.endpoints()[0] == 0 or boundsInterval.endpoints()[1] == 0: |
1537 |
# The upper bound is (or should be) positive. |
1538 |
if boundsInterval.endpoints()[0] == 0: |
1539 |
if boundsInterval.endpoints()[1] == 0: |
1540 |
return None |
1541 |
binade = slz_compute_binade(boundsInterval.endpoints()[1]) |
1542 |
l2 = boundsInterval.endpoints()[1].abs().log2() |
1543 |
# The upper bound is a power of two |
1544 |
if binade == l2: |
1545 |
scalingCoeff = 2^(-binade) |
1546 |
invScalingCoeff = 2^(binade) |
1547 |
scalingOffset = 1 |
1548 |
return \ |
1549 |
((scalingCoeff * expVar + scalingOffset).function(expVar), |
1550 |
((expVar - scalingOffset) * invScalingCoeff).function(expVar)) |
1551 |
else: |
1552 |
scalingCoeff = 2^(-binade-1) |
1553 |
invScalingCoeff = 2^(binade+1) |
1554 |
scalingOffset = 1 |
1555 |
return((scalingCoeff * expVar + scalingOffset),\ |
1556 |
((expVar - scalingOffset) * invScalingCoeff)) |
1557 |
# The lower bound is (or should be) negative. |
1558 |
if boundsInterval.endpoints()[1] == 0: |
1559 |
if boundsInterval.endpoints()[0] == 0: |
1560 |
return None |
1561 |
binade = slz_compute_binade(boundsInterval.endpoints()[0]) |
1562 |
l2 = boundsInterval.endpoints()[0].abs().log2() |
1563 |
# The upper bound is a power of two |
1564 |
if binade == l2: |
1565 |
scalingCoeff = -2^(-binade) |
1566 |
invScalingCoeff = -2^(binade) |
1567 |
scalingOffset = 1 |
1568 |
return((scalingCoeff * expVar + scalingOffset),\ |
1569 |
((expVar - scalingOffset) * invScalingCoeff)) |
1570 |
else: |
1571 |
scalingCoeff = -2^(-binade-1) |
1572 |
invScalingCoeff = -2^(binade+1) |
1573 |
scalingOffset = 1 |
1574 |
return((scalingCoeff * expVar + scalingOffset),\ |
1575 |
((expVar - scalingOffset) * invScalingCoeff)) |
1576 |
# General case |
1577 |
lbBinade = slz_compute_binade(boundsInterval.endpoints()[0]) |
1578 |
ubBinade = slz_compute_binade(boundsInterval.endpoints()[1]) |
1579 |
# We allow for a single exception in binade spanning is when the |
1580 |
# "outward bound" is a power of 2 and its binade is that of the |
1581 |
# "inner bound" + 1. |
1582 |
if boundsInterval.endpoints()[0] > 0: |
1583 |
ubL2 = boundsInterval.endpoints()[1].abs().log2() |
1584 |
if lbBinade != ubBinade: |
1585 |
print "Different binades." |
1586 |
if ubL2 != ubBinade: |
1587 |
print "Not a power of 2." |
1588 |
return None |
1589 |
elif abs(ubBinade - lbBinade) > 1: |
1590 |
print "Too large span:", abs(ubBinade - lbBinade) |
1591 |
return None |
1592 |
else: |
1593 |
lbL2 = boundsInterval.endpoints()[0].abs().log2() |
1594 |
if lbBinade != ubBinade: |
1595 |
print "Different binades." |
1596 |
if lbL2 != lbBinade: |
1597 |
print "Not a power of 2." |
1598 |
return None |
1599 |
elif abs(ubBinade - lbBinade) > 1: |
1600 |
print "Too large span:", abs(ubBinade - lbBinade) |
1601 |
return None |
1602 |
#print "Lower bound binade:", binade |
1603 |
if boundsInterval.endpoints()[0] > 0: |
1604 |
return \ |
1605 |
((2^(-lbBinade) * expVar).function(expVar), |
1606 |
(2^(lbBinade) * expVar).function(expVar)) |
1607 |
else: |
1608 |
return \ |
1609 |
((-(2^(-ubBinade)) * expVar).function(expVar), |
1610 |
(-(2^(ubBinade)) * expVar).function(expVar)) |
1611 |
""" |
1612 |
# Code sent to attic. Should be the base for a |
1613 |
# "slz_interval_translate_expression" rather than scale. |
1614 |
# Extra control and special cases code added in |
1615 |
# slz_interval_scaling_expression could (should ?) be added to |
1616 |
# this new function. |
1617 |
# The scaling offset is only used for negative numbers. |
1618 |
# When the absolute value of the lower bound is < 0. |
1619 |
if abs(boundsInterval.endpoints()[0]) < 1: |
1620 |
if boundsInterval.endpoints()[0] >= 0: |
1621 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
1622 |
invScalingCoeff = 1/scalingCoeff |
1623 |
return((scalingCoeff * expVar, |
1624 |
invScalingCoeff * expVar)) |
1625 |
else: |
1626 |
scalingCoeff = \ |
1627 |
