root / pobysoPythonSage / src / sageSLZ / sageRunSLZ.sage @ 230
Historique | Voir | Annoter | Télécharger (155,41 ko)
1 | 213 | storres | r""" |
---|---|---|---|
2 | 213 | storres | Main SLZ algorithm body in several versions. |
3 | 213 | storres | |
4 | 213 | storres | AUTHORS: |
5 | 213 | storres | - S.T. (2015-10-10): initial version |
6 | 213 | storres | |
7 | 213 | storres | Examples: |
8 | 213 | storres | TODO |
9 | 194 | storres | """ |
10 | 213 | storres | print "sageRationalOperations loading..." |
11 | 213 | storres | |
12 | 213 | storres | def srs_compute_lattice_volume(inputFunction, |
13 | 213 | storres | inputLowerBound, |
14 | 213 | storres | inputUpperBound, |
15 | 213 | storres | alpha, |
16 | 213 | storres | degree, |
17 | 213 | storres | precision, |
18 | 213 | storres | emin, |
19 | 213 | storres | emax, |
20 | 213 | storres | targetHardnessToRound, |
21 | 213 | storres | debug = False): |
22 | 213 | storres | """ |
23 | 213 | storres | Changes from V2: |
24 | 213 | storres | Root search is changed: |
25 | 213 | storres | - we compute the resultants in i and in t; |
26 | 213 | storres | - we compute the roots set of each of these resultants; |
27 | 213 | storres | - we combine all the possible pairs between the two sets; |
28 | 213 | storres | - we check these pairs in polynomials for correctness. |
29 | 213 | storres | Changes from V1: |
30 | 213 | storres | 1- check for roots as soon as a resultant is computed; |
31 | 213 | storres | 2- once a non null resultant is found, check for roots; |
32 | 213 | storres | 3- constant resultant == no root. |
33 | 213 | storres | """ |
34 | 213 | storres | |
35 | 213 | storres | if debug: |
36 | 213 | storres | print "Function :", inputFunction |
37 | 213 | storres | print "Lower bound :", inputLowerBound |
38 | 213 | storres | print "Upper bounds :", inputUpperBound |
39 | 213 | storres | print "Alpha :", alpha |
40 | 213 | storres | print "Degree :", degree |
41 | 213 | storres | print "Precision :", precision |
42 | 213 | storres | print "Emin :", emin |
43 | 213 | storres | print "Emax :", emax |
44 | 213 | storres | print "Target hardness-to-round:", targetHardnessToRound |
45 | 213 | storres | |
46 | 213 | storres | ## Important constants. |
47 | 213 | storres | ### Stretch the interval if no error happens. |
48 | 213 | storres | noErrorIntervalStretch = 1 + 2^(-5) |
49 | 213 | storres | ### If no vector validates the Coppersmith condition, shrink the interval |
50 | 213 | storres | # by the following factor. |
51 | 213 | storres | noCoppersmithIntervalShrink = 1/2 |
52 | 213 | storres | ### If only (or at least) one vector validates the Coppersmith condition, |
53 | 213 | storres | # shrink the interval by the following factor. |
54 | 213 | storres | oneCoppersmithIntervalShrink = 3/4 |
55 | 213 | storres | #### If only null resultants are found, shrink the interval by the |
56 | 213 | storres | # following factor. |
57 | 213 | storres | onlyNullResultantsShrink = 3/4 |
58 | 213 | storres | ## Structures. |
59 | 213 | storres | RRR = RealField(precision) |
60 | 213 | storres | RRIF = RealIntervalField(precision) |
61 | 213 | storres | ## Converting input bound into the "right" field. |
62 | 213 | storres | lowerBound = RRR(inputLowerBound) |
63 | 213 | storres | upperBound = RRR(inputUpperBound) |
64 | 213 | storres | ## Before going any further, check domain and image binade conditions. |
65 | 213 | storres | print inputFunction(1).n() |
66 | 213 | storres | output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
67 | 213 | storres | if output is None: |
68 | 213 | storres | print "Invalid domain/image binades. Domain:",\ |
69 | 213 | storres | lowerBound, upperBound, "Images:", \ |
70 | 213 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
71 | 213 | storres | raise Exception("Invalid domain/image binades.") |
72 | 213 | storres | lb = output[0] ; ub = output[1] |
73 | 213 | storres | if lb != lowerBound or ub != upperBound: |
74 | 213 | storres | print "lb:", lb, " - ub:", ub |
75 | 213 | storres | print "Invalid domain/image binades. Domain:",\ |
76 | 213 | storres | lowerBound, upperBound, "Images:", \ |
77 | 213 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
78 | 213 | storres | raise Exception("Invalid domain/image binades.") |
79 | 213 | storres | # |
80 | 213 | storres | ## Progam initialization |
81 | 213 | storres | ### Approximation polynomial accuracy and hardness to round. |
82 | 213 | storres | polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
83 | 213 | storres | polyTargetHardnessToRound = targetHardnessToRound + 1 |
84 | 213 | storres | ### Significand to integer conversion ratio. |
85 | 213 | storres | toIntegerFactor = 2^(precision-1) |
86 | 213 | storres | print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
87 | 213 | storres | ### Variables and rings for polynomials and root searching. |
88 | 213 | storres | i=var('i') |
89 | 213 | storres | t=var('t') |
90 | 213 | storres | inputFunctionVariable = inputFunction.variables()[0] |
91 | 213 | storres | function = inputFunction.subs({inputFunctionVariable:i}) |
92 | 213 | storres | # Polynomial Rings over the integers, for root finding. |
93 | 213 | storres | Zi = ZZ[i] |
94 | 213 | storres | Zt = ZZ[t] |
95 | 213 | storres | Zit = ZZ[i,t] |
96 | 213 | storres | ## Number of iterations limit. |
97 | 213 | storres | maxIter = 100000 |
98 | 213 | storres | # |
99 | 213 | storres | ## Compute the scaled function and the degree, in their Sollya version |
100 | 213 | storres | # once for all. |
101 | 213 | storres | (scaledf, sdlb, sdub, silb, siub) = \ |
102 | 213 | storres | slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
103 | 213 | storres | print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
104 | 213 | storres | scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
105 | 213 | storres | degreeSo = pobyso_constant_from_int_sa_so(degree) |
106 | 213 | storres | # |
107 | 213 | storres | ## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
108 | 213 | storres | domainBoundsInterval = RRIF(lowerBound, upperBound) |
109 | 213 | storres | (unscalingFunction, scalingFunction) = \ |
110 | 213 | storres | slz_interval_scaling_expression(domainBoundsInterval, i) |
111 | 213 | storres | #print scalingFunction, unscalingFunction |
112 | 213 | storres | ## Set the Sollya internal precision (with an arbitrary minimum of 192). |
113 | 213 | storres | internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
114 | 213 | storres | if internalSollyaPrec < 192: |
115 | 213 | storres | internalSollyaPrec = 192 |
116 | 213 | storres | pobyso_set_prec_sa_so(internalSollyaPrec) |
117 | 213 | storres | print "Sollya internal precision:", internalSollyaPrec |
118 | 213 | storres | ## Some variables. |
119 | 213 | storres | ### General variables |
