root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 230
Historique | Voir | Annoter | Télécharger (90,12 ko)
1 | 115 | storres | r""" |
---|---|---|---|
2 | 115 | storres | Sage core functions needed for the implementation of SLZ. |
3 | 90 | storres | |
4 | 115 | storres | AUTHORS: |
5 | 115 | storres | - S.T. (2013-08): initial version |
6 | 90 | storres | |
7 | 115 | storres | Examples: |
8 | 119 | storres | |
9 | 119 | storres | TODO:: |
10 | 90 | storres | """ |
11 | 87 | storres | print "sageSLZ loading..." |
12 | 115 | storres | # |
13 | 225 | storres | import inspect |
14 | 225 | storres | # |
15 | 165 | storres | def slz_compute_binade(number): |
16 | 165 | storres | """" |
17 | 165 | storres | For a given number, compute the "binade" that is integer m such that |
18 | 165 | storres | 2^m <= number < 2^(m+1). If number == 0 return None. |
19 | 165 | storres | """ |
20 | 165 | storres | # Checking the parameter. |
21 | 172 | storres | # The exception construction is used to detect if number is a RealNumber |
22 | 165 | storres | # since not all numbers have |
23 | 165 | storres | # the mro() method. sage.rings.real_mpfr.RealNumber do. |
24 | 165 | storres | try: |
25 | 165 | storres | classTree = [number.__class__] + number.mro() |
26 | 172 | storres | # If the number is not a RealNumber (or offspring thereof) try |
27 | 165 | storres | # to transform it. |
28 | 165 | storres | if not sage.rings.real_mpfr.RealNumber in classTree: |
29 | 165 | storres | numberAsRR = RR(number) |
30 | 165 | storres | else: |
31 | 165 | storres | numberAsRR = number |
32 | 165 | storres | except AttributeError: |
33 | 165 | storres | return None |
34 | 165 | storres | # Zero special case. |
35 | 165 | storres | if numberAsRR == 0: |
36 | 165 | storres | return RR(-infinity) |
37 | 165 | storres | else: |
38 | 176 | storres | realField = numberAsRR.parent() |
39 | 176 | storres | numberLog2 = numberAsRR.abs().log2() |
40 | 176 | storres | floorNumberLog2 = floor(numberLog2) |
41 | 176 | storres | ## Do not get caught by rounding of log2() both ways. |
42 | 176 | storres | ## When numberLog2 is an integer, compare numberAsRR |
43 | 176 | storres | # with 2^numberLog2. |
44 | 176 | storres | if floorNumberLog2 == numberLog2: |
45 | 176 | storres | if numberAsRR.abs() < realField(2^floorNumberLog2): |
46 | 176 | storres | return floorNumberLog2 - 1 |
47 | 176 | storres | else: |
48 | 176 | storres | return floorNumberLog2 |
49 | 176 | storres | else: |
50 | 176 | storres | return floorNumberLog2 |
51 | 165 | storres | # End slz_compute_binade |
52 | 165 | storres | |
53 | 115 | storres | # |
54 | 121 | storres | def slz_compute_binade_bounds(number, emin, emax=sys.maxint): |
55 | 119 | storres | """ |
56 | 119 | storres | For given "real number", compute the bounds of the binade it belongs to. |
57 | 121 | storres | |
58 | 121 | storres | NOTE:: |
59 | 121 | storres | When number >= 2^(emax+1), we return the "fake" binade |
60 | 121 | storres | [2^(emax+1), +infinity]. Ditto for number <= -2^(emax+1) |
61 | 125 | storres | with interval [-infinity, -2^(emax+1)]. We want to distinguish |
62 | 125 | storres | this case from that of "really" invalid arguments. |
63 | 121 | storres | |
64 | 119 | storres | """ |
65 | 121 | storres | # Check the parameters. |
66 | 125 | storres | # RealNumbers or RealNumber offspring only. |
67 | 165 | storres | # The exception construction is necessary since not all objects have |
68 | 125 | storres | # the mro() method. sage.rings.real_mpfr.RealNumber do. |
69 | 124 | storres | try: |
70 | 124 | storres | classTree = [number.__class__] + number.mro() |
71 | 124 | storres | if not sage.rings.real_mpfr.RealNumber in classTree: |
72 | 124 | storres | return None |
73 | 124 | storres | except AttributeError: |
74 | 121 | storres | return None |
75 | 121 | storres | # Non zero negative integers only for emin. |
76 | 121 | storres | if emin >= 0 or int(emin) != emin: |
77 | 121 | storres | return None |
78 | 121 | storres | # Non zero positive integers only for emax. |
79 | 121 | storres | if emax <= 0 or int(emax) != emax: |
80 | 121 | storres | return None |
81 | 121 | storres | precision = number.precision() |
82 | 121 | storres | RF = RealField(precision) |
83 | 125 | storres | if number == 0: |
84 | 125 | storres | return (RF(0),RF(2^(emin)) - RF(2^(emin-precision))) |
85 | 121 | storres | # A more precise RealField is needed to avoid unwanted rounding effects |
86 | 121 | storres | # when computing number.log2(). |
87 | 121 | storres | RRF = RealField(max(2048, 2 * precision)) |
88 | 121 | storres | # number = 0 special case, the binade bounds are |
89 | 121 | storres | # [0, 2^emin - 2^(emin-precision)] |
90 | 121 | storres | # Begin general case |
91 | 119 | storres | l2 = RRF(number).abs().log2() |
92 | 121 | storres | # Another special one: beyond largest representable -> "Fake" binade. |
93 | 121 | storres | if l2 >= emax + 1: |
94 | 121 | storres | if number > 0: |
95 | 125 | storres | return (RF(2^(emax+1)), RF(+infinity) ) |
96 | 121 | storres | else: |
97 | 121 | storres | return (RF(-infinity), -RF(2^(emax+1))) |
98 | 165 | storres | # Regular case cont'd. |
99 | 119 | storres | offset = int(l2) |
100 | 121 | storres | # number.abs() >= 1. |
101 | 119 | storres | if l2 >= 0: |
102 | 119 | storres | if number >= 0: |
103 | 119 | storres | lb = RF(2^offset) |
104 | 119 | storres | ub = RF(2^(offset + 1) - 2^(-precision+offset+1)) |
105 | 119 | storres | else: #number < 0 |
106 | 119 | storres | lb = -RF(2^(offset + 1) - 2^(-precision+offset+1)) |
107 | 119 | storres | ub = -RF(2^offset) |
108 | 121 | storres | else: # log2 < 0, number.abs() < 1. |
109 | 119 | storres | if l2 < emin: # Denormal |
110 | 121 | storres | # print "Denormal:", l2 |
111 | 119 | storres | if number >= 0: |
112 | 119 | storres | lb = RF(0) |
113 | 119 | storres | ub = RF(2^(emin)) - RF(2^(emin-precision)) |
114 | 119 | storres | else: # number <= 0 |
115 | 119 | storres | lb = - RF(2^(emin)) + RF(2^(emin-precision)) |
116 | 119 | storres | ub = RF(0) |
117 | 119 | storres | elif l2 > emin: # Normal number other than +/-2^emin. |
118 | 119 | storres | if number >= 0: |
119 | 121 | storres | if int(l2) == l2: |
120 | 121 | storres | lb = RF(2^(offset)) |
121 | 121 | storres | ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
122 | 121 | storres | else: |
123 | 121 | storres | lb = RF(2^(offset-1)) |
124 | 121 | storres | ub = RF(2^(offset)) - RF(2^(-precision+offset)) |
125 | 119 | storres | else: # number < 0 |
126 | 121 | storres | if int(l2) == l2: # Binade limit. |
127 | 121 | storres | lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
128 | 121 | storres | ub = -RF(2^(offset)) |
129 | 121 | storres | else: |
130 | 121 | storres | lb = -RF(2^(offset) - 2^(-precision+offset)) |
131 | 121 | storres | ub = -RF(2^(offset-1)) |
132 | 121 | storres | else: # l2== emin, number == +/-2^emin |
133 | 119 | storres | if number >= 0: |
134 | 119 | storres | lb = RF(2^(offset)) |
135 | 119 | storres | ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
136 | 119 | storres | else: # number < 0 |
137 | 119 | storres | lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
138 | 119 | storres | ub = -RF(2^(offset)) |
139 | 119 | storres | return (lb, ub) |
140 | 119 | storres | # End slz_compute_binade_bounds |
141 | 119 | storres | # |
142 | 123 | storres | def slz_compute_coppersmith_reduced_polynomials(inputPolynomial, |
143 | 123 | storres | alpha, |
144 | 123 | storres | N, |
145 | 123 | storres | iBound, |
146 | 223 | storres | tBound, |
147 | 223 | storres | debug = False): |
148 | 123 | storres | """ |
149 | 123 | storres | For a given set of arguments (see below), compute a list |
150 | 123 | storres | of "reduced polynomials" that could be used to compute roots |
151 | 123 | storres | of the inputPolynomial. |
152 | 124 | storres | INPUT: |
153 | 124 | storres | |
154 | 124 | storres | - "inputPolynomial" -- (no default) a bivariate integer polynomial; |
155 | 124 | storres | - "alpha" -- the alpha parameter of the Coppersmith algorithm; |
156 | 124 | storres | - "N" -- the modulus; |
157 | 124 | storres | - "iBound" -- the bound on the first variable; |
158 | 124 | storres | - "tBound" -- the bound on the second variable. |
159 | 124 | storres | |
160 | 124 | storres | OUTPUT: |
161 | 124 | storres | |
162 | 124 | storres | A list of bivariate integer polynomial obtained using the Coppersmith |
163 | 124 | storres | algorithm. The polynomials correspond to the rows of the LLL-reduce |
164 | 124 | storres | reduced base that comply with the Coppersmith condition. |
165 | 123 | storres | """ |
166 | 123 | storres | # Arguments check. |
167 | 123 | storres | if iBound == 0 or tBound == 0: |
168 | 179 | storres | return None |
169 | 123 | storres | # End arguments check. |
170 | 123 | storres | nAtAlpha = N^alpha |
171 | 123 | storres | ## Building polynomials for matrix. |
172 | 123 | storres | polyRing = inputPolynomial.parent() |
173 | 123 | storres | # Whatever the 2 variables are actually called, we call them |
174 | 123 | storres | # 'i' and 't' in all the variable names. |
175 | 123 | storres | (iVariable, tVariable) = inputPolynomial.variables()[:2] |
176 | 123 | storres | #print polyVars[0], type(polyVars[0]) |
177 | 123 | storres | initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
178 | 123 | storres | tVariable:tVariable * tBound}) |
179 | 223 | storres | if debug: |
180 | 223 | storres | polynomialsList = \ |
181 | 223 | storres | spo_polynomial_to_polynomials_list_8(initialPolynomial, |
182 | 223 | storres | alpha, |
183 | 223 | storres | N, |
184 | 223 | storres | iBound, |
185 | 223 | storres | tBound, |
186 | 223 | storres | 20) |
187 | 223 | storres | else: |
188 | 223 | storres | polynomialsList = \ |
189 | 223 | storres | spo_polynomial_to_polynomials_list_8(initialPolynomial, |
190 | 223 | storres | alpha, |
191 | 223 | storres | N, |
192 | 223 | storres | iBound, |
193 | 223 | storres | tBound, |
194 | 223 | storres | 0) |
195 | 123 | storres | #print "Polynomials list:", polynomialsList |
196 | 123 | storres | ## Building the proto matrix. |
197 | 123 | storres | knownMonomials = [] |
198 | 123 | storres | protoMatrix = [] |
199 | 223 | storres | if debug: |
200 | 223 | storres | for poly in polynomialsList: |
201 | 223 | storres | spo_add_polynomial_coeffs_to_matrix_row(poly, |
202 | 223 | storres | knownMonomials, |
203 | 223 | storres | protoMatrix, |
204 | 223 | storres | 20) |
205 | 223 | storres | else: |
206 | 223 | storres | for poly in polynomialsList: |
207 | 223 | storres | spo_add_polynomial_coeffs_to_matrix_row(poly, |
208 | 223 | storres | knownMonomials, |
209 | 223 | storres | protoMatrix, |
210 | 223 | storres | 0) |
211 | 123 | storres | matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
212 | 123 | storres | #print matrixToReduce |
213 | 123 | storres | ## Reduction and checking. |
214 | 163 | storres | ## S.T. changed 'fp' to None as of Sage 6.6 complying to |
215 | 163 | storres | # error message issued when previous code was used. |
216 | 163 | storres | #reducedMatrix = matrixToReduce.LLL(fp='fp') |
217 | 163 | storres | reducedMatrix = matrixToReduce.LLL(fp=None) |
218 | 123 | storres | isLLLReduced = reducedMatrix.is_LLL_reduced() |
219 | 123 | storres | if not isLLLReduced: |
220 | 179 | storres | return None |
221 | 123 | storres | monomialsCount = len(knownMonomials) |
222 | 123 | storres | monomialsCountSqrt = sqrt(monomialsCount) |
223 | 123 | storres | #print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
224 | 123 | storres | #print reducedMatrix |
225 | 123 | storres | ## Check the Coppersmith condition for each row and build the reduced |
226 | 123 | storres | # polynomials. |
227 | 123 | storres | ccReducedPolynomialsList = [] |
228 | 123 | storres | for row in reducedMatrix.rows(): |
229 | 123 | storres | l2Norm = row.norm(2) |
230 | 123 | storres | if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
231 | 123 | storres | #print (l2Norm * monomialsCountSqrt).n() |
232 | 125 | storres | #print l2Norm.n() |
233 | 123 | storres | ccReducedPolynomial = \ |
234 | 123 | storres | slz_compute_reduced_polynomial(row, |
235 | 123 | storres | knownMonomials, |
236 | 123 | storres | iVariable, |
237 | 123 | storres | iBound, |
238 | 123 | storres | tVariable, |
239 | 123 | storres | tBound) |
240 | 123 | storres | if not ccReducedPolynomial is None: |
241 | 123 | storres | ccReducedPolynomialsList.append(ccReducedPolynomial) |
242 | 123 | storres | else: |
243 | 125 | storres | #print l2Norm.n() , ">", nAtAlpha |
244 | 123 | storres | pass |
245 | 123 | storres | if len(ccReducedPolynomialsList) < 2: |
246 | 125 | storres | print "Less than 2 Coppersmith condition compliant vectors." |
247 | 123 | storres | return () |
248 | 125 | storres | #print ccReducedPolynomialsList |
249 | 123 | storres | return ccReducedPolynomialsList |
250 | 123 | storres | # End slz_compute_coppersmith_reduced_polynomials |
251 | 123 | storres | |
252 | 212 | storres | def slz_compute_coppersmith_reduced_polynomials_with_lattice_volume(inputPolynomial, |
253 | 212 | storres | alpha, |
254 | 212 | storres | N, |
255 | 212 | storres | iBound, |
256 | 229 | storres | tBound, |
257 | 229 | storres | debug = False): |
258 | 212 | storres | """ |
259 | 212 | storres | For a given set of arguments (see below), compute a list |
260 | 212 | storres | of "reduced polynomials" that could be used to compute roots |
261 | 212 | storres | of the inputPolynomial. |
262 | 212 | storres | Print the volume of the initial basis as well. |
263 | 212 | storres | INPUT: |
264 | 212 | storres | |
265 | 212 | storres | - "inputPolynomial" -- (no default) a bivariate integer polynomial; |
266 | 212 | storres | - "alpha" -- the alpha parameter of the Coppersmith algorithm; |
267 | 212 | storres | - "N" -- the modulus; |
268 | 212 | storres | - "iBound" -- the bound on the first variable; |
269 | 212 | storres | - "tBound" -- the bound on the second variable. |
270 | 212 | storres | |
271 | 212 | storres | OUTPUT: |
272 | 212 | storres | |
273 | 212 | storres | A list of bivariate integer polynomial obtained using the Coppersmith |
274 | 212 | storres | algorithm. The polynomials correspond to the rows of the LLL-reduce |
275 | 212 | storres | reduced base that comply with the Coppersmith condition. |
276 | 212 | storres | """ |
277 | 212 | storres | # Arguments check. |