2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
1628 |
scalingOffset = -3 * scalingCoeff |
1629 |
return((scalingCoeff * expVar + scalingOffset, |
1630 |
1/scalingCoeff * expVar + 3)) |
1631 |
else: |
1632 |
if boundsInterval.endpoints()[0] >= 0: |
1633 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
1634 |
scalingOffset = 0 |
1635 |
return((scalingCoeff * expVar, |
1636 |
1/scalingCoeff * expVar)) |
1637 |
else: |
1638 |
scalingCoeff = \ |
1639 |
2^(floor((-boundsInterval.endpoints()[1]).log2())) |
1640 |
scalingOffset = -3 * scalingCoeff |
1641 |
#scalingOffset = 0 |
1642 |
return((scalingCoeff * expVar + scalingOffset, |
1643 |
1/scalingCoeff * expVar + 3)) |
1644 |
""" |
1645 |
# End slz_interval_scaling_expression |
1646 |
|
1647 |
def slz_interval_and_polynomial_to_sage(polyRangeCenterErrorSo): |
1648 |
""" |
1649 |
Compute the Sage version of the Taylor polynomial and it's |
1650 |
companion data (interval, center...) |
1651 |
The input parameter is a five elements tuple: |
1652 |
- [0]: the polyomial (without variable change), as polynomial over a |
1653 |
real ring; |
1654 |
- [1]: the polyomial (with variable change done in Sollya), as polynomial |
1655 |
over a real ring; |
1656 |
- [2]: the interval (as Sollya range); |
1657 |
- [3]: the interval center; |
1658 |
- [4]: the approximation error. |
1659 |
|
1660 |
The function returns a 5 elements tuple: formed with all the |
1661 |
input elements converted into their Sollya counterpart. |
1662 |
""" |
1663 |
#print "Sollya polynomial to convert:", |
1664 |
#pobyso_autoprint(polyRangeCenterErrorSo) |
1665 |
polynomialSa = pobyso_float_poly_so_sa(polyRangeCenterErrorSo[0]) |
1666 |
#print "Polynomial after first conversion: ", pobyso_autoprint(polyRangeCenterErrorSo[1]) |
1667 |
polynomialChangedVarSa = pobyso_float_poly_so_sa(polyRangeCenterErrorSo[1]) |
1668 |
intervalSa = \ |
1669 |
pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
1670 |
centerSa = \ |
1671 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
1672 |
errorSa = \ |
1673 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
1674 |
return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
1675 |
# End slz_interval_and_polynomial_to_sage |
1676 |
|
1677 |
def slz_is_htrn(argument, function, targetAccuracy, targetRF = None, |
1678 |
targetPlusOnePrecRF = None, quasiExactRF = None): |
1679 |
""" |
1680 |
Check if an element (argument) of the domain of function (function) |
1681 |
yields a HTRN case (rounding to next) for the target precision |
1682 |
(as impersonated by targetRF) for a given accuracy (targetAccuracy). |
1683 |
|
1684 |
The strategy is: |
1685 |
- compute the image at high (quasi-exact) precision; |
1686 |
- round it to nearest to precision; |
1687 |
- round it to exactly to (precision+1), the computed number has two |
1688 |
midpoint neighbors; |
1689 |
- check the distance between these neighbors and the quasi-exact value; |
1690 |
- if none of them is closer than the targetAccuracy, return False, |
1691 |
- else return true. |
1692 |
- Powers of two are a special case when comparing the midpoint in |
1693 |
the 0 direction.. |
1694 |
""" |
1695 |
## Arguments filtering. |
1696 |
## TODO: filter the first argument for consistence. |
1697 |
if targetRF is None: |
1698 |
targetRF = argument.parent() |
1699 |
## Ditto for the real field holding the midpoints. |
1700 |
if targetPlusOnePrecRF is None: |
1701 |
targetPlusOnePrecRF = RealField(targetRF.prec()+1) |
1702 |
## If no quasiExactField is provided, create a high accuracy RealField. |
1703 |
if quasiExactRF is None: |
1704 |
quasiExactRF = RealField(1536) |
1705 |
function = function.function(function.variables()[0]) |
1706 |
exactArgument = quasiExactRF(argument) |
1707 |
quasiExactValue = function(exactArgument) |
1708 |
roundedValue = targetRF(quasiExactValue) |
1709 |
roundedValuePrecPlusOne = targetPlusOnePrecRF(roundedValue) |
1710 |