120 | 213 | storres | lb = sdlb |
121 | 213 | storres | ub = sdub |
122 | 213 | storres | nbw = 0 |
123 | 213 | storres | intervalUlp = ub.ulp() |
124 | 213 | storres | #### Will be set by slz_interval_and_polynomila_to_sage. |
125 | 213 | storres | ic = 0 |
126 | 213 | storres | icAsInt = 0 # Set from ic. |
127 | 213 | storres | solutionsSet = set() |
128 | 213 | storres | tsErrorWidth = [] |
129 | 213 | storres | csErrorVectors = [] |
130 | 213 | storres | csVectorsResultants = [] |
131 | 213 | storres | floatP = 0 # Taylor polynomial. |
132 | 213 | storres | floatPcv = 0 # Ditto with variable change. |
133 | 213 | storres | intvl = "" # Taylor interval |
134 | 213 | storres | terr = 0 # Taylor error. |
135 | 213 | storres | iterCount = 0 |
136 | 213 | storres | htrnSet = set() |
137 | 213 | storres | ### Timers and counters. |
138 | 213 | storres | wallTimeStart = 0 |
139 | 213 | storres | cpuTimeStart = 0 |
140 | 213 | storres | taylCondFailedCount = 0 |
141 | 213 | storres | coppCondFailedCount = 0 |
142 | 213 | storres | resultCondFailedCount = 0 |
143 | 213 | storres | coppCondFailed = False |
144 | 213 | storres | resultCondFailed = False |
145 | 213 | storres | globalResultsList = [] |
146 | 213 | storres | basisConstructionsCount = 0 |
147 | 213 | storres | basisConstructionsFullTime = 0 |
148 | 213 | storres | basisConstructionTime = 0 |
149 | 213 | storres | reductionsCount = 0 |
150 | 213 | storres | reductionsFullTime = 0 |
151 | 213 | storres | reductionTime = 0 |
152 | 213 | storres | resultantsComputationsCount = 0 |
153 | 213 | storres | resultantsComputationsFullTime = 0 |
154 | 213 | storres | resultantsComputationTime = 0 |
155 | 213 | storres | rootsComputationsCount = 0 |
156 | 213 | storres | rootsComputationsFullTime = 0 |
157 | 213 | storres | rootsComputationTime = 0 |
158 | 213 | storres | |
159 | 213 | storres | ## Global times are started here. |
160 | 213 | storres | wallTimeStart = walltime() |
161 | 213 | storres | cpuTimeStart = cputime() |
162 | 213 | storres | ## Main loop. |
163 | 213 | storres | while True: |
164 | 213 | storres | if lb >= sdub: |
165 | 213 | storres | print "Lower bound reached upper bound." |
166 | 213 | storres | break |
167 | 213 | storres | if iterCount == maxIter: |
168 | 213 | storres | print "Reached maxIter. Aborting" |
169 | 213 | storres | break |
170 | 213 | storres | iterCount += 1 |
171 | 213 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
172 | 213 | storres | "log2(numbers)." |
173 | 213 | storres | ### Compute a Sollya polynomial that will honor the Taylor condition. |
174 | 213 | storres | prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
175 | 213 | storres | degreeSo, |
176 | 213 | storres | lb, |
177 | 213 | storres | ub, |
178 | 213 | storres | polyApproxAccur) |
179 | 213 | storres | ### Convert back the data into Sage space. |
180 | 213 | storres | (floatP, floatPcv, intvl, ic, terr) = \ |
181 | 213 | storres | slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
182 | 213 | storres | prceSo[1], prceSo[2], |
183 | 213 | storres | prceSo[3])) |
184 | 213 | storres | intvl = RRIF(intvl) |
185 | 213 | storres | ## Clean-up Sollya stuff. |
186 | 213 | storres | for elem in prceSo: |
187 | 213 | storres | sollya_lib_clear_obj(elem) |
188 | 213 | storres | #print floatP, floatPcv, intvl, ic, terr |
189 | 213 | storres | #print floatP |
190 | 213 | storres | #print intvl.endpoints()[0].n(), \ |
191 | 213 | storres | # ic.n(), |
192 | 213 | storres | #intvl.endpoints()[1].n() |
193 | 213 | storres | ### Check returned data. |
194 | 213 | storres | #### Is approximation error OK? |
195 | 213 | storres | if terr > polyApproxAccur: |
196 | 213 | storres | exceptionErrorMess = \ |
197 | 213 | storres | "Approximation failed - computed error:" + \ |
198 | 213 | storres | str(terr) + " - target error: " |
199 | 213 | storres | exceptionErrorMess += \ |
200 | 213 | storres | str(polyApproxAccur) + ". Aborting!" |
201 | 213 | storres | raise Exception(exceptionErrorMess) |
202 | 213 | storres | #### Is lower bound OK? |
203 | 213 | storres | if lb != intvl.endpoints()[0]: |
204 | 213 | storres | exceptionErrorMess = "Wrong lower bound:" + \ |
205 | 213 | storres | str(lb) + ". Aborting!" |
206 | 213 | storres | raise Exception(exceptionErrorMess) |
207 | 213 | storres | #### Set upper bound. |
208 | 213 | storres | if ub > intvl.endpoints()[1]: |
209 | 213 | storres | ub = intvl.endpoints()[1] |
210 | 213 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
211 | 213 | storres | "log2(numbers)." |
212 | 213 | storres | taylCondFailedCount += 1 |
213 | 213 | storres | #### Is interval not degenerate? |
214 | 213 | storres | if lb >= ub: |
215 | 213 | storres | exceptionErrorMess = "Degenerate interval: " + \ |
216 | 213 | storres | "lowerBound(" + str(lb) +\ |
217 | 213 | storres | ")>= upperBound(" + str(ub) + \ |
218 | 213 | storres | "). Aborting!" |
219 | 213 | storres | raise Exception(exceptionErrorMess) |
220 | 213 | storres | #### Is interval center ok? |
221 | 213 | storres | if ic <= lb or ic >= ub: |
222 | 213 | storres | exceptionErrorMess = "Invalid interval center for " + \ |
223 | 213 | storres | str(lb) + ',' + str(ic) + ',' + \ |
224 | 213 | storres | str(ub) + ". Aborting!" |
225 | 213 | storres | raise Exception(exceptionErrorMess) |
226 | 213 | storres | ##### Current interval width and reset future interval width. |
227 | 213 | storres | bw = ub - lb |
228 | 213 | storres | nbw = 0 |
229 | 213 | storres | icAsInt = int(ic * toIntegerFactor) |
230 | 213 | storres | #### The following ratio is always >= 1. In case we may want to |
231 | 213 | storres | # enlarge the interval |
232 | 213 | storres | curTaylErrRat = polyApproxAccur / terr |
233 | 213 | storres | ### Make the integral transformations. |
234 | 213 | storres | #### Bounds and interval center. |
235 | 213 | storres | intIc = int(ic * toIntegerFactor) |
236 | 213 | storres | intLb = int(lb * toIntegerFactor) - intIc |
237 | 213 | storres | intUb = int(ub * toIntegerFactor) - intIc |
238 | 213 | storres | # |
239 | 213 | storres | #### Polynomials |
240 | 213 | storres | basisConstructionTime = cputime() |
241 | 213 | storres | ##### To a polynomial with rational coefficients with rational arguments |
242 | 213 | storres | ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
243 | 213 | storres | ##### To a polynomial with rational coefficients with integer arguments |
244 | 213 | storres | ratIntP = \ |
245 | 213 | storres | slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
246 | 213 | storres | ##### Ultimately a multivariate polynomial with integer coefficients |
247 | 213 | storres | # with integer arguments. |
248 | 213 | storres | coppersmithTuple = \ |
249 | 213 | storres | slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
250 | 213 | storres | precision, |