278 | 212 | storres | if iBound == 0 or tBound == 0: |
279 | 212 | storres | return None |
280 | 212 | storres | # End arguments check. |
281 | 212 | storres | nAtAlpha = N^alpha |
282 | 229 | storres | if debug: |
283 | 229 | storres | print "N at alpha:", nAtAlpha |
284 | 212 | storres | ## Building polynomials for matrix. |
285 | 212 | storres | polyRing = inputPolynomial.parent() |
286 | 212 | storres | # Whatever the 2 variables are actually called, we call them |
287 | 212 | storres | # 'i' and 't' in all the variable names. |
288 | 212 | storres | (iVariable, tVariable) = inputPolynomial.variables()[:2] |
289 | 212 | storres | #print polyVars[0], type(polyVars[0]) |
290 | 212 | storres | initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
291 | 212 | storres | tVariable:tVariable * tBound}) |
292 | 212 | storres | ## polynomialsList = \ |
293 | 212 | storres | ## spo_polynomial_to_polynomials_list_8(initialPolynomial, |
294 | 212 | storres | ## spo_polynomial_to_polynomials_list_5(initialPolynomial, |
295 | 212 | storres | polynomialsList = \ |
296 | 212 | storres | spo_polynomial_to_polynomials_list_5(initialPolynomial, |
297 | 212 | storres | alpha, |
298 | 212 | storres | N, |
299 | 212 | storres | iBound, |
300 | 212 | storres | tBound, |
301 | 212 | storres | 0) |
302 | 212 | storres | #print "Polynomials list:", polynomialsList |
303 | 212 | storres | ## Building the proto matrix. |
304 | 212 | storres | knownMonomials = [] |
305 | 212 | storres | protoMatrix = [] |
306 | 212 | storres | for poly in polynomialsList: |
307 | 212 | storres | spo_add_polynomial_coeffs_to_matrix_row(poly, |
308 | 212 | storres | knownMonomials, |
309 | 212 | storres | protoMatrix, |
310 | 212 | storres | 0) |
311 | 212 | storres | matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
312 | 212 | storres | matrixToReduceTranspose = matrixToReduce.transpose() |
313 | 212 | storres | squareMatrix = matrixToReduce * matrixToReduceTranspose |
314 | 212 | storres | squareMatDet = det(squareMatrix) |
315 | 212 | storres | latticeVolume = sqrt(squareMatDet) |
316 | 212 | storres | print "Lattice volume:", latticeVolume.n() |
317 | 212 | storres | print "Lattice volume / N:", (latticeVolume/N).n() |
318 | 212 | storres | #print matrixToReduce |
319 | 212 | storres | ## Reduction and checking. |
320 | 212 | storres | ## S.T. changed 'fp' to None as of Sage 6.6 complying to |
321 | 212 | storres | # error message issued when previous code was used. |
322 | 212 | storres | #reducedMatrix = matrixToReduce.LLL(fp='fp') |
323 | 212 | storres | reductionTimeStart = cputime() |
324 | 212 | storres | reducedMatrix = matrixToReduce.LLL(fp=None) |
325 | 212 | storres | reductionTime = cputime(reductionTimeStart) |
326 | 212 | storres | print "Reduction time:", reductionTime |
327 | 212 | storres | isLLLReduced = reducedMatrix.is_LLL_reduced() |
328 | 212 | storres | if not isLLLReduced: |
329 | 229 | storres | return None |
330 | 229 | storres | # |
331 | 229 | storres | if debug: |
332 | 229 | storres | matrixFile = file('/tmp/reducedMatrix.txt', 'w') |
333 | 229 | storres | for row in reducedMatrix.rows(): |
334 | 229 | storres | matrixFile.write(str(row) + "\n") |
335 | 229 | storres | matrixFile.close() |
336 | 229 | storres | # |
337 | 212 | storres | monomialsCount = len(knownMonomials) |
338 | 212 | storres | monomialsCountSqrt = sqrt(monomialsCount) |
339 | 212 | storres | #print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
340 | 212 | storres | #print reducedMatrix |
341 | 212 | storres | ## Check the Coppersmith condition for each row and build the reduced |
342 | 212 | storres | # polynomials. |
343 | 229 | storres | ccVectorsCount = 0 |
344 | 212 | storres | ccReducedPolynomialsList = [] |
345 | 212 | storres | for row in reducedMatrix.rows(): |
346 | 212 | storres | l2Norm = row.norm(2) |
347 | 212 | storres | if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
348 | 212 | storres | #print (l2Norm * monomialsCountSqrt).n() |
349 | 212 | storres | #print l2Norm.n() |
350 | 229 | storres | ccVectorsCount +=1 |
351 | 212 | storres | ccReducedPolynomial = \ |
352 | 212 | storres | slz_compute_reduced_polynomial(row, |
353 | 212 | storres | knownMonomials, |
354 | 212 | storres | iVariable, |
355 | 212 | storres | iBound, |
356 | 212 | storres | tVariable, |
357 | 212 | storres | tBound) |
358 | 212 | storres | if not ccReducedPolynomial is None: |
359 | 212 | storres | ccReducedPolynomialsList.append(ccReducedPolynomial) |
360 | 212 | storres | else: |
361 | 212 | storres | #print l2Norm.n() , ">", nAtAlpha |
362 | 212 | storres | pass |
363 | 229 | storres | if debug: |
364 | 229 | storres | print ccVectorsCount, "out of ", len(ccReducedPolynomialsList), |
365 | 229 | storres | print "took Coppersmith text." |
366 | 212 | storres | if len(ccReducedPolynomialsList) < 2: |
367 | 212 | storres | print "Less than 2 Coppersmith condition compliant vectors." |
368 | 212 | storres | return () |
369 | 229 | storres | if debug: |
370 | 229 | storres | print "Reduced and Coppersmith compliant polynomials list", ccReducedPolynomialsList |
371 | 212 | storres | return ccReducedPolynomialsList |
372 | 212 | storres | # End slz_compute_coppersmith_reduced_polynomials_with_lattice volume |
373 | 212 | storres | |
374 | 219 | storres | def slz_compute_initial_lattice_matrix(inputPolynomial, |
375 | 219 | storres | alpha, |
376 | 219 | storres | N, |
377 | 219 | storres | iBound, |
378 | 228 | storres | tBound, |
379 | 228 | storres | debug = False): |
380 | 219 | storres | """ |
381 | 219 | storres | For a given set of arguments (see below), compute the initial lattice |
382 | 219 | storres | that could be reduced. |
383 | 219 | storres | INPUT: |
384 | 219 | storres | |
385 | 219 | storres | - "inputPolynomial" -- (no default) a bivariate integer polynomial; |
386 | 219 | storres | - "alpha" -- the alpha parameter of the Coppersmith algorithm; |
387 | 219 | storres | - "N" -- the modulus; |
388 | 219 | storres | - "iBound" -- the bound on the first variable; |
389 | 219 | storres | - "tBound" -- the bound on the second variable. |
390 | 219 | storres | |
391 | 219 | storres | OUTPUT: |
392 | 219 | storres | |
393 | 219 | storres | A list of bivariate integer polynomial obtained using the Coppersmith |
394 | 219 | storres | algorithm. The polynomials correspond to the rows of the LLL-reduce |
395 | 219 | storres | reduced base that comply with the Coppersmith condition. |
396 | 219 | storres | """ |
397 | 219 | storres | # Arguments check. |
398 | 219 | storres | if iBound == 0 or tBound == 0: |
399 | 219 | storres | return None |
400 | 219 | storres | # End arguments check. |
401 | 219 | storres | nAtAlpha = N^alpha |
402 | 219 | storres | ## Building polynomials for matrix. |
403 | 219 | storres | polyRing = inputPolynomial.parent() |
404 | 219 | storres | # Whatever the 2 variables are actually called, we call them |
405 | 219 | storres | # 'i' and 't' in all the variable names. |
406 | 219 | storres | (iVariable, tVariable) = inputPolynomial.variables()[:2] |
407 | 219 | storres | #print polyVars[0], type(polyVars[0]) |
408 | 219 | storres | initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
409 | 219 | storres | tVariable:tVariable * tBound}) |
410 | 219 | storres | polynomialsList = \ |
411 | 219 | storres | spo_polynomial_to_polynomials_list_8(initialPolynomial, |
412 | 219 | storres | alpha, |
413 | 219 | storres | N, |
414 | 219 | storres | iBound, |
415 | 219 | storres | tBound, |
416 | 219 | storres | 0) |
417 | 219 | storres | #print "Polynomials list:", polynomialsList |
418 | 219 | storres | ## Building the proto matrix. |
419 | 219 | storres | knownMonomials = [] |
420 | 219 | storres | protoMatrix = [] |
421 | 219 | storres | for poly in polynomialsList: |
422 | 219 | storres | spo_add_polynomial_coeffs_to_matrix_row(poly, |
423 | 219 | storres | knownMonomials, |
424 | 219 | storres | protoMatrix, |
425 | 219 | storres | 0) |
426 | 219 | storres | matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
427 | 228 | storres | if debug: |
428 | 228 | storres | print "Initial basis polynomials" |
429 | 228 | storres | for poly in polynomialsList: |
430 | 228 | storres | print poly |
431 | 219 | storres | return matrixToReduce |
432 | 219 | storres | # End slz_compute_initial_lattice_matrix. |
433 | 219 | storres | |
434 | 122 | storres | def slz_compute_integer_polynomial_modular_roots(inputPolynomial, |
435 | 122 | storres | alpha, |
436 | 122 | storres | N, |
437 | 122 | storres | iBound, |
438 | 122 | storres | tBound): |
439 | 122 | storres | """ |
440 | 123 | storres | For a given set of arguments (see below), compute the polynomial modular |
441 | 122 | storres | roots, if any. |
442 | 124 | storres | |
443 | 122 | storres | """ |
444 | 123 | storres | # Arguments check. |
445 | 123 | storres | if iBound == 0 or tBound == 0: |
446 | 123 | storres | return set() |
447 | 123 | storres | # End arguments check. |
448 | 122 | storres | nAtAlpha = N^alpha |
449 | 122 | storres | ## Building polynomials for matrix. |
450 | 122 | storres | polyRing = inputPolynomial.parent() |
451 | 122 | storres | # Whatever the 2 variables are actually called, we call them |
452 | 122 | storres | # 'i' and 't' in all the variable names. |
453 | 122 | storres | (iVariable, tVariable) = inputPolynomial.variables()[:2] |
454 | 125 | storres | ccReducedPolynomialsList = \ |
455 | 125 | storres | slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
456 | 125 | storres | alpha, |
457 | 125 | storres | N, |
458 | 125 | storres | iBound, |
459 | 125 | storres | tBound) |
460 | 125 | storres | if len(ccReducedPolynomialsList) == 0: |
461 | 125 | storres | return set() |
462 | 122 | storres | ## Create the valid (poly1 and poly2 are algebraically independent) |
463 | 122 | storres | # resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
464 | 122 | storres | # Try to mix and match all the polynomial pairs built from the |
465 | 122 | storres | # ccReducedPolynomialsList to obtain non zero resultants. |
466 | 122 | storres | resultantsInITuplesList = [] |
467 | 122 | storres | for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
468 | 122 | storres | for polyInnerIndex in xrange(polyOuterIndex+1, |
469 | 122 | storres | len(ccReducedPolynomialsList)): |
470 | 122 | storres | # Compute the resultant in resultants in the |
471 | 122 | storres | # first variable (is it the optimal choice?). |
472 | 122 | storres | resultantInI = \ |
473 | 122 | storres | ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
474 | 122 | storres | ccReducedPolynomialsList[0].parent(str(iVariable))) |
475 | 122 | storres | #print "Resultant", resultantInI |
476 | 122 | storres | # Test algebraic independence. |
477 | 122 | storres | if not resultantInI.is_zero(): |
478 | 122 | storres | resultantsInITuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
479 | 122 | storres | ccReducedPolynomialsList[polyInnerIndex], |
480 | 122 | storres | resultantInI)) |
481 | 122 | storres | # If no non zero resultant was found: we can't get no algebraically |
482 | 122 | storres | # independent polynomials pair. Give up! |
483 | 122 | storres | if len(resultantsInITuplesList) == 0: |
484 | 123 | storres | return set() |
485 | 123 | storres | #print resultantsInITuplesList |
486 | 122 | storres | # Compute the roots. |
487 | 122 | storres | Zi = ZZ[str(iVariable)] |
488 | 122 | storres | Zt = ZZ[str(tVariable)] |
489 | 122 | storres | polynomialRootsSet = set() |
490 | 122 | storres | # First, solve in the second variable since resultants are in the first |
491 | 122 | storres | # variable. |
492 | 122 | storres | for resultantInITuple in resultantsInITuplesList: |
493 | 122 | storres | tRootsList = Zt(resultantInITuple[2]).roots() |
494 | 122 | storres | # For each tRoot, compute the corresponding iRoots and check |
495 | 123 | storres | # them in the input polynomial. |
496 | 122 | storres | for tRoot in tRootsList: |
497 | 123 | storres | #print "tRoot:", tRoot |
498 | 122 | storres | # Roots returned by root() are (value, multiplicity) tuples. |
499 | 122 | storres | iRootsList = \ |
500 | 122 | storres | Zi(resultantInITuple[0].subs({resultantInITuple[0].variables()[1]:tRoot[0]})).roots() |
501 | 123 | storres | print iRootsList |
502 | 122 | storres | # The iRootsList can be empty, hence the test. |
503 | 122 | storres | if len(iRootsList) != 0: |
504 | 122 | storres | for iRoot in iRootsList: |
505 | 122 | storres | polyEvalModN = inputPolynomial(iRoot[0], tRoot[0]) / N |
506 | 122 | storres | # polyEvalModN must be an integer. |
507 | 122 | storres | if polyEvalModN == int(polyEvalModN): |
508 | 122 | storres | polynomialRootsSet.add((iRoot[0],tRoot[0])) |
509 | 122 | storres | return polynomialRootsSet |
510 | 122 | storres | # End slz_compute_integer_polynomial_modular_roots. |
511 | 122 | storres | # |
512 | 125 | storres | def slz_compute_integer_polynomial_modular_roots_2(inputPolynomial, |
513 | 125 | storres | alpha, |
514 | 125 | storres | N, |
515 | 125 | storres | iBound, |
516 | 125 | storres | tBound): |
517 | 125 | storres | """ |
518 | 125 | storres | For a given set of arguments (see below), compute the polynomial modular |
519 | 125 | storres | roots, if any. |
520 | 125 | storres | This version differs in the way resultants are computed. |
521 | 125 | storres | """ |
522 | 125 | storres | # Arguments check. |
523 | 125 | storres | if iBound == 0 or tBound == 0: |
524 | 125 | storres | return set() |
525 | 125 | storres | # End arguments check. |
526 | 125 | storres | nAtAlpha = N^alpha |
527 | 125 | storres | ## Building polynomials for matrix. |
528 | 125 | storres | polyRing = inputPolynomial.parent() |
529 | 125 | storres | # Whatever the 2 variables are actually called, we call them |
530 | 125 | storres | # 'i' and 't' in all the variable names. |
531 | 125 | storres | (iVariable, tVariable) = inputPolynomial.variables()[:2] |
532 | 125 | storres | #print polyVars[0], type(polyVars[0]) |
533 | 125 | storres | ccReducedPolynomialsList = \ |
534 | 125 | storres | slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
535 | 125 | storres | alpha, |
536 | 125 | storres | N, |
537 | 125 | storres | iBound, |
538 | 125 | storres | tBound) |
539 | 125 | storres | if len(ccReducedPolynomialsList) == 0: |
540 | 125 | storres | return set() |
541 | 125 | storres | ## Create the valid (poly1 and poly2 are algebraically independent) |