# Upper midpoint. |
1711 |
roundedValuePrecPlusOneNext = roundedValuePrecPlusOne.nextabove() |
1712 |
# Lower midpoint. |
1713 |
roundedValuePrecPlusOnePrev = roundedValuePrecPlusOne.nextbelow() |
1714 |
binade = slz_compute_binade(roundedValue) |
1715 |
binadeCorrectedTargetAccuracy = targetAccuracy * 2^binade |
1716 |
#print "Argument:", argument |
1717 |
#print "f(x):", roundedValue, binade, floor(binade), ceil(binade) |
1718 |
#print "Binade:", binade |
1719 |
#print "binadeCorrectedTargetAccuracy:", \ |
1720 |
#binadeCorrectedTargetAccuracy.n(prec=100) |
1721 |
#print "binadeCorrectedTargetAccuracy:", \ |
1722 |
# binadeCorrectedTargetAccuracy.n(prec=100).str(base=2) |
1723 |
#print "Upper midpoint:", \ |
1724 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1725 |
#print "Rounded value :", \ |
1726 |
# roundedValuePrecPlusOne.n(prec=targetPlusOnePrecRF.prec()).str(base=2), \ |
1727 |
# roundedValuePrecPlusOne.ulp().n(prec=2).str(base=2) |
1728 |
#print "QuasiEx value :", quasiExactValue.n(prec=250).str(base=2) |
1729 |
#print "Lower midpoint:", \ |
1730 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1731 |
## Make quasiExactValue = 0 a special case to move it out of the way. |
1732 |
if quasiExactValue == 0: |
1733 |
return False |
1734 |
## Begining of the general case : check with the midpoint of |
1735 |
# greatest absolute value. |
1736 |
if quasiExactValue > 0: |
1737 |
if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) <\ |
1738 |
binadeCorrectedTargetAccuracy: |
1739 |
#print "Too close to the upper midpoint: ", \ |
1740 |
#abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100) |
1741 |
#print argument.n().str(base=16, \ |
1742 |
# no_sci=False) |
1743 |
#print "Lower midpoint:", \ |
1744 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1745 |
#print "Value :", \ |
1746 |
# quasiExactValue.n(prec=200).str(base=2) |
1747 |
#print "Upper midpoint:", \ |
1748 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1749 |
return True |
1750 |
else: # quasiExactValue < 0, the 0 case has been previously filtered out. |
1751 |
if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) < \ |
1752 |
binadeCorrectedTargetAccuracy: |
1753 |
#print "Too close to the upper midpoint: ", \ |
1754 |
# abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100) |
1755 |
#print argument.n().str(base=16, \ |
1756 |
# no_sci=False) |
1757 |
#print "Lower midpoint:", \ |
1758 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1759 |
#print "Value :", \ |
1760 |
# quasiExactValue.n(prec=200).str(base=2) |
1761 |
#print "Upper midpoint:", \ |
1762 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1763 |
|
1764 |
return True |
1765 |
#2345678901234567890123456789012345678901234567890123456789012345678901234567890 |
1766 |
## For the midpoint of smaller absolute value, |
1767 |
# split cases with the powers of 2. |
1768 |
if sno_abs_is_power_of_two(roundedValue): |
1769 |
if quasiExactValue > 0: |
1770 |
if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) <\ |
1771 |
binadeCorrectedTargetAccuracy / 2: |
1772 |
#print "Lower midpoint:", \ |
1773 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1774 |
#print "Value :", \ |
1775 |
# quasiExactValue.n(prec=200).str(base=2) |
1776 |
#print "Upper midpoint:", \ |
1777 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1778 |
|
1779 |
return True |
1780 |
else: |
1781 |
if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) < \ |
1782 |
binadeCorrectedTargetAccuracy / 2: |
1783 |
#print "Lower midpoint:", \ |
1784 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1785 |
#print "Value :", |
1786 |
# quasiExactValue.n(prec=200).str(base=2) |
1787 |
#print "Upper midpoint:", |
1788 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1789 |
|
1790 |
return True |
1791 |
#2345678901234567890123456789012345678901234567890123456789012345678901234567890 |
1792 |