251 | 213 | storres | targetHardnessToRound, |
252 | 213 | storres | i, t) |
253 | 213 | storres | #### Recover Coppersmith information. |
254 | 213 | storres | intIntP = coppersmithTuple[0] |
255 | 213 | storres | N = coppersmithTuple[1] |
256 | 213 | storres | nAtAlpha = N^alpha |
257 | 213 | storres | tBound = coppersmithTuple[2] |
258 | 213 | storres | leastCommonMultiple = coppersmithTuple[3] |
259 | 213 | storres | iBound = max(abs(intLb),abs(intUb)) |
260 | 213 | storres | basisConstructionsFullTime += cputime(basisConstructionTime) |
261 | 213 | storres | basisConstructionsCount += 1 |
262 | 213 | storres | reductionTime = cputime() |
263 | 213 | storres | #### Compute the reduced polynomials. |
264 | 213 | storres | ccReducedPolynomialsList = \ |
265 | 213 | storres | slz_compute_coppersmith_reduced_polynomials_with_lattice_volume(intIntP, |
266 | 213 | storres | alpha, |
267 | 213 | storres | N, |
268 | 213 | storres | iBound, |
269 | 213 | storres | tBound) |
270 | 213 | storres | if ccReducedPolynomialsList is None: |
271 | 213 | storres | raise Exception("Reduction failed.") |
272 | 213 | storres | reductionsFullTime += cputime(reductionTime) |
273 | 213 | storres | reductionsCount += 1 |
274 | 213 | storres | if len(ccReducedPolynomialsList) < 2: |
275 | 213 | storres | print "Nothing to form resultants with." |
276 | 213 | storres | |
277 | 213 | storres | coppCondFailedCount += 1 |
278 | 213 | storres | coppCondFailed = True |
279 | 213 | storres | ##### Apply a different shrink factor according to |
280 | 213 | storres | # the number of compliant polynomials. |
281 | 213 | storres | if len(ccReducedPolynomialsList) == 0: |
282 | 213 | storres | ub = lb + bw * noCoppersmithIntervalShrink |
283 | 213 | storres | else: # At least one compliant polynomial. |
284 | 213 | storres | ub = lb + bw * oneCoppersmithIntervalShrink |
285 | 213 | storres | if ub > sdub: |
286 | 213 | storres | ub = sdub |
287 | 213 | storres | if lb == ub: |
288 | 213 | storres | raise Exception("Cant shrink interval \ |
289 | 213 | storres | anymore to get Coppersmith condition.") |
290 | 213 | storres | nbw = 0 |
291 | 213 | storres | continue |
292 | 213 | storres | #### We have at least two polynomials. |
293 | 213 | storres | # Let us try to compute resultants. |
294 | 213 | storres | # For each resultant computed, go for the solutions. |
295 | 213 | storres | ##### Build the pairs list. |
296 | 213 | storres | polyPairsList = [] |
297 | 213 | storres | for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
298 | 213 | storres | for polyInnerIndex in xrange(polyOuterIndex+1, |
299 | 213 | storres | len(ccReducedPolynomialsList)): |
300 | 213 | storres | polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
301 | 213 | storres | ccReducedPolynomialsList[polyInnerIndex])) |
302 | 213 | storres | #### Actual root search. |
303 | 213 | storres | rootsSet = set() |
304 | 213 | storres | hasNonNullResultant = False |
305 | 213 | storres | for polyPair in polyPairsList: |
306 | 213 | storres | if hasNonNullResultant: |
307 | 213 | storres | break |
308 | 213 | storres | resultantsComputationTime = cputime() |
309 | 213 | storres | currentResultantI = \ |
310 | 213 | storres | slz_resultant(polyPair[0], |
311 | 213 | storres | polyPair[1], |
312 | 213 | storres | t) |
313 | 213 | storres | resultantsComputationsCount += 1 |
314 | 213 | storres | if currentResultantI is None: |
315 | 213 | storres | resultantsComputationsFullTime += \ |
316 | 213 | storres | cputime(resultantsComputationTime) |
317 | 213 | storres | print "Nul resultant" |
318 | 213 | storres | continue # Next polyPair. |
319 | 213 | storres | currentResultantT = \ |
320 | 213 | storres | slz_resultant(polyPair[0], |
321 | 213 | storres | polyPair[1], |
322 | 213 | storres | i) |
323 | 213 | storres | resultantsComputationsFullTime += cputime(resultantsComputationTime) |
324 | 213 | storres | resultantsComputationsCount += 1 |
325 | 213 | storres | if currentResultantT is None: |
326 | 213 | storres | print "Nul resultant" |
327 | 213 | storres | continue # Next polyPair. |
328 | 213 | storres | else: |
329 | 213 | storres | hasNonNullResultant = True |
330 | 213 | storres | #### We have a non null resultants pair. From now on, whatever the |
331 | 213 | storres | # root search yields, no extra root search is necessary. |
332 | 213 | storres | #### A constant resultant leads to no root. Root search is done. |
333 | 213 | storres | if currentResultantI.degree() < 1: |
334 | 213 | storres | print "Resultant is constant:", currentResultantI |
335 | 213 | storres | break # Next polyPair and should break. |
336 | 213 | storres | if currentResultantT.degree() < 1: |
337 | 213 | storres | print "Resultant is constant:", currentResultantT |
338 | 213 | storres | break # Next polyPair and should break. |
339 | 213 | storres | #### Actual roots computation. |
340 | 213 | storres | rootsComputationTime = cputime() |
341 | 213 | storres | ##### Compute i roots |
342 | 213 | storres | iRootsList = Zi(currentResultantI).roots() |
343 | 213 | storres | rootsComputationsCount += 1 |
344 | 213 | storres | if len(iRootsList) == 0: |
345 | 213 | storres | rootsComputationsFullTime = cputime(rootsComputationTime) |
346 | 213 | storres | print "No roots in \"i\"." |
347 | 213 | storres | break # No roots in i. |
348 | 213 | storres | tRootsList = Zt(currentResultantT).roots() |
349 | 213 | storres | rootsComputationsFullTime = cputime(rootsComputationTime) |
350 | 213 | storres | rootsComputationsCount += 1 |
351 | 213 | storres | if len(tRootsList) == 0: |
352 | 213 | storres | print "No roots in \"t\"." |
353 | 213 | storres | break # No roots in i. |
354 | 213 | storres | ##### For each iRoot, get a tRoot and check against the polynomials. |
355 | 213 | storres | for iRoot in iRootsList: |
356 | 213 | storres | ####### Roots returned by roots() are (value, multiplicity) |
357 | 213 | storres | # tuples. |
358 | 213 | storres | #print "iRoot:", iRoot |
359 | 213 | storres | for tRoot in tRootsList: |
360 | 213 | storres | ###### Use the tRoot against each polynomial, alternatively. |
361 | 213 | storres | if polyPair[0](iRoot[0],tRoot[0]) != 0: |
362 | 213 | storres | continue |
363 | 213 | storres | if polyPair[1](iRoot[0],tRoot[0]) != 0: |
364 | 213 | storres | continue |
365 | 213 | storres | rootsSet.add((iRoot[0], tRoot[0])) |
366 | 213 | storres | # End of roots computation. |
367 | 213 | storres | # End loop for polyPair in polyParsList. Will break at next iteration. |
368 | 213 | storres | # since a non null resultant was found. |
369 | 213 | storres | #### Prepare for results for the current interval.. |
370 | 213 | storres | intervalResultsList = [] |
371 | 213 | storres | intervalResultsList.append((lb, ub)) |
372 | 213 | storres | #### Check roots. |