542 | 125 | storres | # resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
543 | 125 | storres | # Try to mix and match all the polynomial pairs built from the |
544 | 125 | storres | # ccReducedPolynomialsList to obtain non zero resultants. |
545 | 125 | storres | resultantsInTTuplesList = [] |
546 | 125 | storres | for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
547 | 125 | storres | for polyInnerIndex in xrange(polyOuterIndex+1, |
548 | 125 | storres | len(ccReducedPolynomialsList)): |
549 | 125 | storres | # Compute the resultant in resultants in the |
550 | 125 | storres | # first variable (is it the optimal choice?). |
551 | 125 | storres | resultantInT = \ |
552 | 125 | storres | ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
553 | 125 | storres | ccReducedPolynomialsList[0].parent(str(tVariable))) |
554 | 125 | storres | #print "Resultant", resultantInT |
555 | 125 | storres | # Test algebraic independence. |
556 | 125 | storres | if not resultantInT.is_zero(): |
557 | 125 | storres | resultantsInTTuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
558 | 125 | storres | ccReducedPolynomialsList[polyInnerIndex], |
559 | 125 | storres | resultantInT)) |
560 | 125 | storres | # If no non zero resultant was found: we can't get no algebraically |
561 | 125 | storres | # independent polynomials pair. Give up! |
562 | 125 | storres | if len(resultantsInTTuplesList) == 0: |
563 | 125 | storres | return set() |
564 | 125 | storres | #print resultantsInITuplesList |
565 | 125 | storres | # Compute the roots. |
566 | 125 | storres | Zi = ZZ[str(iVariable)] |
567 | 125 | storres | Zt = ZZ[str(tVariable)] |
568 | 125 | storres | polynomialRootsSet = set() |
569 | 125 | storres | # First, solve in the second variable since resultants are in the first |
570 | 125 | storres | # variable. |
571 | 125 | storres | for resultantInTTuple in resultantsInTTuplesList: |
572 | 125 | storres | iRootsList = Zi(resultantInTTuple[2]).roots() |
573 | 125 | storres | # For each iRoot, compute the corresponding tRoots and check |
574 | 125 | storres | # them in the input polynomial. |
575 | 125 | storres | for iRoot in iRootsList: |
576 | 125 | storres | #print "iRoot:", iRoot |
577 | 125 | storres | # Roots returned by root() are (value, multiplicity) tuples. |
578 | 125 | storres | tRootsList = \ |
579 | 125 | storres | Zt(resultantInTTuple[0].subs({resultantInTTuple[0].variables()[0]:iRoot[0]})).roots() |
580 | 125 | storres | print tRootsList |
581 | 125 | storres | # The tRootsList can be empty, hence the test. |
582 | 125 | storres | if len(tRootsList) != 0: |
583 | 125 | storres | for tRoot in tRootsList: |
584 | 125 | storres | polyEvalModN = inputPolynomial(iRoot[0],tRoot[0]) / N |
585 | 125 | storres | # polyEvalModN must be an integer. |
586 | 125 | storres | if polyEvalModN == int(polyEvalModN): |
587 | 125 | storres | polynomialRootsSet.add((iRoot[0],tRoot[0])) |
588 | 125 | storres | return polynomialRootsSet |
589 | 125 | storres | # End slz_compute_integer_polynomial_modular_roots_2. |
590 | 125 | storres | # |
591 | 61 | storres | def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
592 | 218 | storres | upperBoundSa, approxAccurSa, |
593 | 218 | storres | precSa=None): |
594 | 61 | storres | """ |
595 | 61 | storres | Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
596 | 61 | storres | a polynomial that approximates the function on a an interval starting |
597 | 61 | storres | at lowerBoundSa and finishing at a value that guarantees that the polynomial |
598 | 61 | storres | approximates with the expected precision. |
599 | 61 | storres | The interval upper bound is lowered until the expected approximation |
600 | 61 | storres | precision is reached. |
601 | 61 | storres | The polynomial, the bounds, the center of the interval and the error |
602 | 61 | storres | are returned. |
603 | 156 | storres | OUTPUT: |
604 | 124 | storres | A tuple made of 4 Sollya objects: |
605 | 124 | storres | - a polynomial; |
606 | 124 | storres | - an range (an interval, not in the sense of number given as an interval); |
607 | 124 | storres | - the center of the interval; |
608 | 124 | storres | - the maximum error in the approximation of the input functionSo by the |
609 | 218 | storres | output polynomial ; this error <= approxAccurSaS. |
610 | 124 | storres | |
611 | 61 | storres | """ |
612 | 218 | storres | #print"In slz_compute_polynomial_and_interval..." |
613 | 166 | storres | ## Superficial argument check. |
614 | 166 | storres | if lowerBoundSa > upperBoundSa: |
615 | 166 | storres | return None |
616 | 218 | storres | ## Change Sollya precision, if requested. |
617 | 218 | storres | if precSa is None: |
618 | 218 | storres | precSa = ceil((RR('1.5') * abs(RR(approxAccurSa).log2())) / 64) * 64 |
619 | 218 | storres | #print "Computed internal precision:", precSa |
620 | 218 | storres | if precSa < 192: |
621 | 218 | storres | precSa = 192 |
622 | 226 | storres | sollyaPrecChanged = False |
623 | 226 | storres | (initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
624 | 226 | storres | if precSa > initialSollyaPrecSa: |
625 | 226 | storres | if precSa <= 2: |
626 | 226 | storres | print inspect.stack()[0][3], ": precision change <=2 requested." |
627 | 226 | storres | pobyso_set_prec_sa_so(precSa) |
628 | 218 | storres | sollyaPrecChanged = True |
629 | 61 | storres | RRR = lowerBoundSa.parent() |
630 | 176 | storres | intervalShrinkConstFactorSa = RRR('0.9') |
631 | 61 | storres | absoluteErrorTypeSo = pobyso_absolute_so_so() |
632 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
633 | 61 | storres | currentUpperBoundSa = upperBoundSa |
634 | 61 | storres | currentLowerBoundSa = lowerBoundSa |
635 | 61 | storres | # What we want here is the polynomial without the variable change, |
636 | 61 | storres | # since our actual variable will be x-intervalCenter defined over the |
637 | 61 | storres | # domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
638 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
639 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
640 | 61 | storres | currentRangeSo, |
641 | 61 | storres | absoluteErrorTypeSo) |
642 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
643 | 218 | storres | while maxErrorSa > approxAccurSa: |
644 | 181 | storres | print "++Approximation error:", maxErrorSa.n() |
645 | 81 | storres | sollya_lib_clear_obj(polySo) |
646 | 81 | storres | sollya_lib_clear_obj(intervalCenterSo) |
647 | 120 | storres | sollya_lib_clear_obj(maxErrorSo) |
648 | 181 | storres | # Very empirical shrinking factor. |
649 | 218 | storres | shrinkFactorSa = 1 / (maxErrorSa/approxAccurSa).log2().abs() |
650 | 181 | storres | print "Shrink factor:", \ |
651 | 181 | storres | shrinkFactorSa.n(), \ |
652 | 181 | storres | intervalShrinkConstFactorSa |
653 | 182 | storres | |
654 | 218 | storres | #errorRatioSa = approxAccurSa/maxErrorSa |
655 | 61 | storres | #print "Error ratio: ", errorRatioSa |
656 | 181 | storres | # Make sure interval shrinks. |
657 | 81 | storres | if shrinkFactorSa > intervalShrinkConstFactorSa: |
658 | 81 | storres | actualShrinkFactorSa = intervalShrinkConstFactorSa |
659 | 81 | storres | #print "Fixed" |
660 | 61 | storres | else: |
661 | 81 | storres | actualShrinkFactorSa = shrinkFactorSa |
662 | 81 | storres | #print "Computed",shrinkFactorSa,maxErrorSa |
663 | 81 | storres | #print shrinkFactorSa, maxErrorSa |
664 | 101 | storres | #print "Shrink factor", actualShrinkFactorSa |
665 | 81 | storres | currentUpperBoundSa = currentLowerBoundSa + \ |
666 | 181 | storres | (currentUpperBoundSa - currentLowerBoundSa) * \ |
667 | 181 | storres | actualShrinkFactorSa |
668 | 71 | storres | #print "Current upper bound:", currentUpperBoundSa |
669 | 61 | storres | sollya_lib_clear_obj(currentRangeSo) |
670 | 181 | storres | # Check what is left with the bounds. |
671 | 101 | storres | if currentUpperBoundSa <= currentLowerBoundSa or \ |
672 | 101 | storres | currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
673 | 86 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
674 | 86 | storres | print "Can't find an interval." |
675 | 86 | storres | print "Use either or both a higher polynomial degree or a higher", |
676 | 86 | storres | print "internal precision." |
677 | 86 | storres | print "Aborting!" |
678 | 218 | storres | if sollyaPrecChanged: |
679 | 226 | storres | pobyso_set_prec_so_so(initialSollyaPrecSo) |
680 | 226 | storres | sollya_lib_clear_obj(initialSollyaPrecSo) |
681 | 218 | storres | return None |
682 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
683 | 61 | storres | currentUpperBoundSa) |
684 | 86 | storres | # print "New interval:", |
685 | 86 | storres | # pobyso_autoprint(currentRangeSo) |
686 | 120 | storres | #print "Second Taylor expansion call." |
687 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
688 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
689 | 61 | storres | currentRangeSo, |
690 | 61 | storres | absoluteErrorTypeSo) |
691 | 61 | storres | #maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
692 | 85 | storres | #print "Max errorSo:", |
693 | 85 | storres | #pobyso_autoprint(maxErrorSo) |
694 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
695 | 85 | storres | #print "Max errorSa:", maxErrorSa |
696 | 85 | storres | #print "Sollya prec:", |
697 | 85 | storres | #pobyso_autoprint(sollya_lib_get_prec(None)) |
698 | 218 | storres | # End while |
699 | 61 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
700 | 218 | storres | if sollyaPrecChanged: |
701 | 226 | storres | pobyso_set_prec_so_so(initialSollyaPrecSo) |
702 | 226 | storres | sollya_lib_clear_obj(initialSollyaPrecSo) |
703 | 176 | storres | return (polySo, currentRangeSo, intervalCenterSo, maxErrorSo) |
704 | 81 | storres | # End slz_compute_polynomial_and_interval |
705 | 218 | storres | |
706 | 218 | storres | def slz_compute_polynomial_and_interval_01(functionSo, degreeSo, lowerBoundSa, |
707 | 218 | storres | upperBoundSa, approxAccurSa, |
708 | 219 | storres | sollyaPrecSa=None, debug=False): |
709 | 219 | storres | """ |
710 | 219 | storres | Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
711 | 219 | storres | a polynomial that approximates the function on a an interval starting |
712 | 219 | storres | at lowerBoundSa and finishing at a value that guarantees that the polynomial |
713 | 219 | storres | approximates with the expected precision. |
714 | 219 | storres | The interval upper bound is lowered until the expected approximation |
715 | 219 | storres | precision is reached. |
716 | 219 | storres | The polynomial, the bounds, the center of the interval and the error |
717 | 219 | storres | are returned. |
718 | 219 | storres | OUTPUT: |
719 | 219 | storres | A tuple made of 4 Sollya objects: |
720 | 219 | storres | - a polynomial; |
721 | 219 | storres | - an range (an interval, not in the sense of number given as an interval); |
722 | 219 | storres | - the center of the interval; |
723 | 219 | storres | - the maximum error in the approximation of the input functionSo by the |
724 | 219 | storres | output polynomial ; this error <= approxAccurSaS. |
725 | 219 | storres | |
726 | 219 | storres | """ |
727 | 219 | storres | #print"In slz_compute_polynomial_and_interval..." |
728 | 219 | storres | ## Superficial argument check. |
729 | 219 | storres | if lowerBoundSa > upperBoundSa: |
730 | 225 | storres | print inspect.stack()[0][3], ": lower bound is larger than upper bound. " |
731 | 219 | storres | return None |
732 | 219 | storres | ## Change Sollya precision, if requested. |
733 | 226 | storres | (initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
734 | 225 | storres | sollyaPrecChangedSa = False |
735 | 225 | storres | if sollyaPrecSa is None: |
736 | 226 | storres | sollyaPrecSa = initialSollyaPrecSa |
737 | 219 | storres | else: |
738 | 226 | storres | if sollyaPrecSa > initialSollyaPrecSa: |
739 | 226 | storres | if sollyaPrecSa <= 2: |
740 | 226 | storres | print inspect.stack()[0][3], ": precision change <= 2 requested." |
741 | 225 | storres | pobyso_set_prec_sa_so(sollyaPrecSa) |
742 | 225 | storres | sollyaPrecChangedSa = True |
743 | 225 | storres | ## Other initializations and data recovery. |
744 | 219 | storres | RRR = lowerBoundSa.parent() |
745 | 219 | storres | intervalShrinkConstFactorSa = RRR('0.9') |
746 | 219 | storres | absoluteErrorTypeSo = pobyso_absolute_so_so() |
747 | 219 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
748 | 219 | storres | currentUpperBoundSa = upperBoundSa |
749 | 219 | storres | currentLowerBoundSa = lowerBoundSa |
750 | 219 | storres | # What we want here is the polynomial without the variable change, |
751 | 219 | storres | # since our actual variable will be x-intervalCenter defined over the |
752 | 219 | storres | # domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
753 | 219 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
754 | 219 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
755 | 219 | storres | currentRangeSo, |
756 | 219 | storres | absoluteErrorTypeSo) |
757 | 219 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
758 | 219 | storres | while maxErrorSa > approxAccurSa: |
759 | 219 | storres | print "++Approximation error:", maxErrorSa.n() |
760 | 219 | storres | sollya_lib_clear_obj(polySo) |
761 | 219 | storres | sollya_lib_clear_obj(intervalCenterSo) |
762 | 219 | storres | sollya_lib_clear_obj(maxErrorSo) |
763 | 219 | storres | # Very empirical shrinking factor. |
764 | 219 | storres | shrinkFactorSa = 1 / (maxErrorSa/approxAccurSa).log2().abs() |
765 | 219 | storres | print "Shrink factor:", \ |
766 | 219 | storres | shrinkFactorSa.n(), \ |
767 | 219 | storres | intervalShrinkConstFactorSa |
768 | 219 | storres | |
769 | 219 | storres | #errorRatioSa = approxAccurSa/maxErrorSa |
770 | 219 | storres | #print "Error ratio: ", errorRatioSa |
771 | 219 | storres | # Make sure interval shrinks. |
772 | 219 | storres | if shrinkFactorSa > intervalShrinkConstFactorSa: |
773 | 219 | storres | actualShrinkFactorSa = intervalShrinkConstFactorSa |
774 | 219 | storres | #print "Fixed" |
775 | 219 | storres | else: |
776 | 219 | storres | actualShrinkFactorSa = shrinkFactorSa |
777 | 219 | storres | #print "Computed",shrinkFactorSa,maxErrorSa |
778 | 219 | storres | #print shrinkFactorSa, maxErrorSa |
779 | 219 | storres | #print "Shrink factor", actualShrinkFactorSa |