else: ## Not a power of 2, regular comparison with the midpoint of |
1793 |
# smaller absolute value. |
1794 |
if quasiExactValue > 0: |
1795 |
if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) < \ |
1796 |
binadeCorrectedTargetAccuracy: |
1797 |
#print "Lower midpoint:", \ |
1798 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1799 |
#print "Value :", \ |
1800 |
# quasiExactValue.n(prec=200).str(base=2) |
1801 |
#print "Upper midpoint:", \ |
1802 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1803 |
|
1804 |
return True |
1805 |
else: # quasiExactValue <= 0 |
1806 |
if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) < \ |
1807 |
binadeCorrectedTargetAccuracy: |
1808 |
#print "Lower midpoint:", \ |
1809 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1810 |
#print "Value :", \ |
1811 |
# quasiExactValue.n(prec=200).str(base=2) |
1812 |
#print "Upper midpoint:", \ |
1813 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1814 |
|
1815 |
return True |
1816 |
#print "distance to the upper midpoint:", \ |
1817 |
# abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100).str(base=2) |
1818 |
#print "distance to the lower midpoint:", \ |
1819 |
# abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue).n(prec=100).str(base=2) |
1820 |
return False |
1821 |
# End slz_is_htrn |
1822 |
|
1823 |
def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
1824 |
precision, |
1825 |
targetHardnessToRound, |
1826 |
variable1, |
1827 |
variable2): |
1828 |
""" |
1829 |
Creates a new multivariate polynomial with integer coefficients for use |
1830 |
with the Coppersmith method. |
1831 |
A the same time it computes : |
1832 |
- 2^K (N); |
1833 |
- 2^k (bound on the second variable) |
1834 |
- lcm |
1835 |
|
1836 |
:param ratPolyOfInt: a polynomial with rational coefficients and integer |
1837 |
variables. |
1838 |
:param precision: the precision of the floating-point coefficients. |
1839 |
:param targetHardnessToRound: the hardness to round we want to check. |
1840 |
:param variable1: the first variable of the polynomial (an expression). |
1841 |
:param variable2: the second variable of the polynomial (an expression). |
1842 |
|
1843 |
:returns: a 4 elements tuple: |
1844 |
- the polynomial; |
1845 |
- the modulus (N); |
1846 |
- the t bound; |
1847 |
- the lcm used to compute the integral coefficients and the |
1848 |
module. |
1849 |
""" |
1850 |
# Create a new integer polynomial ring. |
1851 |
IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
1852 |
# Coefficients are issued in the increasing power order. |
1853 |
ratPolyCoefficients = ratPolyOfInt.coefficients() |
1854 |
# Print the reversed list for debugging. |
1855 |
|
1856 |
#print "Rational polynomial coefficients:", ratPolyCoefficients[::-1] |
1857 |
# Build the list of number we compute the lcm of. |
1858 |
coefficientDenominators = sro_denominators(ratPolyCoefficients) |
1859 |
#print "Coefficient denominators:", coefficientDenominators |
1860 |
coefficientDenominators.append(2^precision) |
1861 |
coefficientDenominators.append(2^(targetHardnessToRound)) |
1862 |
leastCommonMultiple = lcm(coefficientDenominators) |
1863 |
# Compute the expression corresponding to the new polynomial |
1864 |
coefficientNumerators = sro_numerators(ratPolyCoefficients) |
1865 |
#print coefficientNumerators |
1866 |
polynomialExpression = 0 |
1867 |
power = 0 |
1868 |
# Iterate over two lists at the same time, stop when the shorter |
1869 |
# (is this case coefficientsNumerators) is |
1870 |
# exhausted. Both lists are ordered in the order of increasing powers |
1871 |
# of variable1. |
1872 |
for numerator, denominator in \ |
1873 |
zip(coefficientNumerators, coefficientDenominators): |
1874 |
multiplicator = leastCommonMultiple / denominator |
1875 |
newCoefficient = numerator * multiplicator |
1876 |
polynomialExpression += newCoefficient * variable1^power |
1877 |
power +=1 |
1878 |
polynomialExpression += - variable2 |