373 | 213 | storres | rootsResultsList = [] |
374 | 213 | storres | for root in rootsSet: |
375 | 213 | storres | specificRootResultsList = [] |
376 | 213 | storres | failingBounds = [] |
377 | 213 | storres | intIntPdivN = intIntP(root[0], root[1]) / N |
378 | 213 | storres | if int(intIntPdivN) != intIntPdivN: |
379 | 213 | storres | continue # Next root |
380 | 213 | storres | # Root qualifies for modular equation, test it for hardness to round. |
381 | 213 | storres | hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
382 | 213 | storres | #print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
383 | 213 | storres | #print scalingFunction |
384 | 213 | storres | scaledHardToRoundCaseAsFloat = \ |
385 | 213 | storres | scalingFunction(hardToRoundCaseAsFloat) |
386 | 213 | storres | print "Candidate HTRNc at x =", \ |
387 | 213 | storres | scaledHardToRoundCaseAsFloat.n().str(base=2), |
388 | 213 | storres | if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
389 | 213 | storres | function, |
390 | 213 | storres | 2^-(targetHardnessToRound), |
391 | 213 | storres | RRR): |
392 | 213 | storres | print hardToRoundCaseAsFloat, "is HTRN case." |
393 | 213 | storres | if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
394 | 213 | storres | print "Found in interval." |
395 | 213 | storres | else: |
396 | 213 | storres | print "Found out of interval." |
397 | 213 | storres | specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
398 | 213 | storres | # Check the root is in the bounds |
399 | 213 | storres | if abs(root[0]) > iBound or abs(root[1]) > tBound: |
400 | 213 | storres | print "Root", root, "is out of bounds for modular equation." |
401 | 213 | storres | if abs(root[0]) > iBound: |
402 | 213 | storres | print "root[0]:", root[0] |
403 | 213 | storres | print "i bound:", iBound |
404 | 213 | storres | failingBounds.append('i') |
405 | 213 | storres | failingBounds.append(root[0]) |
406 | 213 | storres | failingBounds.append(iBound) |
407 | 213 | storres | if abs(root[1]) > tBound: |
408 | 213 | storres | print "root[1]:", root[1] |
409 | 213 | storres | print "t bound:", tBound |
410 | 213 | storres | failingBounds.append('t') |
411 | 213 | storres | failingBounds.append(root[1]) |
412 | 213 | storres | failingBounds.append(tBound) |
413 | 213 | storres | if len(failingBounds) > 0: |
414 | 213 | storres | specificRootResultsList.append(failingBounds) |
415 | 213 | storres | else: # From slz_is_htrn... |
416 | 213 | storres | print "is not an HTRN case." |
417 | 213 | storres | if len(specificRootResultsList) > 0: |
418 | 213 | storres | rootsResultsList.append(specificRootResultsList) |
419 | 213 | storres | if len(rootsResultsList) > 0: |
420 | 213 | storres | intervalResultsList.append(rootsResultsList) |
421 | 213 | storres | ### Check if a non null resultant was found. If not shrink the interval. |
422 | 213 | storres | if not hasNonNullResultant: |
423 | 213 | storres | print "Only null resultants for this reduction, shrinking interval." |
424 | 213 | storres | resultCondFailed = True |
425 | 213 | storres | resultCondFailedCount += 1 |
426 | 213 | storres | ### Shrink interval for next iteration. |
427 | 213 | storres | ub = lb + bw * onlyNullResultantsShrink |
428 | 213 | storres | if ub > sdub: |
429 | 213 | storres | ub = sdub |
430 | 213 | storres | nbw = 0 |
431 | 213 | storres | continue |
432 | 213 | storres | #### An intervalResultsList has at least the bounds. |
433 | 213 | storres | globalResultsList.append(intervalResultsList) |
434 | 213 | storres | #### Compute an incremented width for next upper bound, only |
435 | 213 | storres | # if not Coppersmith condition nor resultant condition |
436 | 213 | storres | # failed at the previous run. |
437 | 213 | storres | if not coppCondFailed and not resultCondFailed: |
438 | 213 | storres | nbw = noErrorIntervalStretch * bw |
439 | 213 | storres | else: |
440 | 213 | storres | nbw = bw |
441 | 213 | storres | ##### Reset the failure flags. They will be raised |
442 | 213 | storres | # again if needed. |
443 | 213 | storres | coppCondFailed = False |
444 | 213 | storres | resultCondFailed = False |
445 | 213 | storres | #### For next iteration (at end of loop) |
446 | 213 | storres | #print "nbw:", nbw |
447 | 213 | storres | lb = ub |
448 | 213 | storres | ub += nbw |
449 | 213 | storres | if ub > sdub: |
450 | 213 | storres | ub = sdub |
451 | 213 | storres | |
452 | 213 | storres | # End while True |
453 | 213 | storres | ## Main loop just ended. |
454 | 213 | storres | globalWallTime = walltime(wallTimeStart) |
455 | 213 | storres | globalCpuTime = cputime(cpuTimeStart) |
456 | 213 | storres | ## Output results |
457 | 213 | storres | print ; print "Intervals and HTRNs" ; print |
458 | 213 | storres | for intervalResultsList in globalResultsList: |
459 | 222 | storres | intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
460 | 222 | storres | "," + str(intervalResultsList[0][1]) + "]" |
461 | 222 | storres | print intervalResultString, |
462 | 213 | storres | if len(intervalResultsList) > 1: |
463 | 213 | storres | rootsResultsList = intervalResultsList[1] |
464 | 222 | storres | specificRootResultIndex = 0 |
465 | 213 | storres | for specificRootResultsList in rootsResultsList: |
466 | 222 | storres | if specificRootResultIndex == 0: |
467 | 222 | storres | print "\t", specificRootResultsList[0], |
468 | 222 | storres | else: |
469 | 222 | storres | print " " * len(intervalResultString), "\t", \ |
470 | 222 | storres | specificRootResultsList[0], |
471 | 213 | storres | if len(specificRootResultsList) > 1: |
472 | 222 | storres | print specificRootResultsList[1] |
473 | 222 | storres | specificRootResultIndex += 1 |
474 | 213 | storres | print ; print |
475 | 213 | storres | #print globalResultsList |
476 | 213 | storres | # |
477 | 213 | storres | print "Timers and counters" |
478 | 213 | storres | |
479 | 213 | storres | print "Number of iterations:", iterCount |
480 | 213 | storres | print "Taylor condition failures:", taylCondFailedCount |
481 | 213 | storres | print "Coppersmith condition failures:", coppCondFailedCount |
482 | 213 | storres | print "Resultant condition failures:", resultCondFailedCount |
483 | 213 | storres | print "Iterations count: ", iterCount |
484 | 213 | storres | print "Number of intervals:", len(globalResultsList) |
485 | 213 | storres | print "Number of basis constructions:", basisConstructionsCount |
486 | 213 | storres | print "Total CPU time spent in basis constructions:", \ |
487 | 213 | storres | basisConstructionsFullTime |
488 | 213 | storres | if basisConstructionsCount != 0: |
489 | 213 | storres | print "Average basis construction CPU time:", \ |
490 | 213 | storres | basisConstructionsFullTime/basisConstructionsCount |
491 | 213 | storres | print "Number of reductions:", reductionsCount |