780 | 219 | storres | currentUpperBoundSa = currentLowerBoundSa + \ |
781 | 219 | storres | (currentUpperBoundSa - currentLowerBoundSa) * \ |
782 | 219 | storres | actualShrinkFactorSa |
783 | 219 | storres | #print "Current upper bound:", currentUpperBoundSa |
784 | 219 | storres | sollya_lib_clear_obj(currentRangeSo) |
785 | 219 | storres | # Check what is left with the bounds. |
786 | 219 | storres | if currentUpperBoundSa <= currentLowerBoundSa or \ |
787 | 219 | storres | currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
788 | 219 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
789 | 219 | storres | print "Can't find an interval." |
790 | 219 | storres | print "Use either or both a higher polynomial degree or a higher", |
791 | 219 | storres | print "internal precision." |
792 | 219 | storres | print "Aborting!" |
793 | 225 | storres | if sollyaPrecChangedSa: |
794 | 225 | storres | pobyso_set_prec_so_so(initialSollyaPrecSo) |
795 | 226 | storres | sollya_lib_clear_obj(initialSollyaPrecSo) |
796 | 219 | storres | return None |
797 | 219 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
798 | 219 | storres | currentUpperBoundSa) |
799 | 219 | storres | # print "New interval:", |
800 | 219 | storres | # pobyso_autoprint(currentRangeSo) |
801 | 219 | storres | #print "Second Taylor expansion call." |
802 | 219 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
803 | 219 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
804 | 219 | storres | currentRangeSo, |
805 | 219 | storres | absoluteErrorTypeSo) |
806 | 219 | storres | #maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
807 | 219 | storres | #print "Max errorSo:", |
808 | 219 | storres | #pobyso_autoprint(maxErrorSo) |
809 | 219 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
810 | 219 | storres | #print "Max errorSa:", maxErrorSa |
811 | 219 | storres | #print "Sollya prec:", |
812 | 219 | storres | #pobyso_autoprint(sollya_lib_get_prec(None)) |
813 | 219 | storres | # End while |
814 | 219 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
815 | 219 | storres | itpSo = pobyso_constant_from_int_sa_so(floor(sollyaPrecSa/3)) |
816 | 219 | storres | ftpSo = pobyso_constant_from_int_sa_so(floor(2*sollyaPrecSa/3)) |
817 | 219 | storres | maxPrecSo = pobyso_constant_from_int_sa_so(sollyaPrecSa) |
818 | 219 | storres | approxAccurSo = pobyso_constant_sa_so(RR(approxAccurSa)) |
819 | 219 | storres | if debug: |
820 | 229 | storres | print inspect.stack()[0][3], "SollyaPrecSa:", sollyaPrecSa |
821 | 219 | storres | print "About to call polynomial rounding with:" |
822 | 219 | storres | print "polySo: ", ; pobyso_autoprint(polySo) |
823 | 219 | storres | print "functionSo: ", ; pobyso_autoprint(functionSo) |
824 | 219 | storres | print "intervalCenterSo: ", ; pobyso_autoprint(intervalCenterSo) |
825 | 219 | storres | print "currentRangeSo: ", ; pobyso_autoprint(currentRangeSo) |
826 | 219 | storres | print "itpSo: ", ; pobyso_autoprint(itpSo) |
827 | 219 | storres | print "ftpSo: ", ; pobyso_autoprint(ftpSo) |
828 | 219 | storres | print "maxPrecSo: ", ; pobyso_autoprint(maxPrecSo) |
829 | 219 | storres | print "approxAccurSo: ", ; pobyso_autoprint(approxAccurSo) |
830 | 224 | storres | """ |
831 | 224 | storres | # Naive rounding. |
832 | 219 | storres | (roundedPolySo, roundedPolyMaxErrSo) = \ |
833 | 219 | storres | pobyso_polynomial_coefficients_progressive_round_so_so(polySo, |
834 | 219 | storres | functionSo, |
835 | 219 | storres | intervalCenterSo, |
836 | 219 | storres | currentRangeSo, |
837 | 219 | storres | itpSo, |
838 | 219 | storres | ftpSo, |
839 | 219 | storres | maxPrecSo, |
840 | 219 | storres | approxAccurSo) |
841 | 224 | storres | """ |
842 | 224 | storres | # Proved rounding. |
843 | 224 | storres | (roundedPolySo, roundedPolyMaxErrSo) = \ |
844 | 224 | storres | pobyso_round_coefficients_progressive_so_so(polySo, |
845 | 224 | storres | functionSo, |
846 | 224 | storres | maxPrecSo, |
847 | 224 | storres | currentRangeSo, |
848 | 224 | storres | intervalCenterSo, |
849 | 224 | storres | maxErrorSo, |
850 | 224 | storres | approxAccurSo, |
851 | 224 | storres | debug=False) |
852 | 224 | storres | #### Comment out the two next lines when polynomial rounding is activated. |
853 | 224 | storres | #roundedPolySo = sollya_lib_copy_obj(polySo) |
854 | 224 | storres | #roundedPolyMaxErrSo = sollya_lib_copy_obj(maxErrorSo) |
855 | 219 | storres | sollya_lib_clear_obj(polySo) |
856 | 219 | storres | sollya_lib_clear_obj(maxErrorSo) |
857 | 219 | storres | sollya_lib_clear_obj(itpSo) |
858 | 219 | storres | sollya_lib_clear_obj(ftpSo) |
859 | 219 | storres | sollya_lib_clear_obj(approxAccurSo) |
860 | 225 | storres | if sollyaPrecChangedSa: |
861 | 230 | storres | pobyso_set_prec_so_so(initialSollyaPrecSo) |
862 | 230 | storres | sollya_lib_clear_obj(initialSollyaPrecSo) |
863 | 219 | storres | if debug: |
864 | 219 | storres | print "1: ", ; pobyso_autoprint(roundedPolySo) |
865 | 219 | storres | print "2: ", ; pobyso_autoprint(currentRangeSo) |
866 | 219 | storres | print "3: ", ; pobyso_autoprint(intervalCenterSo) |
867 | 219 | storres | print "4: ", ; pobyso_autoprint(roundedPolyMaxErrSo) |
868 | 219 | storres | return (roundedPolySo, currentRangeSo, intervalCenterSo, roundedPolyMaxErrSo) |
869 | 219 | storres | # End slz_compute_polynomial_and_interval_01 |
870 | 219 | storres | |
871 | 219 | storres | def slz_compute_polynomial_and_interval_02(functionSo, degreeSo, lowerBoundSa, |
872 | 219 | storres | upperBoundSa, approxAccurSa, |
873 | 227 | storres | sollyaPrecSa=None, debug=True ): |
874 | 218 | storres | """ |
875 | 218 | storres | Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
876 | 218 | storres | a polynomial that approximates the function on a an interval starting |
877 | 218 | storres | at lowerBoundSa and finishing at a value that guarantees that the polynomial |
878 | 218 | storres | approximates with the expected precision. |
879 | 218 | storres | The interval upper bound is lowered until the expected approximation |
880 | 218 | storres | precision is reached. |
881 | 218 | storres | The polynomial, the bounds, the center of the interval and the error |
882 | 218 | storres | are returned. |
883 | 218 | storres | OUTPUT: |
884 | 218 | storres | A tuple made of 4 Sollya objects: |
885 | 218 | storres | - a polynomial; |
886 | 218 | storres | - an range (an interval, not in the sense of number given as an interval); |
887 | 218 | storres | - the center of the interval; |
888 | 218 | storres | - the maximum error in the approximation of the input functionSo by the |
889 | 218 | storres | output polynomial ; this error <= approxAccurSaS. |
890 | 228 | storres | Changes fom v 01: |
891 | 227 | storres | extra verbose. |
892 | 218 | storres | """ |
893 | 218 | storres | print"In slz_compute_polynomial_and_interval..." |
894 | 218 | storres | ## Superficial argument check. |
895 | 218 | storres | if lowerBoundSa > upperBoundSa: |
896 | 218 | storres | return None |
897 | 218 | storres | ## Change Sollya precision, if requested. |
898 | 226 | storres | sollyaPrecChanged = False |
899 | 226 | storres | (initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
900 | 227 | storres | #print "Initial Sollya prec:", initialSollyaPrecSa, type(initialSollyaPrecSa) |
901 | 227 | storres | if sollyaPrecSa is None: |
902 | 226 | storres | sollyaPrecSa = initialSollyaPrecSa |
903 | 226 | storres | else: |
904 | 226 | storres | if sollyaPrecSa <= 2: |
905 | 226 | storres | print inspect.stack()[0][3], ": precision change <=2 requested." |
906 | 218 | storres | pobyso_set_prec_sa_so(sollyaPrecSa) |
907 | 226 | storres | sollyaPrecChanged = True |
908 | 218 | storres | RRR = lowerBoundSa.parent() |
909 | 218 | storres | intervalShrinkConstFactorSa = RRR('0.9') |
910 | 218 | storres | absoluteErrorTypeSo = pobyso_absolute_so_so() |
911 | 218 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
912 | 218 | storres | currentUpperBoundSa = upperBoundSa |
913 | 218 | storres | currentLowerBoundSa = lowerBoundSa |
914 | 227 | storres | #pobyso_autoprint(functionSo) |
915 | 227 | storres | #pobyso_autoprint(degreeSo) |
916 | 227 | storres | #pobyso_autoprint(currentRangeSo) |
917 | 227 | storres | #pobyso_autoprint(absoluteErrorTypeSo) |
918 | 227 | storres | ## What we want here is the polynomial without the variable change, |
919 | 227 | storres | # since our actual variable will be x-intervalCenter defined over the |
920 | 227 | storres | # domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
921 | 218 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
922 | 218 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
923 | 218 | storres | currentRangeSo, |
924 | 218 | storres | absoluteErrorTypeSo) |
925 | 218 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
926 | 227 | storres | print "...after Taylor expansion." |
927 | 218 | storres | while maxErrorSa > approxAccurSa: |
928 | 218 | storres | print "++Approximation error:", maxErrorSa.n() |
929 | 218 | storres | sollya_lib_clear_obj(polySo) |
930 | 218 | storres | sollya_lib_clear_obj(intervalCenterSo) |
931 | 218 | storres | sollya_lib_clear_obj(maxErrorSo) |
932 | 218 | storres | # Very empirical shrinking factor. |
933 | 218 | storres | shrinkFactorSa = 1 / (maxErrorSa/approxAccurSa).log2().abs() |
934 | 218 | storres | print "Shrink factor:", \ |
935 | 218 | storres | shrinkFactorSa.n(), \ |
936 | 218 | storres | intervalShrinkConstFactorSa |
937 | 218 | storres | |
938 | 218 | storres | #errorRatioSa = approxAccurSa/maxErrorSa |
939 | 218 | storres | #print "Error ratio: ", errorRatioSa |
940 | 218 | storres | # Make sure interval shrinks. |
941 | 218 | storres | if shrinkFactorSa > intervalShrinkConstFactorSa: |
942 | 218 | storres | actualShrinkFactorSa = intervalShrinkConstFactorSa |
943 | 218 | storres | #print "Fixed" |
944 | 218 | storres | else: |
945 | 218 | storres | actualShrinkFactorSa = shrinkFactorSa |
946 | 218 | storres | #print "Computed",shrinkFactorSa,maxErrorSa |
947 | 218 | storres | #print shrinkFactorSa, maxErrorSa |
948 | 218 | storres | #print "Shrink factor", actualShrinkFactorSa |
949 | 218 | storres | currentUpperBoundSa = currentLowerBoundSa + \ |
950 | 218 | storres | (currentUpperBoundSa - currentLowerBoundSa) * \ |
951 | 218 | storres | actualShrinkFactorSa |
952 | 218 | storres | #print "Current upper bound:", currentUpperBoundSa |
953 | 218 | storres | sollya_lib_clear_obj(currentRangeSo) |
954 | 218 | storres | # Check what is left with the bounds. |
955 | 218 | storres | if currentUpperBoundSa <= currentLowerBoundSa or \ |
956 | 218 | storres | currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
957 | 218 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
958 | 218 | storres | print "Can't find an interval." |
959 | 218 | storres | print "Use either or both a higher polynomial degree or a higher", |
960 | 218 | storres | print "internal precision." |
961 | 218 | storres | print "Aborting!" |
962 | 226 | storres | if sollyaPrecChanged: |
963 | 226 | storres | pobyso_set_prec_so_so(initialSollyaPrecSo) |
964 | 226 | storres | sollya_lib_clear_obj(initialSollyaPrecSo) |
965 | 218 | storres | return None |
966 | 218 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
967 | 218 | storres | currentUpperBoundSa) |
968 | 218 | storres | # print "New interval:", |
969 | 218 | storres | # pobyso_autoprint(currentRangeSo) |
970 | 218 | storres | #print "Second Taylor expansion call." |
971 | 218 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
972 | 218 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
973 | 218 | storres | currentRangeSo, |
974 | 218 | storres | absoluteErrorTypeSo) |
975 | 218 | storres | #maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
976 | 218 | storres | #print "Max errorSo:", |
977 | 218 | storres | #pobyso_autoprint(maxErrorSo) |
978 | 218 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
979 | 218 | storres | #print "Max errorSa:", maxErrorSa |
980 | 218 | storres | #print "Sollya prec:", |
981 | 218 | storres | #pobyso_autoprint(sollya_lib_get_prec(None)) |
982 | 218 | storres | # End while |
983 | 218 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
984 | 218 | storres | itpSo = pobyso_constant_from_int_sa_so(floor(sollyaPrecSa/3)) |
985 | 218 | storres | ftpSo = pobyso_constant_from_int_sa_so(floor(2*sollyaPrecSa/3)) |
986 | 218 | storres | maxPrecSo = pobyso_constant_from_int_sa_so(sollyaPrecSa) |
987 | 218 | storres | approxAccurSo = pobyso_constant_sa_so(RR(approxAccurSa)) |
988 | 218 | storres | print "About to call polynomial rounding with:" |
989 | 218 | storres | print "polySo: ", ; pobyso_autoprint(polySo) |
990 | 218 | storres | print "functionSo: ", ; pobyso_autoprint(functionSo) |
991 | 218 | storres | print "intervalCenterSo: ", ; pobyso_autoprint(intervalCenterSo) |
992 | 218 | storres | print "currentRangeSo: ", ; pobyso_autoprint(currentRangeSo) |
993 | 218 | storres | print "itpSo: ", ; pobyso_autoprint(itpSo) |
994 | 218 | storres | print "ftpSo: ", ; pobyso_autoprint(ftpSo) |
995 | 218 | storres | print "maxPrecSo: ", ; pobyso_autoprint(maxPrecSo) |
996 | 218 | storres | print "approxAccurSo: ", ; pobyso_autoprint(approxAccurSo) |
997 | 218 | storres | (roundedPolySo, roundedPolyMaxErrSo) = \ |
998 | 228 | storres | pobyso_round_coefficients_progressive_so_so(polySo, |
999 | 228 | storres | functionSo, |
1000 | 228 | storres | maxPrecSo, |
1001 | 228 | storres | currentRangeSo, |
1002 | 228 | storres | intervalCenterSo, |
1003 | 228 | storres | maxErrorSo, |
1004 | 228 | storres | approxAccurSo, |
1005 | 228 | storres | debug = True) |
1006 | 218 | storres | |
1007 | 218 | storres | sollya_lib_clear_obj(polySo) |
1008 | 218 | storres | sollya_lib_clear_obj(maxErrorSo) |
1009 | 218 | storres | sollya_lib_clear_obj(itpSo) |
1010 | 218 | storres | sollya_lib_clear_obj(ftpSo) |
1011 | 218 | storres | sollya_lib_clear_obj(approxAccurSo) |
1012 | 226 | storres | if sollyaPrecChanged: |
1013 | 226 | storres | pobyso_set_prec_so_so(initialSollyaPrecSo) |
1014 | 226 | storres | sollya_lib_clear_obj(initialSollyaPrecSo) |
1015 | 218 | storres | print "1: ", ; pobyso_autoprint(roundedPolySo) |
1016 | 218 | storres | print "2: ", ; pobyso_autoprint(currentRangeSo) |
1017 | 218 | storres | print "3: ", ; pobyso_autoprint(intervalCenterSo) |
1018 | 218 | storres | print "4: ", ; pobyso_autoprint(roundedPolyMaxErrSo) |