1879 |
return (IP(polynomialExpression), |
1880 |
leastCommonMultiple / 2^precision, # 2^K aka N. |
1881 |
#leastCommonMultiple / 2^(targetHardnessToRound + 1), # tBound |
1882 |
leastCommonMultiple / 2^(targetHardnessToRound), # tBound |
1883 |
leastCommonMultiple) # If we want to make test computations. |
1884 |
|
1885 |
# End slz_rat_poly_of_int_to_poly_for_coppersmith |
1886 |
|
1887 |
def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
1888 |
precision): |
1889 |
""" |
1890 |
Makes a variable substitution into the input polynomial so that the output |
1891 |
polynomial can take integer arguments. |
1892 |
All variables of the input polynomial "have precision p". That is to say |
1893 |
that they are rationals with denominator == 2^(precision - 1): |
1894 |
x = y/2^(precision - 1). |
1895 |
We "incorporate" these denominators into the coefficients with, |
1896 |
respectively, the "right" power. |
1897 |
""" |
1898 |
polynomialField = ratPolyOfRat.parent() |
1899 |
polynomialVariable = ratPolyOfRat.variables()[0] |
1900 |
#print "The polynomial field is:", polynomialField |
1901 |
return \ |
1902 |
polynomialField(ratPolyOfRat.subs({polynomialVariable : \ |
1903 |
polynomialVariable/2^(precision-1)})) |
1904 |
|
1905 |
# End slz_rat_poly_of_rat_to_rat_poly_of_int |
1906 |
|
1907 |
def slz_reduce_and_test_base(matrixToReduce, |
1908 |
nAtAlpha, |
1909 |
monomialsCountSqrt): |
1910 |
""" |
1911 |
Reduces the basis, tests the Coppersmith condition and returns |
1912 |
a list of rows that comply with the condition. |
1913 |
""" |
1914 |
ccComplientRowsList = [] |
1915 |
reducedMatrix = matrixToReduce.LLL(None) |
1916 |
if not reducedMatrix.is_LLL_reduced(): |
1917 |
raise Exception("reducedMatrix is not actually reduced. Aborting!") |
1918 |
else: |
1919 |
print "reducedMatrix is actually reduced." |
1920 |
print "N^alpha:", nAtAlpha.n() |
1921 |
rowIndex = 0 |
1922 |
for row in reducedMatrix.rows(): |
1923 |
l2Norm = row.norm(2) |
1924 |
print "L_2 norm for vector # ", rowIndex, "= ", RR(l2Norm), "*", \ |
1925 |
monomialsCountSqrt.n(), ". Is vector OK?", |
1926 |
if (l2Norm * monomialsCountSqrt < nAtAlpha): |
1927 |
ccComplientRowsList.append(row) |
1928 |
print "True" |
1929 |
else: |
1930 |
print "False" |
1931 |
# End for |
1932 |
return ccComplientRowsList |
1933 |
# End slz_reduce_and_test_base |
1934 |
|
1935 |
def slz_resultant(poly1, poly2, elimVar, debug = False): |
1936 |
""" |
1937 |
Compute the resultant for two polynomials for a given variable |
1938 |
and return the (poly1, poly2, resultant) if the resultant |
1939 |
is not 0. |
1940 |
Return () otherwise. |
1941 |
""" |
1942 |
polynomialRing0 = poly1.parent() |
1943 |
resultantInElimVar = poly1.resultant(poly2,polynomialRing0(elimVar)) |
1944 |
if resultantInElimVar is None: |
1945 |
if debug: |
1946 |
print poly1 |
1947 |
print poly2 |
1948 |
print "have GCD = ", poly1.gcd(poly2) |
1949 |
return None |
1950 |
if resultantInElimVar.is_zero(): |
1951 |
if debug: |
1952 |
print poly1 |
1953 |
print poly2 |
1954 |
print "have GCD = ", poly1.gcd(poly2) |
1955 |
return None |
1956 |
else: |
1957 |
if debug: |
1958 |
print poly1 |
1959 |
print poly2 |
1960 |
print "have resultant in t = ", resultantInElimVar |
1961 |
return resultantInElimVar |
1962 |
# End slz_resultant. |
1963 |
# |
1964 |
def slz_resultant_tuple(poly1, poly2, elimVar): |
1965 |
""" |
1966 |
Compute the resultant for two polynomials for a given variable |
1967 |
and return the (poly1, poly2, resultant) if the resultant |
1968 |
is not 0. |
1969 |
Return () otherwise. |
1970 |
""" |
1971 |
polynomialRing0 = poly1.parent() |
1972 |
resultantInElimVar = poly1.resultant(poly2,polynomialRing0(elimVar)) |
1973 |
if resultantInElimVar.is_zero(): |
1974 |
return () |
1975 |
else: |
1976 |
return (poly1, poly2, resultantInElimVar) |
1977 |
# End slz_resultant_tuple. |
1978 |
# |
1979 |
print "\t...sageSLZ loaded" |