492 | 213 | storres | print "Total CPU time spent in reductions:", reductionsFullTime |
493 | 213 | storres | if reductionsCount != 0: |
494 | 213 | storres | print "Average reduction CPU time:", \ |
495 | 213 | storres | reductionsFullTime/reductionsCount |
496 | 213 | storres | print "Number of resultants computation rounds:", \ |
497 | 213 | storres | resultantsComputationsCount |
498 | 213 | storres | print "Total CPU time spent in resultants computation rounds:", \ |
499 | 213 | storres | resultantsComputationsFullTime |
500 | 213 | storres | if resultantsComputationsCount != 0: |
501 | 213 | storres | print "Average resultants computation round CPU time:", \ |
502 | 213 | storres | resultantsComputationsFullTime/resultantsComputationsCount |
503 | 213 | storres | print "Number of root finding rounds:", rootsComputationsCount |
504 | 213 | storres | print "Total CPU time spent in roots finding rounds:", \ |
505 | 213 | storres | rootsComputationsFullTime |
506 | 213 | storres | if rootsComputationsCount != 0: |
507 | 213 | storres | print "Average roots finding round CPU time:", \ |
508 | 213 | storres | rootsComputationsFullTime/rootsComputationsCount |
509 | 213 | storres | print "Global Wall time:", globalWallTime |
510 | 213 | storres | print "Global CPU time:", globalCpuTime |
511 | 213 | storres | ## Output counters |
512 | 213 | storres | # End srs_compute_lattice_volume |
513 | 213 | storres | |
514 | 213 | storres | """ |
515 | 194 | storres | SLZ runtime function. |
516 | 194 | storres | """ |
517 | 194 | storres | |
518 | 194 | storres | def srs_run_SLZ_v01(inputFunction, |
519 | 194 | storres | inputLowerBound, |
520 | 194 | storres | inputUpperBound, |
521 | 194 | storres | alpha, |
522 | 194 | storres | degree, |
523 | 194 | storres | precision, |
524 | 194 | storres | emin, |
525 | 194 | storres | emax, |
526 | 194 | storres | targetHardnessToRound, |
527 | 194 | storres | debug = False): |
528 | 194 | storres | |
529 | 194 | storres | if debug: |
530 | 194 | storres | print "Function :", inputFunction |
531 | 194 | storres | print "Lower bound :", inputLowerBound |
532 | 194 | storres | print "Upper bounds :", inputUpperBound |
533 | 194 | storres | print "Alpha :", alpha |
534 | 194 | storres | print "Degree :", degree |
535 | 194 | storres | print "Precision :", precision |
536 | 194 | storres | print "Emin :", emin |
537 | 194 | storres | print "Emax :", emax |
538 | 194 | storres | print "Target hardness-to-round:", targetHardnessToRound |
539 | 194 | storres | |
540 | 194 | storres | ## Important constants. |
541 | 194 | storres | ### Stretch the interval if no error happens. |
542 | 194 | storres | noErrorIntervalStretch = 1 + 2^(-5) |
543 | 194 | storres | ### If no vector validates the Coppersmith condition, shrink the interval |
544 | 194 | storres | # by the following factor. |
545 | 194 | storres | noCoppersmithIntervalShrink = 1/2 |
546 | 194 | storres | ### If only (or at least) one vector validates the Coppersmith condition, |
547 | 194 | storres | # shrink the interval by the following factor. |
548 | 194 | storres | oneCoppersmithIntervalShrink = 3/4 |
549 | 194 | storres | #### If only null resultants are found, shrink the interval by the |
550 | 194 | storres | # following factor. |
551 | 194 | storres | onlyNullResultantsShrink = 3/4 |
552 | 194 | storres | ## Structures. |
553 | 194 | storres | RRR = RealField(precision) |
554 | 194 | storres | RRIF = RealIntervalField(precision) |
555 | 194 | storres | ## Converting input bound into the "right" field. |
556 | 194 | storres | lowerBound = RRR(inputLowerBound) |
557 | 194 | storres | upperBound = RRR(inputUpperBound) |
558 | 194 | storres | ## Before going any further, check domain and image binade conditions. |
559 | 194 | storres | print inputFunction(1).n() |
560 | 206 | storres | output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
561 | 206 | storres | if output is None: |
562 | 206 | storres | print "Invalid domain/image binades. Domain:",\ |
563 | 206 | storres | lowerBound, upperBound, "Images:", \ |
564 | 206 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
565 | 206 | storres | raise Exception("Invalid domain/image binades.") |
566 | 206 | storres | lb = output[0] ; ub = output[1] |
567 | 206 | storres | if lb is None or lb != lowerBound or ub != upperBound: |
568 | 194 | storres | print "lb:", lb, " - ub:", ub |
569 | 194 | storres | print "Invalid domain/image binades. Domain:",\ |
570 | 194 | storres | lowerBound, upperBound, "Images:", \ |
571 | 194 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
572 | 194 | storres | raise Exception("Invalid domain/image binades.") |
573 | 194 | storres | # |
574 | 194 | storres | ## Progam initialization |
575 | 194 | storres | ### Approximation polynomial accuracy and hardness to round. |
576 | 194 | storres | polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
577 | 194 | storres | polyTargetHardnessToRound = targetHardnessToRound + 1 |
578 | 194 | storres | ### Significand to integer conversion ratio. |
579 | 194 | storres | toIntegerFactor = 2^(precision-1) |
580 | 194 | storres | print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
581 | 194 | storres | ### Variables and rings for polynomials and root searching. |
582 | 194 | storres | i=var('i') |
583 | 194 | storres | t=var('t') |
584 | 194 | storres | inputFunctionVariable = inputFunction.variables()[0] |
585 | 194 | storres | function = inputFunction.subs({inputFunctionVariable:i}) |
586 | 194 | storres | # Polynomial Rings over the integers, for root finding. |
587 | 194 | storres | Zi = ZZ[i] |
588 | 194 | storres | Zt = ZZ[t] |
589 | 194 | storres | Zit = ZZ[i,t] |
590 | 194 | storres | ## Number of iterations limit. |
591 | 194 | storres | maxIter = 100000 |
592 | 194 | storres | # |
593 | 194 | storres | ## Compute the scaled function and the degree, in their Sollya version |
594 | 194 | storres | # once for all. |
595 | 194 | storres | (scaledf, sdlb, sdub, silb, siub) = \ |
596 | 194 | storres | slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
597 | 194 | storres | print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
598 | 194 | storres | scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
599 | 194 | storres | degreeSo = pobyso_constant_from_int_sa_so(degree) |
600 | 194 | storres | # |
601 | 194 | storres | ## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
602 | 194 | storres | domainBoundsInterval = RRIF(lowerBound, upperBound) |
603 | 194 | storres | (unscalingFunction, scalingFunction) = \ |
604 | 194 | storres | slz_interval_scaling_expression(domainBoundsInterval, i) |
605 | 194 | storres | #print scalingFunction, unscalingFunction |
606 | 194 | storres | ## Set the Sollya internal precision (with an arbitrary minimum of 192). |
607 | 194 | storres | internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