1019 | 218 | storres | return (roundedPolySo, currentRangeSo, intervalCenterSo, roundedPolyMaxErrSo) |
1020 | 219 | storres | # End slz_compute_polynomial_and_interval_02 |
1021 | 218 | storres | |
1022 | 122 | storres | def slz_compute_reduced_polynomial(matrixRow, |
1023 | 98 | storres | knownMonomials, |
1024 | 106 | storres | var1, |
1025 | 98 | storres | var1Bound, |
1026 | 106 | storres | var2, |
1027 | 99 | storres | var2Bound): |
1028 | 98 | storres | """ |
1029 | 125 | storres | Compute a polynomial from a single reduced matrix row. |
1030 | 122 | storres | This function was introduced in order to avoid the computation of the |
1031 | 125 | storres | all the polynomials from the full matrix (even those built from rows |
1032 | 125 | storres | that do no verify the Coppersmith condition) as this may involves |
1033 | 152 | storres | expensive operations over (large) integers. |
1034 | 122 | storres | """ |
1035 | 122 | storres | ## Check arguments. |
1036 | 122 | storres | if len(knownMonomials) == 0: |
1037 | 122 | storres | return None |
1038 | 122 | storres | # varNounds can be zero since 0^0 returns 1. |
1039 | 122 | storres | if (var1Bound < 0) or (var2Bound < 0): |
1040 | 122 | storres | return None |
1041 | 122 | storres | ## Initialisations. |
1042 | 122 | storres | polynomialRing = knownMonomials[0].parent() |
1043 | 122 | storres | currentPolynomial = polynomialRing(0) |
1044 | 123 | storres | # TODO: use zip instead of indices. |
1045 | 122 | storres | for colIndex in xrange(0, len(knownMonomials)): |
1046 | 122 | storres | currentCoefficient = matrixRow[colIndex] |
1047 | 122 | storres | if currentCoefficient != 0: |
1048 | 122 | storres | #print "Current coefficient:", currentCoefficient |
1049 | 122 | storres | currentMonomial = knownMonomials[colIndex] |
1050 | 122 | storres | #print "Monomial as multivariate polynomial:", \ |
1051 | 122 | storres | #currentMonomial, type(currentMonomial) |
1052 | 122 | storres | degreeInVar1 = currentMonomial.degree(var1) |
1053 | 123 | storres | #print "Degree in var1", var1, ":", degreeInVar1 |
1054 | 122 | storres | degreeInVar2 = currentMonomial.degree(var2) |
1055 | 123 | storres | #print "Degree in var2", var2, ":", degreeInVar2 |
1056 | 122 | storres | if degreeInVar1 > 0: |
1057 | 122 | storres | currentCoefficient = \ |
1058 | 123 | storres | currentCoefficient / (var1Bound^degreeInVar1) |
1059 | 122 | storres | #print "varBound1 in degree:", var1Bound^degreeInVar1 |
1060 | 122 | storres | #print "Current coefficient(1)", currentCoefficient |
1061 | 122 | storres | if degreeInVar2 > 0: |
1062 | 122 | storres | currentCoefficient = \ |
1063 | 123 | storres | currentCoefficient / (var2Bound^degreeInVar2) |
1064 | 122 | storres | #print "Current coefficient(2)", currentCoefficient |
1065 | 122 | storres | #print "Current reduced monomial:", (currentCoefficient * \ |
1066 | 122 | storres | # currentMonomial) |
1067 | 122 | storres | currentPolynomial += (currentCoefficient * currentMonomial) |
1068 | 122 | storres | #print "Current polynomial:", currentPolynomial |
1069 | 122 | storres | # End if |
1070 | 122 | storres | # End for colIndex. |
1071 | 122 | storres | #print "Type of the current polynomial:", type(currentPolynomial) |
1072 | 122 | storres | return(currentPolynomial) |
1073 | 122 | storres | # End slz_compute_reduced_polynomial |
1074 | 122 | storres | # |
1075 | 122 | storres | def slz_compute_reduced_polynomials(reducedMatrix, |
1076 | 122 | storres | knownMonomials, |
1077 | 122 | storres | var1, |
1078 | 122 | storres | var1Bound, |
1079 | 122 | storres | var2, |
1080 | 122 | storres | var2Bound): |
1081 | 122 | storres | """ |
1082 | 122 | storres | Legacy function, use slz_compute_reduced_polynomials_list |
1083 | 122 | storres | """ |
1084 | 122 | storres | return(slz_compute_reduced_polynomials_list(reducedMatrix, |
1085 | 122 | storres | knownMonomials, |
1086 | 122 | storres | var1, |
1087 | 122 | storres | var1Bound, |
1088 | 122 | storres | var2, |
1089 | 122 | storres | var2Bound) |
1090 | 122 | storres | ) |
1091 | 177 | storres | # |
1092 | 122 | storres | def slz_compute_reduced_polynomials_list(reducedMatrix, |
1093 | 152 | storres | knownMonomials, |
1094 | 152 | storres | var1, |
1095 | 152 | storres | var1Bound, |
1096 | 152 | storres | var2, |
1097 | 152 | storres | var2Bound): |
1098 | 122 | storres | """ |
1099 | 98 | storres | From a reduced matrix, holding the coefficients, from a monomials list, |
1100 | 98 | storres | from the bounds of each variable, compute the corresponding polynomials |
1101 | 98 | storres | scaled back by dividing by the "right" powers of the variables bounds. |
1102 | 99 | storres | |
1103 | 99 | storres | The elements in knownMonomials must be of the "right" polynomial type. |
1104 | 172 | storres | They set the polynomial type of the output polynomials in list. |
1105 | 152 | storres | @param reducedMatrix: the reduced matrix as output from LLL; |
1106 | 152 | storres | @param kwnonMonomials: the ordered list of the monomials used to |
1107 | 152 | storres | build the polynomials; |
1108 | 152 | storres | @param var1: the first variable (of the "right" type); |
1109 | 152 | storres | @param var1Bound: the first variable bound; |
1110 | 152 | storres | @param var2: the second variable (of the "right" type); |
1111 | 152 | storres | @param var2Bound: the second variable bound. |
1112 | 152 | storres | @return: a list of polynomials obtained with the reduced coefficients |
1113 | 152 | storres | and scaled down with the bounds |
1114 | 98 | storres | """ |
1115 | 99 | storres | |
1116 | 98 | storres | # TODO: check input arguments. |
1117 | 98 | storres | reducedPolynomials = [] |
1118 | 106 | storres | #print "type var1:", type(var1), " - type var2:", type(var2) |
1119 | 98 | storres | for matrixRow in reducedMatrix.rows(): |
1120 | 102 | storres | currentPolynomial = 0 |
1121 | 98 | storres | for colIndex in xrange(0, len(knownMonomials)): |
1122 | 98 | storres | currentCoefficient = matrixRow[colIndex] |
1123 | 106 | storres | if currentCoefficient != 0: |
1124 | 106 | storres | #print "Current coefficient:", currentCoefficient |
1125 | 106 | storres | currentMonomial = knownMonomials[colIndex] |
1126 | 106 | storres | parentRing = currentMonomial.parent() |
1127 | 106 | storres | #print "Monomial as multivariate polynomial:", \ |
1128 | 106 | storres | #currentMonomial, type(currentMonomial) |
1129 | 106 | storres | degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
1130 | 106 | storres | #print "Degree in var", var1, ":", degreeInVar1 |
1131 | 106 | storres | degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
1132 | 106 | storres | #print "Degree in var", var2, ":", degreeInVar2 |
1133 | 106 | storres | if degreeInVar1 > 0: |
1134 | 167 | storres | currentCoefficient /= var1Bound^degreeInVar1 |
1135 | 106 | storres | #print "varBound1 in degree:", var1Bound^degreeInVar1 |
1136 | 106 | storres | #print "Current coefficient(1)", currentCoefficient |
1137 | 106 | storres | if degreeInVar2 > 0: |
1138 | 167 | storres | currentCoefficient /= var2Bound^degreeInVar2 |
1139 | 106 | storres | #print "Current coefficient(2)", currentCoefficient |
1140 | 106 | storres | #print "Current reduced monomial:", (currentCoefficient * \ |
1141 | 106 | storres | # currentMonomial) |
1142 | 106 | storres | currentPolynomial += (currentCoefficient * currentMonomial) |
1143 | 168 | storres | #if degreeInVar1 == 0 and degreeInVar2 == 0: |
1144 | 168 | storres | #print "!!!! constant term !!!!" |
1145 | 106 | storres | #print "Current polynomial:", currentPolynomial |
1146 | 106 | storres | # End if |
1147 | 106 | storres | # End for colIndex. |
1148 | 99 | storres | #print "Type of the current polynomial:", type(currentPolynomial) |
1149 | 99 | storres | reducedPolynomials.append(currentPolynomial) |
1150 | 98 | storres | return reducedPolynomials |
1151 | 177 | storres | # End slz_compute_reduced_polynomials_list. |
1152 | 98 | storres | |
1153 | 177 | storres | def slz_compute_reduced_polynomials_list_from_rows(rowsList, |
1154 | 177 | storres | knownMonomials, |
1155 | 177 | storres | var1, |
1156 | 177 | storres | var1Bound, |
1157 | 177 | storres | var2, |
1158 | 177 | storres | var2Bound): |
1159 | 177 | storres | """ |
1160 | 177 | storres | From a list of rows, holding the coefficients, from a monomials list, |
1161 | 177 | storres | from the bounds of each variable, compute the corresponding polynomials |
1162 | 177 | storres | scaled back by dividing by the "right" powers of the variables bounds. |
1163 | 177 | storres | |
1164 | 177 | storres | The elements in knownMonomials must be of the "right" polynomial type. |
1165 | 177 | storres | They set the polynomial type of the output polynomials in list. |
1166 | 177 | storres | @param rowsList: the reduced matrix as output from LLL; |
1167 | 177 | storres | @param kwnonMonomials: the ordered list of the monomials used to |
1168 | 177 | storres | build the polynomials; |
1169 | 177 | storres | @param var1: the first variable (of the "right" type); |
1170 | 177 | storres | @param var1Bound: the first variable bound; |
1171 | 177 | storres | @param var2: the second variable (of the "right" type); |
1172 | 177 | storres | @param var2Bound: the second variable bound. |
1173 | 177 | storres | @return: a list of polynomials obtained with the reduced coefficients |
1174 | 177 | storres | and scaled down with the bounds |
1175 | 177 | storres | """ |
1176 | 177 | storres | |
1177 | 177 | storres | # TODO: check input arguments. |
1178 | 177 | storres | reducedPolynomials = [] |
1179 | 177 | storres | #print "type var1:", type(var1), " - type var2:", type(var2) |
1180 | 177 | storres | for matrixRow in rowsList: |
1181 | 177 | storres | currentPolynomial = 0 |
1182 | 177 | storres | for colIndex in xrange(0, len(knownMonomials)): |
1183 | 177 | storres | currentCoefficient = matrixRow[colIndex] |
1184 | 177 | storres | if currentCoefficient != 0: |
1185 | 177 | storres | #print "Current coefficient:", currentCoefficient |
1186 | 177 | storres | currentMonomial = knownMonomials[colIndex] |
1187 | 177 | storres | parentRing = currentMonomial.parent() |
1188 | 177 | storres | #print "Monomial as multivariate polynomial:", \ |
1189 | 177 | storres | #currentMonomial, type(currentMonomial) |
1190 | 177 | storres | degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
1191 | 177 | storres | #print "Degree in var", var1, ":", degreeInVar1 |
1192 | 177 | storres | degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
1193 | 177 | storres | #print "Degree in var", var2, ":", degreeInVar2 |
1194 | 177 | storres | if degreeInVar1 > 0: |
1195 | 177 | storres | currentCoefficient /= var1Bound^degreeInVar1 |
1196 | 177 | storres | #print "varBound1 in degree:", var1Bound^degreeInVar1 |
1197 | 177 | storres | #print "Current coefficient(1)", currentCoefficient |
1198 | 177 | storres | if degreeInVar2 > 0: |
1199 | 177 | storres | currentCoefficient /= var2Bound^degreeInVar2 |
1200 | 177 | storres | #print "Current coefficient(2)", currentCoefficient |
1201 | 177 | storres | #print "Current reduced monomial:", (currentCoefficient * \ |
1202 | 177 | storres | # currentMonomial) |
1203 | 177 | storres | currentPolynomial += (currentCoefficient * currentMonomial) |
1204 | 177 | storres | #if degreeInVar1 == 0 and degreeInVar2 == 0: |
1205 | 177 | storres | #print "!!!! constant term !!!!" |
1206 | 177 | storres | #print "Current polynomial:", currentPolynomial |
1207 | 177 | storres | # End if |
1208 | 177 | storres | # End for colIndex. |
1209 | 177 | storres | #print "Type of the current polynomial:", type(currentPolynomial) |
1210 | 177 | storres | reducedPolynomials.append(currentPolynomial) |
1211 | 177 | storres | return reducedPolynomials |
1212 | 177 | storres | # End slz_compute_reduced_polynomials_list_from_rows. |
1213 | 177 | storres | # |
1214 | 114 | storres | def slz_compute_scaled_function(functionSa, |
1215 | 114 | storres | lowerBoundSa, |
1216 | 114 | storres | upperBoundSa, |
1217 | 156 | storres | floatingPointPrecSa, |
1218 | 156 | storres | debug=False): |
1219 | 72 | storres | """ |
1220 | 72 | storres | From a function, compute the scaled function whose domain |
1221 | 72 | storres | is included in [1, 2) and whose image is also included in [1,2). |
1222 | 72 | storres | Return a tuple: |
1223 | 72 | storres | [0]: the scaled function |
1224 | 72 | storres | [1]: the scaled domain lower bound |
1225 | 72 | storres | [2]: the scaled domain upper bound |
1226 | 72 | storres | [3]: the scaled image lower bound |
1227 | 72 | storres | [4]: the scaled image upper bound |
1228 | 72 | storres | """ |
1229 | 177 | storres | ## The variable can be called anything. |
1230 | 80 | storres | x = functionSa.variables()[0] |
1231 | 72 | storres | # Scalling the domain -> [1,2[. |
1232 | 72 | storres | boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
1233 | 72 | storres | domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
1234 | 166 | storres | (invDomainScalingExpressionSa, domainScalingExpressionSa) = \ |
1235 | 80 | storres | slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
1236 | 156 | storres | if debug: |
1237 | 156 | storres | print "domainScalingExpression for argument :", \ |
1238 | 156 | storres | invDomainScalingExpressionSa |
1239 | 190 | storres | print "function: ", functionSa |
1240 | 190 | storres | ff = functionSa.subs({x : domainScalingExpressionSa}) |
1241 | 190 | storres | ## Bless expression as a function. |
1242 | 190 | storres | ff = ff.function(x) |
1243 | 72 | storres | #ff = f.subs_expr(x==domainScalingExpressionSa) |
1244 | 177 | storres | #domainScalingFunction(x) = invDomainScalingExpressionSa |
1245 | 177 | storres | domainScalingFunction = invDomainScalingExpressionSa.function(x) |
1246 | 151 | storres | scaledLowerBoundSa = \ |
1247 | 151 | storres | domainScalingFunction(lowerBoundSa).n(prec=floatingPointPrecSa) |
1248 | 151 | storres | scaledUpperBoundSa = \ |
1249 | 151 | storres | domainScalingFunction(upperBoundSa).n(prec=floatingPointPrecSa) |
1250 | 156 | storres | if debug: |
1251 | 156 | storres | print 'ff:', ff, "- Domain:", scaledLowerBoundSa, \ |
1252 | 156 | storres | scaledUpperBoundSa |
1253 | 72 | storres | # |
1254 | 72 | storres | # Scalling the image -> [1,2[. |
1255 | 151 | storres | flbSa = ff(scaledLowerBoundSa).n(prec=floatingPointPrecSa) |