608 | 194 | storres | if internalSollyaPrec < 192: |
609 | 194 | storres | internalSollyaPrec = 192 |
610 | 194 | storres | pobyso_set_prec_sa_so(internalSollyaPrec) |
611 | 194 | storres | print "Sollya internal precision:", internalSollyaPrec |
612 | 194 | storres | ## Some variables. |
613 | 194 | storres | ### General variables |
614 | 194 | storres | lb = sdlb |
615 | 194 | storres | ub = sdub |
616 | 194 | storres | nbw = 0 |
617 | 194 | storres | intervalUlp = ub.ulp() |
618 | 194 | storres | #### Will be set by slz_interval_and_polynomila_to_sage. |
619 | 194 | storres | ic = 0 |
620 | 194 | storres | icAsInt = 0 # Set from ic. |
621 | 194 | storres | solutionsSet = set() |
622 | 194 | storres | tsErrorWidth = [] |
623 | 194 | storres | csErrorVectors = [] |
624 | 194 | storres | csVectorsResultants = [] |
625 | 194 | storres | floatP = 0 # Taylor polynomial. |
626 | 194 | storres | floatPcv = 0 # Ditto with variable change. |
627 | 194 | storres | intvl = "" # Taylor interval |
628 | 194 | storres | terr = 0 # Taylor error. |
629 | 194 | storres | iterCount = 0 |
630 | 194 | storres | htrnSet = set() |
631 | 194 | storres | ### Timers and counters. |
632 | 194 | storres | wallTimeStart = 0 |
633 | 194 | storres | cpuTimeStart = 0 |
634 | 194 | storres | taylCondFailedCount = 0 |
635 | 194 | storres | coppCondFailedCount = 0 |
636 | 194 | storres | resultCondFailedCount = 0 |
637 | 194 | storres | coppCondFailed = False |
638 | 194 | storres | resultCondFailed = False |
639 | 194 | storres | globalResultsList = [] |
640 | 194 | storres | basisConstructionsCount = 0 |
641 | 194 | storres | basisConstructionsFullTime = 0 |
642 | 194 | storres | basisConstructionTime = 0 |
643 | 194 | storres | reductionsCount = 0 |
644 | 194 | storres | reductionsFullTime = 0 |
645 | 194 | storres | reductionTime = 0 |
646 | 194 | storres | resultantsComputationsCount = 0 |
647 | 194 | storres | resultantsComputationsFullTime = 0 |
648 | 194 | storres | resultantsComputationTime = 0 |
649 | 194 | storres | rootsComputationsCount = 0 |
650 | 194 | storres | rootsComputationsFullTime = 0 |
651 | 194 | storres | rootsComputationTime = 0 |
652 | 194 | storres | |
653 | 194 | storres | ## Global times are started here. |
654 | 194 | storres | wallTimeStart = walltime() |
655 | 194 | storres | cpuTimeStart = cputime() |
656 | 194 | storres | ## Main loop. |
657 | 194 | storres | while True: |
658 | 194 | storres | if lb >= sdub: |
659 | 194 | storres | print "Lower bound reached upper bound." |
660 | 194 | storres | break |
661 | 194 | storres | if iterCount == maxIter: |
662 | 194 | storres | print "Reached maxIter. Aborting" |
663 | 194 | storres | break |
664 | 194 | storres | iterCount += 1 |
665 | 194 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
666 | 194 | storres | "log2(numbers)." |
667 | 194 | storres | ### Compute a Sollya polynomial that will honor the Taylor condition. |
668 | 194 | storres | prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
669 | 194 | storres | degreeSo, |
670 | 194 | storres | lb, |
671 | 194 | storres | ub, |
672 | 194 | storres | polyApproxAccur) |
673 | 194 | storres | ### Convert back the data into Sage space. |
674 | 194 | storres | (floatP, floatPcv, intvl, ic, terr) = \ |
675 | 194 | storres | slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
676 | 194 | storres | prceSo[1], prceSo[2], |
677 | 194 | storres | prceSo[3])) |
678 | 194 | storres | intvl = RRIF(intvl) |
679 | 194 | storres | ## Clean-up Sollya stuff. |
680 | 194 | storres | for elem in prceSo: |
681 | 194 | storres | sollya_lib_clear_obj(elem) |
682 | 194 | storres | #print floatP, floatPcv, intvl, ic, terr |
683 | 194 | storres | #print floatP |
684 | 194 | storres | #print intvl.endpoints()[0].n(), \ |
685 | 194 | storres | # ic.n(), |
686 | 194 | storres | #intvl.endpoints()[1].n() |
687 | 194 | storres | ### Check returned data. |
688 | 194 | storres | #### Is approximation error OK? |
689 | 194 | storres | if terr > polyApproxAccur: |
690 | 194 | storres | exceptionErrorMess = \ |
691 | 194 | storres | "Approximation failed - computed error:" + \ |
692 | 194 | storres | str(terr) + " - target error: " |
693 | 194 | storres | exceptionErrorMess += \ |
694 | 194 | storres | str(polyApproxAccur) + ". Aborting!" |
695 | 194 | storres | raise Exception(exceptionErrorMess) |
696 | 194 | storres | #### Is lower bound OK? |
697 | 194 | storres | if lb != intvl.endpoints()[0]: |
698 | 194 | storres | exceptionErrorMess = "Wrong lower bound:" + \ |
699 | 194 | storres | str(lb) + ". Aborting!" |
700 | 194 | storres | raise Exception(exceptionErrorMess) |
701 | 194 | storres | #### Set upper bound. |
702 | 194 | storres | if ub > intvl.endpoints()[1]: |
703 | 194 | storres | ub = intvl.endpoints()[1] |
704 | 194 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
705 | 194 | storres | "log2(numbers)." |
706 | 194 | storres | taylCondFailedCount += 1 |
707 | 194 | storres | #### Is interval not degenerate? |
708 | 194 | storres | if lb >= ub: |
709 | 194 | storres | exceptionErrorMess = "Degenerate interval: " + \ |
710 | 194 | storres | "lowerBound(" + str(lb) +\ |
711 | 194 | storres | ")>= upperBound(" + str(ub) + \ |
712 | 194 | storres | "). Aborting!" |
713 | 194 | storres | raise Exception(exceptionErrorMess) |
714 | 194 | storres | #### Is interval center ok? |
715 | 194 | storres | if ic <= lb or ic >= ub: |
716 | 194 | storres | exceptionErrorMess = "Invalid interval center for " + \ |
717 | 194 | storres | str(lb) + ',' + str(ic) + ',' + \ |
718 | 194 | storres | str(ub) + ". Aborting!" |
719 | 194 | storres | raise Exception(exceptionErrorMess) |
720 | 194 | storres | ##### Current interval width and reset future interval width. |
721 | 194 | storres | bw = ub - lb |
722 | 194 | storres | nbw = 0 |
723 | 194 | storres | icAsInt = int(ic * toIntegerFactor) |
724 | 194 | storres | #### The following ratio is always >= 1. In case we may want to |
725 | 194 | storres | # enlarge the interval |
726 | 194 | storres | curTaylErrRat = polyApproxAccur / terr |
727 | 194 | storres | ## Make the integral transformations. |
728 | 194 | storres | ### First for interval center and bounds. |
729 | 194 | storres | intIc = int(ic * toIntegerFactor) |
730 | 194 | storres | intLb = int(lb * toIntegerFactor) - intIc |
731 | 194 | storres | intUb = int(ub * toIntegerFactor) - intIc |
732 | 194 | storres | # |
733 | 194 | storres | #### For polynomials |
734 | 194 | storres | basisConstructionTime = cputime() |
735 | 194 | storres | ##### To a polynomial with rational coefficients with rational arguments |
736 | 194 | storres | ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
737 | 194 | storres | ##### To a polynomial with rational coefficients with integer arguments |
738 | 194 | storres | ratIntP = \ |
739 | 194 | storres | slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
740 | 194 | storres | ##### Ultimately a polynomial with integer coefficients with integer |
741 | 194 | storres | # arguments. |
742 | 194 | storres | coppersmithTuple = \ |
743 | 194 | storres | slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
744 | 194 | storres | precision, |
745 | 194 | storres | targetHardnessToRound, |
746 | 194 | storres | i, t) |
747 | 194 | storres | #### Recover Coppersmith information. |
748 | 194 | storres | intIntP = coppersmithTuple[0] |
749 | 194 | storres | N = coppersmithTuple[1] |
750 | 194 | storres | nAtAlpha = N^alpha |
751 | 194 | storres | tBound = coppersmithTuple[2] |
752 | 194 | storres | leastCommonMultiple = coppersmithTuple[3] |
753 | 194 | storres | iBound = max(abs(intLb),abs(intUb)) |
754 | 194 | storres | basisConstructionsFullTime += cputime(basisConstructionTime) |
755 | 194 | storres | basisConstructionsCount += 1 |
756 | 194 | storres | reductionTime = cputime() |
757 | 194 | storres | # Compute the reduced polynomials. |
758 | 194 | storres | ccReducedPolynomialsList = \ |
759 | 212 | storres | slz_compute_coppersmith_reduced_polynomials(intIntP, |
760 | 212 | storres | alpha, |
761 | 212 | storres | N, |
762 | 212 | storres | iBound, |
763 | 212 | storres | tBound) |
764 | 194 | storres | if ccReducedPolynomialsList is None: |
765 | 194 | storres | raise Exception("Reduction failed.") |
766 | 194 | storres | reductionsFullTime += cputime(reductionTime) |
767 | 194 | storres | reductionsCount += 1 |
768 | 194 | storres | if len(ccReducedPolynomialsList) < 2: |
769 | 194 | storres | print "Nothing to form resultants with." |
770 | 194 | storres | |
771 | 194 | storres | coppCondFailedCount += 1 |
772 | 194 | storres | coppCondFailed = True |
773 | 194 | storres | ##### Apply a different shrink factor according to |
774 | 194 | storres | # the number of compliant polynomials. |
775 | 194 | storres | if len(ccReducedPolynomialsList) == 0: |
776 | 194 | storres | ub = lb + bw * noCoppersmithIntervalShrink |
777 | 194 | storres | else: # At least one compliant polynomial. |
778 | 194 | storres | ub = lb + bw * oneCoppersmithIntervalShrink |
779 | 194 | storres | if ub > sdub: |
780 | 194 | storres | ub = sdub |
781 | 194 | storres | if lb == ub: |
782 | 194 | storres | raise Exception("Cant shrink interval \ |
783 | 194 | storres | anymore to get Coppersmith condition.") |
784 | 194 | storres | nbw = 0 |
785 | 194 | storres | continue |
786 | 194 | storres | #### We have at least two polynomials. |
787 | 194 | storres | # Let us try to compute resultants. |
788 | 194 | storres | resultantsComputationTime = cputime() |
789 | 194 | storres | resultantsInTTuplesList = [] |
790 | 194 | storres | for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
791 | 194 | storres | for polyInnerIndex in xrange(polyOuterIndex+1, |
792 | 194 | storres | len(ccReducedPolynomialsList)): |
793 | 194 | storres | resultantTuple = \ |
794 | 194 | storres | slz_resultant_tuple(ccReducedPolynomialsList[polyOuterIndex], |
795 | 194 | storres | ccReducedPolynomialsList[polyInnerIndex], |
796 | 194 | storres | t) |
797 | 194 | storres | if len(resultantTuple) > 2: |
798 | 194 | storres | #print resultantTuple[2] |
799 | 194 | storres | resultantsInTTuplesList.append(resultantTuple) |
800 | 194 | storres | else: |
801 | 194 | storres | print "No non nul resultant" |
802 | 194 | storres | print len(resultantsInTTuplesList), "resultant(s) in t tuple(s) created." |
803 | 194 | storres | resultantsComputationsFullTime += cputime(resultantsComputationTime) |
804 | 194 | storres | resultantsComputationsCount += 1 |
805 | 194 | storres | if len(resultantsInTTuplesList) == 0: |
806 | 194 | storres | print "Only null resultants, shrinking interval." |
807 | 194 | storres | resultCondFailed = True |
808 | 194 | storres | resultCondFailedCount += 1 |
809 | 194 | storres | ### Shrink interval for next iteration. |
810 | 194 | storres | ub = lb + bw * onlyNullResultantsShrink |
811 | 194 | storres | if ub > sdub: |
812 | 194 | storres | ub = sdub |
813 | 194 | storres | nbw = 0 |
814 | 194 | storres | continue |
815 | 194 | storres | #### Compute roots. |
816 | 194 | storres | rootsComputationTime = cputime() |
817 | 194 | storres | reducedPolynomialsRootsSet = set() |
818 | 194 | storres | ##### Solve in the second variable since resultants are in the first |
819 | 194 | storres | # variable. |
820 | 194 | storres | for resultantInTTuple in resultantsInTTuplesList: |
821 | 194 | storres | currentResultant = resultantInTTuple[2] |
822 | 194 | storres | ##### If the resultant degree is not at least 1, there are no roots. |
823 | 194 | storres | if currentResultant.degree() < 1: |
824 | 194 | storres | print "Resultant is constant:", currentResultant |
825 | 194 | storres | continue # Next resultantInTTuple |
826 | 194 | storres | ##### Compute i roots |
827 | 194 | storres | iRootsList = Zi(currentResultant).roots() |
828 | 194 | storres | ##### For each iRoot, compute the corresponding tRoots and check |
829 | 194 | storres | # them in the input polynomial. |
830 | 194 | storres | for iRoot in iRootsList: |
831 | 194 | storres | ####### Roots returned by roots() are (value, multiplicity) |
832 | 194 | storres | # tuples. |
833 | 194 | storres | #print "iRoot:", iRoot |
834 | 194 | storres | ###### Use the tRoot against each polynomial, alternatively. |
835 | 194 | storres | for indexInTuple in range(0,2): |
836 | 194 | storres | currentPolynomial = resultantInTTuple[indexInTuple] |
837 | 194 | storres | ####### If the polynomial is univariate, just drop it. |
838 | 194 | storres | if len(currentPolynomial.variables()) < 2: |
839 | 194 | storres | print " Current polynomial is not in two variables." |
840 | 194 | storres | continue # Next indexInTuple |
841 | 194 | storres | tRootsList = \ |
842 | 194 | storres | Zt(currentPolynomial.subs({currentPolynomial.variables()[0]:iRoot[0]})).roots() |
843 | 194 | storres | ####### The tRootsList can be empty, hence the test. |
844 | 194 | storres | if len(tRootsList) == 0: |
845 | 194 | storres | print " No t root." |
846 | 194 | storres | continue # Next indexInTuple |
847 | 194 | storres | for tRoot in tRootsList: |
848 | 194 | storres | reducedPolynomialsRootsSet.add((iRoot[0], tRoot[0])) |
849 | 194 | storres | # End of roots computation |
850 | 194 | storres | rootsComputationsFullTime = cputime(rootsComputationTime) |
851 | 194 | storres | rootsComputationsCount += 1 |
852 | 194 | storres | ##### Prepare for results. |
853 | 194 | storres | intervalResultsList = [] |
854 | 194 | storres | intervalResultsList.append((lb, ub)) |
855 | 194 | storres | #### Check roots. |
856 | 194 | storres | rootsResultsList = [] |
857 | 194 | storres | for root in reducedPolynomialsRootsSet: |