1256 | 151 | storres | fubSa = ff(scaledUpperBoundSa).n(prec=floatingPointPrecSa) |
1257 | 72 | storres | if flbSa <= fubSa: # Increasing |
1258 | 72 | storres | imageBinadeBottomSa = floor(flbSa.log2()) |
1259 | 72 | storres | else: # Decreasing |
1260 | 72 | storres | imageBinadeBottomSa = floor(fubSa.log2()) |
1261 | 156 | storres | if debug: |
1262 | 156 | storres | print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
1263 | 72 | storres | imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
1264 | 166 | storres | (invImageScalingExpressionSa,imageScalingExpressionSa) = \ |
1265 | 80 | storres | slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
1266 | 156 | storres | if debug: |
1267 | 156 | storres | print "imageScalingExpression for argument :", \ |
1268 | 156 | storres | invImageScalingExpressionSa |
1269 | 72 | storres | iis = invImageScalingExpressionSa.function(x) |
1270 | 72 | storres | fff = iis.subs({x:ff}) |
1271 | 156 | storres | if debug: |
1272 | 156 | storres | print "fff:", fff, |
1273 | 156 | storres | print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
1274 | 72 | storres | return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
1275 | 72 | storres | fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
1276 | 151 | storres | # End slz_compute_scaled_function |
1277 | 72 | storres | |
1278 | 179 | storres | def slz_fix_bounds_for_binades(lowerBound, |
1279 | 179 | storres | upperBound, |
1280 | 190 | storres | func = None, |
1281 | 179 | storres | domainDirection = -1, |
1282 | 179 | storres | imageDirection = -1): |
1283 | 179 | storres | """ |
1284 | 179 | storres | Assuming the function is increasing or decreasing over the |
1285 | 179 | storres | [lowerBound, upperBound] interval, return a lower bound lb and |
1286 | 179 | storres | an upper bound ub such that: |
1287 | 179 | storres | - lb and ub belong to the same binade; |
1288 | 179 | storres | - func(lb) and func(ub) belong to the same binade. |
1289 | 179 | storres | domainDirection indicate how bounds move to fit into the same binade: |
1290 | 179 | storres | - a negative value move the upper bound down; |
1291 | 179 | storres | - a positive value move the lower bound up. |
1292 | 179 | storres | imageDirection indicate how bounds move in order to have their image |
1293 | 179 | storres | fit into the same binade, variation of the function is also condidered. |
1294 | 179 | storres | For an increasing function: |
1295 | 179 | storres | - negative value moves the upper bound down (and its image value as well); |
1296 | 179 | storres | - a positive values moves the lower bound up (and its image value as well); |
1297 | 179 | storres | For a decreasing function it is the other way round. |
1298 | 179 | storres | """ |
1299 | 179 | storres | ## Arguments check |
1300 | 179 | storres | if lowerBound > upperBound: |
1301 | 179 | storres | return None |
1302 | 190 | storres | if lowerBound == upperBound: |
1303 | 190 | storres | return (lowerBound, upperBound) |
1304 | 179 | storres | if func is None: |
1305 | 179 | storres | return None |
1306 | 179 | storres | # |
1307 | 179 | storres | #varFunc = func.variables()[0] |
1308 | 179 | storres | lb = lowerBound |
1309 | 179 | storres | ub = upperBound |
1310 | 179 | storres | lbBinade = slz_compute_binade(lb) |
1311 | 179 | storres | ubBinade = slz_compute_binade(ub) |
1312 | 179 | storres | ## Domain binade. |
1313 | 179 | storres | while lbBinade != ubBinade: |
1314 | 179 | storres | newIntervalWidth = (ub - lb) / 2 |
1315 | 179 | storres | if domainDirection < 0: |
1316 | 179 | storres | ub = lb + newIntervalWidth |
1317 | 179 | storres | ubBinade = slz_compute_binade(ub) |
1318 | 179 | storres | else: |
1319 | 179 | storres | lb = lb + newIntervalWidth |
1320 | 179 | storres | lbBinade = slz_compute_binade(lb) |
1321 | 179 | storres | ## Image binade. |
1322 | 179 | storres | if lb == ub: |
1323 | 179 | storres | return (lb, ub) |
1324 | 179 | storres | lbImg = func(lb) |
1325 | 179 | storres | ubImg = func(ub) |
1326 | 179 | storres | funcIsInc = (ubImg >= lbImg) |
1327 | 179 | storres | lbImgBinade = slz_compute_binade(lbImg) |
1328 | 179 | storres | ubImgBinade = slz_compute_binade(ubImg) |
1329 | 179 | storres | while lbImgBinade != ubImgBinade: |
1330 | 179 | storres | newIntervalWidth = (ub - lb) / 2 |
1331 | 179 | storres | if imageDirection < 0: |
1332 | 179 | storres | if funcIsInc: |
1333 | 179 | storres | ub = lb + newIntervalWidth |
1334 | 179 | storres | ubImgBinade = slz_compute_binade(func(ub)) |
1335 | 179 | storres | #print ubImgBinade |
1336 | 179 | storres | else: |
1337 | 179 | storres | lb = lb + newIntervalWidth |
1338 | 179 | storres | lbImgBinade = slz_compute_binade(func(lb)) |
1339 | 179 | storres | #print lbImgBinade |
1340 | 179 | storres | else: |
1341 | 179 | storres | if funcIsInc: |
1342 | 179 | storres | lb = lb + newIntervalWidth |
1343 | 179 | storres | lbImgBinade = slz_compute_binade(func(lb)) |
1344 | 179 | storres | #print lbImgBinade |
1345 | 179 | storres | else: |
1346 | 179 | storres | ub = lb + newIntervalWidth |
1347 | 179 | storres | ubImgBinade = slz_compute_binade(func(ub)) |
1348 | 179 | storres | #print ubImgBinade |
1349 | 179 | storres | # End while lbImgBinade != ubImgBinade: |
1350 | 179 | storres | return (lb, ub) |
1351 | 179 | storres | # End slz_fix_bounds_for_binades. |
1352 | 179 | storres | |
1353 | 79 | storres | def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
1354 | 79 | storres | # Create a polynomial over the rationals. |
1355 | 179 | storres | ratPolynomialRing = QQ[str(polyOfFloat.variables()[0])] |
1356 | 179 | storres | return(ratPolynomialRing(polyOfFloat)) |
1357 | 86 | storres | # End slz_float_poly_of_float_to_rat_poly_of_rat. |
1358 | 81 | storres | |
1359 | 188 | storres | def slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(polyOfFloat): |
1360 | 188 | storres | """ |
1361 | 188 | storres | Create a polynomial over the rationals where all denominators are |
1362 | 188 | storres | powers of two. |
1363 | 188 | storres | """ |
1364 | 188 | storres | polyVariable = polyOfFloat.variables()[0] |
1365 | 188 | storres | RPR = QQ[str(polyVariable)] |
1366 | 188 | storres | polyCoeffs = polyOfFloat.coefficients() |
1367 | 188 | storres | #print polyCoeffs |
1368 | 188 | storres | polyExponents = polyOfFloat.exponents() |
1369 | 188 | storres | #print polyExponents |
1370 | 188 | storres | polyDenomPtwoCoeffs = [] |
1371 | 188 | storres | for coeff in polyCoeffs: |
1372 | 188 | storres | polyDenomPtwoCoeffs.append(sno_float_to_rat_pow_of_two_denom(coeff)) |
1373 | 188 | storres | #print "Converted coefficient:", sno_float_to_rat_pow_of_two_denom(coeff), |
1374 | 188 | storres | #print type(sno_float_to_rat_pow_of_two_denom(coeff)) |
1375 | 188 | storres | ratPoly = RPR(0) |
1376 | 188 | storres | #print type(ratPoly) |
1377 | 188 | storres | ## !!! CAUTION !!! Do not use the RPR(coeff * polyVariagle^exponent) |
1378 | 188 | storres | # The coefficient becomes plainly wrong when exponent == 0. |
1379 | 188 | storres | # No clue as to why. |
1380 | 188 | storres | for coeff, exponent in zip(polyDenomPtwoCoeffs, polyExponents): |
1381 | 188 | storres | ratPoly += coeff * RPR(polyVariable^exponent) |
1382 | 188 | storres | return ratPoly |
1383 | 188 | storres | # End slz_float_poly_of_float_to_rat_poly_of_rat. |
1384 | 188 | storres | |
1385 | 80 | storres | def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
1386 | 63 | storres | lowerBoundSa, |
1387 | 60 | storres | upperBoundSa, floatingPointPrecSa, |
1388 | 64 | storres | internalSollyaPrecSa, approxPrecSa): |
1389 | 60 | storres | """ |
1390 | 60 | storres | Under the assumption that: |
1391 | 60 | storres | - functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
1392 | 60 | storres | - lowerBound and upperBound belong to the same binade. |
1393 | 60 | storres | from a: |
1394 | 60 | storres | - function; |
1395 | 60 | storres | - a degree |
1396 | 60 | storres | - a pair of bounds; |
1397 | 60 | storres | - the floating-point precision we work on; |
1398 | 60 | storres | - the internal Sollya precision; |
1399 | 64 | storres | - the requested approximation error |
1400 | 61 | storres | The initial interval is, possibly, splitted into smaller intervals. |
1401 | 61 | storres | It return a list of tuples, each made of: |
1402 | 72 | storres | - a first polynomial (without the changed variable f(x) = p(x-x0)); |
1403 | 79 | storres | - a second polynomial (with a changed variable f(x) = q(x)) |
1404 | 61 | storres | - the approximation interval; |
1405 | 72 | storres | - the center, x0, of the interval; |
1406 | 61 | storres | - the corresponding approximation error. |
1407 | 100 | storres | TODO: fix endless looping for some parameters sets. |
1408 | 60 | storres | """ |
1409 | 120 | storres | resultArray = [] |
1410 | 101 | storres | # Set Sollya to the necessary internal precision. |
1411 | 226 | storres | sollyaPrecChangedSa = False |
1412 | 226 | storres | (initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
1413 | 85 | storres | if internalSollyaPrecSa > currentSollyaPrecSa: |
1414 | 226 | storres | if internalSollyaPrecSa <= 2: |
1415 | 226 | storres | print inspect.stack()[0][3], ": precision change <=2 requested." |
1416 | 85 | storres | pobyso_set_prec_sa_so(internalSollyaPrecSa) |
1417 | 226 | storres | sollyaPrecChangedSa = True |
1418 | 101 | storres | # |
1419 | 80 | storres | x = functionSa.variables()[0] # Actual variable name can be anything. |
1420 | 101 | storres | # Scaled function: [1=,2] -> [1,2]. |
1421 | 115 | storres | (fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
1422 | 115 | storres | scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
1423 | 115 | storres | slz_compute_scaled_function(functionSa, \ |
1424 | 115 | storres | lowerBoundSa, \ |
1425 | 115 | storres | upperBoundSa, \ |
1426 | 80 | storres | floatingPointPrecSa) |
1427 | 166 | storres | # In case bounds were in the negative real one may need to |
1428 | 166 | storres | # switch scaled bounds. |
1429 | 166 | storres | if scaledLowerBoundSa > scaledUpperBoundSa: |
1430 | 166 | storres | scaledLowerBoundSa, scaledUpperBoundSa = \ |
1431 | 166 | storres | scaledUpperBoundSa, scaledLowerBoundSa |
1432 | 166 | storres | #print "Switching!" |
1433 | 218 | storres | print "Approximation accuracy: ", RR(approxAccurSa) |
1434 | 61 | storres | # Prepare the arguments for the Taylor expansion computation with Sollya. |
1435 | 159 | storres | functionSo = \ |
1436 | 159 | storres | pobyso_parse_string_sa_so(fff._assume_str().replace('_SAGE_VAR_', '')) |
1437 | 60 | storres | degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
1438 | 61 | storres | scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
1439 | 61 | storres | scaledUpperBoundSa) |
1440 | 176 | storres | |
1441 | 60 | storres | realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
1442 | 60 | storres | upperBoundSa.parent().precision())) |
1443 | 176 | storres | currentScaledLowerBoundSa = scaledLowerBoundSa |
1444 | 176 | storres | currentScaledUpperBoundSa = scaledUpperBoundSa |
1445 | 176 | storres | while True: |
1446 | 176 | storres | ## Compute the first Taylor expansion. |
1447 | 176 | storres | print "Computing a Taylor expansion..." |
1448 | 176 | storres | (polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
1449 | 176 | storres | slz_compute_polynomial_and_interval(functionSo, degreeSo, |
1450 | 176 | storres | currentScaledLowerBoundSa, |
1451 | 176 | storres | currentScaledUpperBoundSa, |
1452 | 218 | storres | approxAccurSa, internalSollyaPrecSa) |
1453 | 176 | storres | print "...done." |
1454 | 176 | storres | ## If slz_compute_polynomial_and_interval fails, it returns None. |
1455 | 176 | storres | # This value goes to the first variable: polySo. Other variables are |
1456 | 176 | storres | # not assigned and should not be tested. |
1457 | 176 | storres | if polySo is None: |
1458 | 176 | storres | print "slz_get_intervals_and_polynomials: Aborting and returning None!" |
1459 | 176 | storres | if precChangedSa: |
1460 | 226 | storres | pobyso_set_prec_so_so(initialSollyaPrecSo) |
1461 | 226 | storres | sollya_lib_clear_obj(initialSollyaPrecSo) |
1462 | 176 | storres | sollya_lib_clear_obj(functionSo) |
1463 | 176 | storres | sollya_lib_clear_obj(degreeSo) |
1464 | 176 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
1465 | 176 | storres | return None |
1466 | 176 | storres | ## Add to the result array. |
1467 | 176 | storres | ### Change variable stuff in Sollya x -> x0-x. |
1468 | 176 | storres | changeVarExpressionSo = \ |
1469 | 176 | storres | sollya_lib_build_function_sub( \ |
1470 | 176 | storres | sollya_lib_build_function_free_variable(), |
1471 | 101 | storres | sollya_lib_copy_obj(intervalCenterSo)) |
1472 | 176 | storres | polyVarChangedSo = \ |
1473 | 176 | storres | sollya_lib_evaluate(polySo, changeVarExpressionSo) |
1474 | 176 | storres | #### Get rid of the variable change Sollya stuff. |
1475 | 115 | storres | sollya_lib_clear_obj(changeVarExpressionSo) |
1476 | 176 | storres | resultArray.append((polySo, polyVarChangedSo, boundsSo, |
1477 | 101 | storres | intervalCenterSo, maxErrorSo)) |
1478 | 176 | storres | boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
1479 | 101 | storres | errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
1480 | 176 | storres | print "Computed approximation error:", errorSa.n(digits=10) |
1481 | 176 | storres | # If the error and interval are OK a the first try, just return. |
1482 | 176 | storres | if (boundsSa.endpoints()[1] >= scaledUpperBoundSa) and \ |
1483 | 218 | storres | (errorSa <= approxAccurSa): |
1484 | 176 | storres | if precChangedSa: |
1485 | 226 | storres | pobyso_set_prec_so_so(initialSollyaPrecSo) |
1486 | 226 | storres | sollya_lib_clear_obj(initialSollyaPrecSo) |
1487 | 176 | storres | sollya_lib_clear_obj(functionSo) |
1488 | 176 | storres | sollya_lib_clear_obj(degreeSo) |
1489 | 176 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
1490 | 101 | storres | #print "Approximation error:", errorSa |
1491 | 176 | storres | return resultArray |
1492 | 176 | storres | ## The returned interval upper bound does not reach the requested upper |
1493 | 176 | storres | # upper bound: compute the next upper bound. |
1494 | 176 | storres | ## The following ratio is always >= 1. If errorSa, we may want to |
1495 | 176 | storres | # enlarge the interval |
1496 | 218 | storres | currentErrorRatio = approxAccurSa / errorSa |
1497 | 176 | storres | ## --|--------------------------------------------------------------|-- |
1498 | 176 | storres | # --|--------------------|-------------------------------------------- |
1499 | 176 | storres | # --|----------------------------|------------------------------------ |
1500 | 176 | storres | ## Starting point for the next upper bound. |
1501 | 101 | storres | boundsWidthSa = boundsSa.endpoints()[1] - boundsSa.endpoints()[0] |
1502 | 101 | storres | # Compute the increment. |
1503 | 176 | storres | newBoundsWidthSa = \ |
1504 | 176 | storres | ((currentErrorRatio.log() / 10) + 1) * boundsWidthSa |
1505 | 176 | storres | currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
1506 | 176 | storres | currentScaledUpperBoundSa = boundsSa.endpoints()[1] + newBoundsWidthSa |
1507 | 176 | storres | # Take into account the original interval upper bound. |
1508 | 176 | storres | if currentScaledUpperBoundSa > scaledUpperBoundSa: |
1509 | 176 | storres | currentScaledUpperBoundSa = scaledUpperBoundSa |
1510 | 176 | storres | if currentScaledUpperBoundSa == currentScaledLowerBoundSa: |
1511 | 85 | storres | print "Can't shrink the interval anymore!" |
1512 | 85 | storres | print "You should consider increasing the Sollya internal precision" |
1513 | 85 | storres | print "or the polynomial degree." |
1514 | 85 | storres | print "Giving up!" |
1515 | 176 | storres | if precChangedSa: |
1516 | 226 | storres | pobyso_set_prec_so_so(initialSollyaPrecSo) |
1517 | 226 | storres | sollya_lib_clear_obj(initialSollyaPrecSo) |
1518 | 85 | storres | sollya_lib_clear_obj(functionSo) |
1519 | 85 | storres | sollya_lib_clear_obj(degreeSo) |
1520 | 85 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
1521 | 85 | storres | return None |
1522 | 176 | storres | # Compute the other expansions. |
1523 | 176 | storres | # Test for insufficient precision. |
1524 | 81 | storres | # End slz_get_intervals_and_polynomials |
1525 | 60 | storres | |
1526 | 80 | storres | def slz_interval_scaling_expression(boundsInterval, expVar): |
1527 | 61 | storres | """ |
1528 | 151 | storres | Compute the scaling expression to map an interval that spans at most |
1529 | 166 | storres | a single binade into [1, 2) and the inverse expression as well. |
1530 | 165 | storres | If the interval spans more than one binade, result is wrong since |
1531 | 165 | storres | scaling is only based on the lower bound. |
1532 | 62 | storres | Not very sure that the transformation makes sense for negative numbers. |
1533 | 61 | storres | """ |
1534 | 165 | storres | # The "one of the bounds is 0" special case. Here we consider |
1535 | 165 | storres | # the interval as the subnormals binade. |
1536 | 165 | storres | if boundsInterval.endpoints()[0] == 0 or boundsInterval.endpoints()[1] == 0: |
1537 | 165 | storres | # The upper bound is (or should be) positive. |
1538 | 165 | storres | if boundsInterval.endpoints()[0] == 0: |
1539 | 165 | storres | if boundsInterval.endpoints()[1] == 0: |
1540 | 165 | storres | return None |
1541 | 165 | storres | binade = slz_compute_binade(boundsInterval.endpoints()[1]) |
1542 | 165 | storres | l2 = boundsInterval.endpoints()[1].abs().log2() |
1543 | 165 | storres | # The upper bound is a power of two |
1544 | 165 | storres | if binade == l2: |
1545 | 165 | storres | scalingCoeff = 2^(-binade) |
1546 | 165 | storres | invScalingCoeff = 2^(binade) |
1547 | 165 | storres | scalingOffset = 1 |
1548 | 179 | storres | return \ |
1549 | 179 | storres | ((scalingCoeff * expVar + scalingOffset).function(expVar), |
1550 | 179 | storres | ((expVar - scalingOffset) * invScalingCoeff).function(expVar)) |
1551 | 165 | storres | else: |
1552 | 165 | storres | scalingCoeff = 2^(-binade-1) |
1553 | 165 | storres | invScalingCoeff = 2^(binade+1) |
1554 | 165 | storres | scalingOffset = 1 |
1555 | 165 | storres | return((scalingCoeff * expVar + scalingOffset),\ |
1556 | 165 | storres | ((expVar - scalingOffset) * invScalingCoeff)) |
1557 | 165 | storres | # The lower bound is (or should be) negative. |
1558 | 165 | storres | if boundsInterval.endpoints()[1] == 0: |
1559 | 165 | storres | if boundsInterval.endpoints()[0] == 0: |
1560 | 165 | storres | return None |
1561 | 165 | storres | binade = slz_compute_binade(boundsInterval.endpoints()[0]) |
1562 | 165 | storres | l2 = boundsInterval.endpoints()[0].abs().log2() |
1563 | 165 | storres | # The upper bound is a power of two |
1564 | 165 | storres | if binade == l2: |
1565 | 165 | storres | scalingCoeff = -2^(-binade) |
1566 | 165 | storres | invScalingCoeff = -2^(binade) |
1567 | 165 | storres | scalingOffset = 1 |
1568 | 165 | storres | return((scalingCoeff * expVar + scalingOffset),\ |
1569 | 165 | storres | ((expVar - scalingOffset) * invScalingCoeff)) |
1570 | 165 | storres | else: |
1571 | 165 | storres | scalingCoeff = -2^(-binade-1) |
1572 | 165 | storres | invScalingCoeff = -2^(binade+1) |
1573 | 165 | storres | scalingOffset = 1 |
1574 | 165 | storres | return((scalingCoeff * expVar + scalingOffset),\ |
1575 | 165 | storres | ((expVar - scalingOffset) * invScalingCoeff)) |
1576 | 165 | storres | # General case |
1577 | 165 | storres | lbBinade = slz_compute_binade(boundsInterval.endpoints()[0]) |
1578 | 165 | storres | ubBinade = slz_compute_binade(boundsInterval.endpoints()[1]) |
1579 | 165 | storres | # We allow for a single exception in binade spanning is when the |
1580 | 165 | storres | # "outward bound" is a power of 2 and its binade is that of the |
1581 | 165 | storres | # "inner bound" + 1. |
1582 | 165 | storres | if boundsInterval.endpoints()[0] > 0: |
1583 | 165 | storres | ubL2 = boundsInterval.endpoints()[1].abs().log2() |
1584 | 165 | storres | if lbBinade != ubBinade: |
1585 | 165 | storres | print "Different binades." |
1586 | 165 | storres | if ubL2 != ubBinade: |
1587 | 165 | storres | print "Not a power of 2." |
1588 | 165 | storres | return None |
1589 | 165 | storres | elif abs(ubBinade - lbBinade) > 1: |
1590 | 165 | storres | print "Too large span:", abs(ubBinade - lbBinade) |
1591 | 165 | storres | return None |
1592 | 165 | storres | else: |
1593 | 165 | storres | lbL2 = boundsInterval.endpoints()[0].abs().log2() |
1594 | 165 | storres | if lbBinade != ubBinade: |
1595 | 165 | storres | print "Different binades." |
1596 | 165 | storres | if lbL2 != lbBinade: |
1597 | 165 | storres | print "Not a power of 2." |
1598 | 165 | storres | return None |
1599 | 165 | storres | elif abs(ubBinade - lbBinade) > 1: |
1600 | 165 | storres | print "Too large span:", abs(ubBinade - lbBinade) |
1601 | 165 | storres | return None |
1602 | 165 | storres | #print "Lower bound binade:", binade |
1603 | 165 | storres | if boundsInterval.endpoints()[0] > 0: |
1604 | 179 | storres | return \ |
1605 | 179 | storres | ((2^(-lbBinade) * expVar).function(expVar), |
1606 | 179 | storres | (2^(lbBinade) * expVar).function(expVar)) |
1607 | 165 | storres | else: |
1608 | 179 | storres | return \ |
1609 | 179 | storres | ((-(2^(-ubBinade)) * expVar).function(expVar), |
1610 | 179 | storres | (-(2^(ubBinade)) * expVar).function(expVar)) |
1611 | 165 | storres | """ |
1612 | 165 | storres | # Code sent to attic. Should be the base for a |
1613 | 165 | storres | # "slz_interval_translate_expression" rather than scale. |
1614 | 165 | storres | # Extra control and special cases code added in |
1615 | 165 | storres | # slz_interval_scaling_expression could (should ?) be added to |
1616 | 165 | storres | # this new function. |
1617 | 62 | storres | # The scaling offset is only used for negative numbers. |
1618 | 151 | storres | # When the absolute value of the lower bound is < 0. |
1619 | 61 | storres | if abs(boundsInterval.endpoints()[0]) < 1: |
1620 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
1621 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
1622 | 62 | storres | invScalingCoeff = 1/scalingCoeff |
1623 | 80 | storres | return((scalingCoeff * expVar, |
1624 | 80 | storres | invScalingCoeff * expVar)) |
1625 | 60 | storres | else: |
1626 | 62 | storres | scalingCoeff = \ |
1627 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
1628 | 62 | storres | scalingOffset = -3 * scalingCoeff |
1629 | 80 | storres | return((scalingCoeff * expVar + scalingOffset, |
1630 | 80 | storres | 1/scalingCoeff * expVar + 3)) |
1631 | 61 | storres | else: |
1632 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
1633 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
1634 | 61 | storres | scalingOffset = 0 |
1635 | 80 | storres | return((scalingCoeff * expVar, |
1636 | 80 | storres | 1/scalingCoeff * expVar)) |
1637 | 61 | storres | else: |
1638 | 62 | storres | scalingCoeff = \ |
1639 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[1]).log2())) |
1640 | 62 | storres | scalingOffset = -3 * scalingCoeff |
1641 | 62 | storres | #scalingOffset = 0 |
1642 | 80 | storres | return((scalingCoeff * expVar + scalingOffset, |
1643 | 80 | storres | 1/scalingCoeff * expVar + 3)) |
1644 | 165 | storres | """ |
1645 | 151 | storres | # End slz_interval_scaling_expression |
1646 | 61 | storres | |
1647 | 83 | storres | def slz_interval_and_polynomial_to_sage(polyRangeCenterErrorSo): |
1648 | 72 | storres | """ |
1649 | 72 | storres | Compute the Sage version of the Taylor polynomial and it's |
1650 | 72 | storres | companion data (interval, center...) |
1651 | 72 | storres | The input parameter is a five elements tuple: |
1652 | 79 | storres | - [0]: the polyomial (without variable change), as polynomial over a |
1653 | 79 | storres | real ring; |
1654 | 79 | storres | - [1]: the polyomial (with variable change done in Sollya), as polynomial |
1655 | 79 | storres | over a real ring; |
1656 | 72 | storres | - [2]: the interval (as Sollya range); |
1657 | 72 | storres | - [3]: the interval center; |
1658 | 72 | storres | - [4]: the approximation error. |
1659 | 72 | storres | |
1660 | 218 | storres | The function returns a 5 elements tuple: formed with all the |
1661 | 72 | storres | input elements converted into their Sollya counterpart. |
1662 | 72 | storres | """ |
1663 | 218 | storres | polynomialSa = pobyso_float_poly_so_sa(polyRangeCenterErrorSo[0]) |
1664 | 218 | storres | #print "Polynomial after first conversion: ", pobyso_autoprint(polyRangeCenterErrorSo[1]) |
1665 | 218 | storres | polynomialChangedVarSa = pobyso_float_poly_so_sa(polyRangeCenterErrorSo[1]) |
1666 | 60 | storres | intervalSa = \ |
1667 | 64 | storres | pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
1668 | 60 | storres | centerSa = \ |
1669 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
1670 | 60 | storres | errorSa = \ |
1671 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
1672 | 64 | storres | return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
1673 | 83 | storres | # End slz_interval_and_polynomial_to_sage |
1674 | 62 | storres | |
1675 | 172 | storres | def slz_is_htrn(argument, function, targetAccuracy, targetRF = None, |
1676 | 172 | storres | targetPlusOnePrecRF = None, quasiExactRF = None): |
1677 | 172 | storres | """ |
1678 | 172 | storres | Check if an element (argument) of the domain of function (function) |
1679 | 172 | storres | yields a HTRN case (rounding to next) for the target precision |
1680 | 183 | storres | (as impersonated by targetRF) for a given accuracy (targetAccuracy). |
1681 | 205 | storres | |
1682 | 205 | storres | The strategy is: |
1683 | 205 | storres | - compute the image at high (quasi-exact) precision; |
1684 | 205 | storres | - round it to nearest to precision; |
1685 | 205 | storres | - round it to exactly to (precision+1), the computed number has two |
1686 | 205 | storres | midpoint neighbors; |
1687 | 205 | storres | - check the distance between these neighbors and the quasi-exact value; |
1688 | 205 | storres | - if none of them is closer than the targetAccuracy, return False, |
1689 | 205 | storres | - else return true. |
1690 | 205 | storres | - Powers of two are a special case when comparing the midpoint in |
1691 | 205 | storres | the 0 direction.. |
1692 | 172 | storres | """ |
1693 | 183 | storres | ## Arguments filtering. |
1694 | 183 | storres | ## TODO: filter the first argument for consistence. |
1695 | 172 | storres | if targetRF is None: |
1696 | 172 | storres | targetRF = argument.parent() |
1697 | 172 | storres | ## Ditto for the real field holding the midpoints. |
1698 | 172 | storres | if targetPlusOnePrecRF is None: |
1699 | 172 | storres | targetPlusOnePrecRF = RealField(targetRF.prec()+1) |
1700 | 183 | storres | ## If no quasiExactField is provided, create a high accuracy RealField. |
1701 | 172 | storres | if quasiExactRF is None: |
1702 | 172 | storres | quasiExactRF = RealField(1536) |
1703 | 195 | storres | function = function.function(function.variables()[0]) |
1704 | 172 | storres | exactArgument = quasiExactRF(argument) |
1705 | 172 | storres | quasiExactValue = function(exactArgument) |
1706 | 172 | storres | roundedValue = targetRF(quasiExactValue) |
1707 | 172 | storres | roundedValuePrecPlusOne = targetPlusOnePrecRF(roundedValue) |
1708 | 172 | storres | # Upper midpoint. |
1709 | 172 | storres | roundedValuePrecPlusOneNext = roundedValuePrecPlusOne.nextabove() |
1710 | 172 | storres | # Lower midpoint. |
1711 | 172 | storres | roundedValuePrecPlusOnePrev = roundedValuePrecPlusOne.nextbelow() |
1712 | 172 | storres | binade = slz_compute_binade(roundedValue) |
1713 | 172 | storres | binadeCorrectedTargetAccuracy = targetAccuracy * 2^binade |
1714 | 172 | storres | #print "Argument:", argument |
1715 | 172 | storres | #print "f(x):", roundedValue, binade, floor(binade), ceil(binade) |
1716 | 174 | storres | #print "Binade:", binade |
1717 | 172 | storres | #print "binadeCorrectedTargetAccuracy:", \ |
1718 | 174 | storres | #binadeCorrectedTargetAccuracy.n(prec=100) |
1719 | 172 | storres | #print "binadeCorrectedTargetAccuracy:", \ |
1720 | 172 | storres | # binadeCorrectedTargetAccuracy.n(prec=100).str(base=2) |
1721 | 172 | storres | #print "Upper midpoint:", \ |
1722 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1723 | 172 | storres | #print "Rounded value :", \ |
1724 | 172 | storres | # roundedValuePrecPlusOne.n(prec=targetPlusOnePrecRF.prec()).str(base=2), \ |
1725 | 172 | storres | # roundedValuePrecPlusOne.ulp().n(prec=2).str(base=2) |
1726 | 172 | storres | #print "QuasiEx value :", quasiExactValue.n(prec=250).str(base=2) |
1727 | 172 | storres | #print "Lower midpoint:", \ |
1728 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1729 | 205 | storres | ## Make quasiExactValue = 0 a special case to move it out of the way. |
1730 | 205 | storres | if quasiExactValue == 0: |
1731 | 205 | storres | return False |
1732 | 205 | storres | ## Begining of the general case : check with the midpoint of |
1733 | 172 | storres | # greatest absolute value. |
1734 | 172 | storres | if quasiExactValue > 0: |
1735 | 172 | storres | if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) <\ |
1736 | 172 | storres | binadeCorrectedTargetAccuracy: |
1737 | 183 | storres | #print "Too close to the upper midpoint: ", \ |
1738 | 174 | storres | #abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100) |
1739 | 172 | storres | #print argument.n().str(base=16, \ |
1740 | 172 | storres | # no_sci=False) |
1741 | 172 | storres | #print "Lower midpoint:", \ |
1742 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1743 | 172 | storres | #print "Value :", \ |
1744 | 183 | storres | # quasiExactValue.n(prec=200).str(base=2) |
1745 | 172 | storres | #print "Upper midpoint:", \ |
1746 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1747 | 172 | storres | return True |
1748 | 205 | storres | else: # quasiExactValue < 0, the 0 case has been previously filtered out. |
1749 | 172 | storres | if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) < \ |
1750 | 172 | storres | binadeCorrectedTargetAccuracy: |
1751 | 172 | storres | #print "Too close to the upper midpoint: ", \ |
1752 | 172 | storres | # abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100) |
1753 | 172 | storres | #print argument.n().str(base=16, \ |
1754 | 172 | storres | # no_sci=False) |
1755 | 172 | storres | #print "Lower midpoint:", \ |
1756 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1757 | 172 | storres | #print "Value :", \ |
1758 | 172 | storres | # quasiExactValue.n(prec=200).str(base=2) |
1759 | 172 | storres | #print "Upper midpoint:", \ |
1760 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1761 | 172 | storres | |
1762 | 172 | storres | return True |
1763 | 172 | storres | #2345678901234567890123456789012345678901234567890123456789012345678901234567890 |
1764 | 172 | storres | ## For the midpoint of smaller absolute value, |
1765 | 172 | storres | # split cases with the powers of 2. |
1766 | 172 | storres | if sno_abs_is_power_of_two(roundedValue): |
1767 | 172 | storres | if quasiExactValue > 0: |
1768 | 172 | storres | if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) <\ |
1769 | 172 | storres | binadeCorrectedTargetAccuracy / 2: |
1770 | 172 | storres | #print "Lower midpoint:", \ |
1771 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1772 | 172 | storres | #print "Value :", \ |
1773 | 172 | storres | # quasiExactValue.n(prec=200).str(base=2) |
1774 | 172 | storres | #print "Upper midpoint:", \ |
1775 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1776 | 172 | storres | |
1777 | 172 | storres | return True |
1778 | 172 | storres | else: |
1779 | 172 | storres | if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) < \ |
1780 | 172 | storres | binadeCorrectedTargetAccuracy / 2: |
1781 | 172 | storres | #print "Lower midpoint:", \ |
1782 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1783 | 172 | storres | #print "Value :", |
1784 | 172 | storres | # quasiExactValue.n(prec=200).str(base=2) |
1785 | 172 | storres | #print "Upper midpoint:", |
1786 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1787 | 172 | storres | |
1788 | 172 | storres | return True |
1789 | 172 | storres | #2345678901234567890123456789012345678901234567890123456789012345678901234567890 |
1790 | 172 | storres | else: ## Not a power of 2, regular comparison with the midpoint of |
1791 | 172 | storres | # smaller absolute value. |
1792 | 172 | storres | if quasiExactValue > 0: |
1793 | 172 | storres | if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) < \ |
1794 | 172 | storres | binadeCorrectedTargetAccuracy: |
1795 | 172 | storres | #print "Lower midpoint:", \ |
1796 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1797 | 172 | storres | #print "Value :", \ |
1798 | 172 | storres | # quasiExactValue.n(prec=200).str(base=2) |
1799 | 172 | storres | #print "Upper midpoint:", \ |
1800 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1801 | 172 | storres | |
1802 | 172 | storres | return True |
1803 | 172 | storres | else: # quasiExactValue <= 0 |
1804 | 172 | storres | if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) < \ |
1805 | 172 | storres | binadeCorrectedTargetAccuracy: |
1806 | 172 | storres | #print "Lower midpoint:", \ |
1807 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1808 | 172 | storres | #print "Value :", \ |
1809 | 172 | storres | # quasiExactValue.n(prec=200).str(base=2) |
1810 | 172 | storres | #print "Upper midpoint:", \ |
1811 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1812 | 172 | storres | |
1813 | 172 | storres | return True |
1814 | 172 | storres | #print "distance to the upper midpoint:", \ |
1815 | 172 | storres | # abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100).str(base=2) |
1816 | 172 | storres | #print "distance to the lower midpoint:", \ |
1817 | 172 | storres | # abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue).n(prec=100).str(base=2) |
1818 | 172 | storres | return False |
1819 | 172 | storres | # End slz_is_htrn |
1820 | 172 | storres | |
1821 | 80 | storres | def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
1822 | 80 | storres | precision, |
1823 | 80 | storres | targetHardnessToRound, |
1824 | 80 | storres | variable1, |
1825 | 80 | storres | variable2): |
1826 | 80 | storres | """ |
1827 | 90 | storres | Creates a new multivariate polynomial with integer coefficients for use |
1828 | 90 | storres | with the Coppersmith method. |
1829 | 80 | storres | A the same time it computes : |
1830 | 80 | storres | - 2^K (N); |
1831 | 90 | storres | - 2^k (bound on the second variable) |
1832 | 80 | storres | - lcm |
1833 | 90 | storres | |
1834 | 90 | storres | :param ratPolyOfInt: a polynomial with rational coefficients and integer |
1835 | 90 | storres | variables. |
1836 | 90 | storres | :param precision: the precision of the floating-point coefficients. |
1837 | 90 | storres | :param targetHardnessToRound: the hardness to round we want to check. |
1838 | 90 | storres | :param variable1: the first variable of the polynomial (an expression). |
1839 | 90 | storres | :param variable2: the second variable of the polynomial (an expression). |
1840 | 90 | storres | |
1841 | 90 | storres | :returns: a 4 elements tuple: |
1842 | 90 | storres | - the polynomial; |
1843 | 91 | storres | - the modulus (N); |
1844 | 91 | storres | - the t bound; |
1845 | 90 | storres | - the lcm used to compute the integral coefficients and the |
1846 | 90 | storres | module. |
1847 | 80 | storres | """ |
1848 | 80 | storres | # Create a new integer polynomial ring. |
1849 | 80 | storres | IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
1850 | 80 | storres | # Coefficients are issued in the increasing power order. |
1851 | 80 | storres | ratPolyCoefficients = ratPolyOfInt.coefficients() |
1852 | 91 | storres | # Print the reversed list for debugging. |
1853 | 179 | storres | |
1854 | 179 | storres | #print "Rational polynomial coefficients:", ratPolyCoefficients[::-1] |
1855 | 94 | storres | # Build the list of number we compute the lcm of. |
1856 | 80 | storres | coefficientDenominators = sro_denominators(ratPolyCoefficients) |
1857 | 179 | storres | #print "Coefficient denominators:", coefficientDenominators |
1858 | 80 | storres | coefficientDenominators.append(2^precision) |
1859 | 170 | storres | coefficientDenominators.append(2^(targetHardnessToRound)) |
1860 | 87 | storres | leastCommonMultiple = lcm(coefficientDenominators) |
1861 | 80 | storres | # Compute the expression corresponding to the new polynomial |
1862 | 80 | storres | coefficientNumerators = sro_numerators(ratPolyCoefficients) |
1863 | 91 | storres | #print coefficientNumerators |
1864 | 80 | storres | polynomialExpression = 0 |
1865 | 80 | storres | power = 0 |
1866 | 170 | storres | # Iterate over two lists at the same time, stop when the shorter |
1867 | 170 | storres | # (is this case coefficientsNumerators) is |
1868 | 170 | storres | # exhausted. Both lists are ordered in the order of increasing powers |
1869 | 170 | storres | # of variable1. |
1870 | 80 | storres | for numerator, denominator in \ |
1871 | 94 | storres | zip(coefficientNumerators, coefficientDenominators): |
1872 | 80 | storres | multiplicator = leastCommonMultiple / denominator |
1873 | 80 | storres | newCoefficient = numerator * multiplicator |
1874 | 80 | storres | polynomialExpression += newCoefficient * variable1^power |
1875 | 80 | storres | power +=1 |
1876 | 80 | storres | polynomialExpression += - variable2 |
1877 | 80 | storres | return (IP(polynomialExpression), |
1878 | 170 | storres | leastCommonMultiple / 2^precision, # 2^K aka N. |
1879 | 170 | storres | #leastCommonMultiple / 2^(targetHardnessToRound + 1), # tBound |
1880 | 170 | storres | leastCommonMultiple / 2^(targetHardnessToRound), # tBound |
1881 | 91 | storres | leastCommonMultiple) # If we want to make test computations. |
1882 | 80 | storres | |
1883 | 170 | storres | # End slz_rat_poly_of_int_to_poly_for_coppersmith |
1884 | 79 | storres | |
1885 | 79 | storres | def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
1886 | 79 | storres | precision): |
1887 | 79 | storres | """ |
1888 | 79 | storres | Makes a variable substitution into the input polynomial so that the output |
1889 | 79 | storres | polynomial can take integer arguments. |
1890 | 79 | storres | All variables of the input polynomial "have precision p". That is to say |
1891 | 103 | storres | that they are rationals with denominator == 2^(precision - 1): |
1892 | 103 | storres | x = y/2^(precision - 1). |
1893 | 79 | storres | We "incorporate" these denominators into the coefficients with, |
1894 | 79 | storres | respectively, the "right" power. |
1895 | 79 | storres | """ |
1896 | 79 | storres | polynomialField = ratPolyOfRat.parent() |
1897 | 91 | storres | polynomialVariable = ratPolyOfRat.variables()[0] |
1898 | 91 | storres | #print "The polynomial field is:", polynomialField |
1899 | 79 | storres | return \ |
1900 | 91 | storres | polynomialField(ratPolyOfRat.subs({polynomialVariable : \ |
1901 | 79 | storres | polynomialVariable/2^(precision-1)})) |
1902 | 79 | storres | |
1903 | 79 | storres | # End slz_rat_poly_of_rat_to_rat_poly_of_int |
1904 | 79 | storres | |
1905 | 177 | storres | def slz_reduce_and_test_base(matrixToReduce, |
1906 | 177 | storres | nAtAlpha, |
1907 | 177 | storres | monomialsCountSqrt): |
1908 | 177 | storres | """ |
1909 | 177 | storres | Reduces the basis, tests the Coppersmith condition and returns |
1910 | 177 | storres | a list of rows that comply with the condition. |
1911 | 177 | storres | """ |
1912 | 177 | storres | ccComplientRowsList = [] |
1913 | 177 | storres | reducedMatrix = matrixToReduce.LLL(None) |
1914 | 177 | storres | if not reducedMatrix.is_LLL_reduced(): |
1915 | 177 | storres | raise Exception("reducedMatrix is not actually reduced. Aborting!") |
1916 | 177 | storres | else: |
1917 | 177 | storres | print "reducedMatrix is actually reduced." |
1918 | 177 | storres | print "N^alpha:", nAtAlpha.n() |
1919 | 177 | storres | rowIndex = 0 |
1920 | 177 | storres | for row in reducedMatrix.rows(): |
1921 | 177 | storres | l2Norm = row.norm(2) |
1922 | 177 | storres | print "L_2 norm for vector # ", rowIndex, "= ", RR(l2Norm), "*", \ |
1923 | 177 | storres | monomialsCountSqrt.n(), ". Is vector OK?", |
1924 | 177 | storres | if (l2Norm * monomialsCountSqrt < nAtAlpha): |
1925 | 177 | storres | ccComplientRowsList.append(row) |
1926 | 177 | storres | print "True" |
1927 | 177 | storres | else: |
1928 | 177 | storres | print "False" |
1929 | 177 | storres | # End for |
1930 | 177 | storres | return ccComplientRowsList |
1931 | 177 | storres | # End slz_reduce_and_test_base |
1932 | 115 | storres | |
1933 | 229 | storres | def slz_resultant(poly1, poly2, elimVar, debug = False): |
1934 | 205 | storres | """ |
1935 | 205 | storres | Compute the resultant for two polynomials for a given variable |
1936 | 205 | storres | and return the (poly1, poly2, resultant) if the resultant |
1937 | 205 | storres | is not 0. |
1938 | 205 | storres | Return () otherwise. |
1939 | 205 | storres | """ |
1940 | 205 | storres | polynomialRing0 = poly1.parent() |
1941 | 205 | storres | resultantInElimVar = poly1.resultant(poly2,polynomialRing0(elimVar)) |
1942 | 213 | storres | if resultantInElimVar is None: |
1943 | 229 | storres | if debug: |
1944 | 229 | storres | print poly1 |
1945 | 229 | storres | print poly2 |
1946 | 229 | storres | print "have GCD = ", poly1.gcd(poly2) |
1947 | 213 | storres | return None |
1948 | 205 | storres | if resultantInElimVar.is_zero(): |
1949 | 229 | storres | if debug: |
1950 | 229 | storres | print poly1 |
1951 | 229 | storres | print poly2 |
1952 | 229 | storres | print "have GCD = ", poly1.gcd(poly2) |
1953 | 205 | storres | return None |
1954 | 205 | storres | else: |
1955 | 229 | storres | if debug: |
1956 | 229 | storres | print poly1 |
1957 | 229 | storres | print poly2 |
1958 | 229 | storres | print "have resultant in t = ", resultantInElimVar |
1959 | 205 | storres | return resultantInElimVar |
1960 | 205 | storres | # End slz_resultant. |
1961 | 205 | storres | # |
1962 | 177 | storres | def slz_resultant_tuple(poly1, poly2, elimVar): |
1963 | 179 | storres | """ |
1964 | 179 | storres | Compute the resultant for two polynomials for a given variable |
1965 | 179 | storres | and return the (poly1, poly2, resultant) if the resultant |
1966 | 180 | storres | is not 0. |
1967 | 179 | storres | Return () otherwise. |
1968 | 179 | storres | """ |
1969 | 181 | storres | polynomialRing0 = poly1.parent() |
1970 | 177 | storres | resultantInElimVar = poly1.resultant(poly2,polynomialRing0(elimVar)) |
1971 | 180 | storres | if resultantInElimVar.is_zero(): |
1972 | 177 | storres | return () |
1973 | 177 | storres | else: |
1974 | 177 | storres | return (poly1, poly2, resultantInElimVar) |
1975 | 177 | storres | # End slz_resultant_tuple. |
1976 | 177 | storres | # |
1977 | 87 | storres | print "\t...sageSLZ loaded" |