858 | 194 | storres | specificRootResultsList = [] |
859 | 194 | storres | failingBounds = [] |
860 | 194 | storres | intIntPdivN = intIntP(root[0], root[1]) / N |
861 | 194 | storres | if int(intIntPdivN) != intIntPdivN: |
862 | 194 | storres | continue # Next root |
863 | 194 | storres | # Root qualifies for modular equation, test it for hardness to round. |
864 | 194 | storres | hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
865 | 194 | storres | #print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
866 | 194 | storres | #print scalingFunction |
867 | 194 | storres | scaledHardToRoundCaseAsFloat = \ |
868 | 194 | storres | scalingFunction(hardToRoundCaseAsFloat) |
869 | 194 | storres | print "Candidate HTRNc at x =", \ |
870 | 194 | storres | scaledHardToRoundCaseAsFloat.n().str(base=2), |
871 | 194 | storres | if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
872 | 194 | storres | function, |
873 | 194 | storres | 2^-(targetHardnessToRound), |
874 | 194 | storres | RRR): |
875 | 194 | storres | print hardToRoundCaseAsFloat, "is HTRN case." |
876 | 194 | storres | if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
877 | 194 | storres | print "Found in interval." |
878 | 194 | storres | else: |
879 | 194 | storres | print "Found out of interval." |
880 | 194 | storres | specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
881 | 194 | storres | # Check the root is in the bounds |
882 | 194 | storres | if abs(root[0]) > iBound or abs(root[1]) > tBound: |
883 | 194 | storres | print "Root", root, "is out of bounds." |
884 | 194 | storres | if abs(root[0]) > iBound: |
885 | 194 | storres | print "root[0]:", root[0] |
886 | 194 | storres | print "i bound:", iBound |
887 | 194 | storres | failingBounds.append('i') |
888 | 194 | storres | failingBounds.append(root[0]) |
889 | 194 | storres | failingBounds.append(iBound) |
890 | 194 | storres | if abs(root[1]) > tBound: |
891 | 194 | storres | print "root[1]:", root[1] |
892 | 194 | storres | print "t bound:", tBound |
893 | 194 | storres | failingBounds.append('t') |
894 | 194 | storres | failingBounds.append(root[1]) |
895 | 194 | storres | failingBounds.append(tBound) |
896 | 194 | storres | if len(failingBounds) > 0: |
897 | 194 | storres | specificRootResultsList.append(failingBounds) |
898 | 194 | storres | else: # From slz_is_htrn... |
899 | 194 | storres | print "is not an HTRN case." |
900 | 194 | storres | if len(specificRootResultsList) > 0: |
901 | 194 | storres | rootsResultsList.append(specificRootResultsList) |
902 | 194 | storres | if len(rootsResultsList) > 0: |
903 | 194 | storres | intervalResultsList.append(rootsResultsList) |
904 | 194 | storres | #### An intervalResultsList has at least the bounds. |
905 | 194 | storres | globalResultsList.append(intervalResultsList) |
906 | 194 | storres | #### Compute an incremented width for next upper bound, only |
907 | 194 | storres | # if not Coppersmith condition nor resultant condition |
908 | 194 | storres | # failed at the previous run. |
909 | 194 | storres | if not coppCondFailed and not resultCondFailed: |
910 | 194 | storres | nbw = noErrorIntervalStretch * bw |
911 | 194 | storres | else: |
912 | 194 | storres | nbw = bw |
913 | 194 | storres | ##### Reset the failure flags. They will be raised |
914 | 194 | storres | # again if needed. |
915 | 194 | storres | coppCondFailed = False |
916 | 194 | storres | resultCondFailed = False |
917 | 194 | storres | #### For next iteration (at end of loop) |
918 | 194 | storres | #print "nbw:", nbw |
919 | 194 | storres | lb = ub |
920 | 194 | storres | ub += nbw |
921 | 194 | storres | if ub > sdub: |
922 | 194 | storres | ub = sdub |
923 | 194 | storres | |
924 | 194 | storres | # End while True |
925 | 194 | storres | ## Main loop just ended. |
926 | 194 | storres | globalWallTime = walltime(wallTimeStart) |
927 | 194 | storres | globalCpuTime = cputime(cpuTimeStart) |
928 | 194 | storres | ## Output results |
929 | 194 | storres | print ; print "Intervals and HTRNs" ; print |
930 | 194 | storres | for intervalResultsList in globalResultsList: |
931 | 222 | storres | intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
932 | 222 | storres | "," + str(intervalResultsList[0][1]) + "]" |
933 | 222 | storres | print intervalResultString, |
934 | 194 | storres | if len(intervalResultsList) > 1: |
935 | 194 | storres | rootsResultsList = intervalResultsList[1] |
936 | 222 | storres | specificRootResultIndex = 0 |
937 | 194 | storres | for specificRootResultsList in rootsResultsList: |
938 | 222 | storres | if specificRootResultIndex == 0: |
939 | 222 | storres | print "\t", specificRootResultsList[0], |
940 | 222 | storres | else: |
941 | 222 | storres | print " " * len(intervalResultString), "\t", \ |
942 | 222 | storres | specificRootResultsList[0], |
943 | 194 | storres | if len(specificRootResultsList) > 1: |
944 | 222 | storres | print specificRootResultsList[1] |
945 | 222 | storres | specificRootResultIndex += 1 |
946 | 194 | storres | print ; print |
947 | 194 | storres | #print globalResultsList |
948 | 194 | storres | # |
949 | 194 | storres | print "Timers and counters" |
950 | 194 | storres | |
951 | 194 | storres | print "Number of iterations:", iterCount |
952 | 194 | storres | print "Taylor condition failures:", taylCondFailedCount |
953 | 194 | storres | print "Coppersmith condition failures:", coppCondFailedCount |
954 | 194 | storres | print "Resultant condition failures:", resultCondFailedCount |
955 | 194 | storres | print "Iterations count: ", iterCount |
956 | 194 | storres | print "Number of intervals:", len(globalResultsList) |
957 | 194 | storres | print "Number of basis constructions:", basisConstructionsCount |
958 | 194 | storres | print "Total CPU time spent in basis constructions:", \ |
959 | 194 | storres | basisConstructionsFullTime |
960 | 194 | storres | if basisConstructionsCount != 0: |
961 | 194 | storres | print "Average basis construction CPU time:", \ |
962 | 194 | storres | basisConstructionsFullTime/basisConstructionsCount |
963 | 194 | storres | print "Number of reductions:", reductionsCount |
964 | 194 | storres | print "Total CPU time spent in reductions:", reductionsFullTime |
965 | 194 | storres | if reductionsCount != 0: |
966 | 194 | storres | print "Average reduction CPU time:", \ |
967 | 194 | storres | reductionsFullTime/reductionsCount |
968 | 194 | storres | print "Number of resultants computation rounds:", \ |
969 | 194 | storres | resultantsComputationsCount |
970 | 194 | storres | print "Total CPU time spent in resultants computation rounds:", \ |
971 | 194 | storres | resultantsComputationsFullTime |
972 | 194 | storres | if resultantsComputationsCount != 0: |
973 | 194 | storres | print "Average resultants computation round CPU time:", \ |
974 | 194 | storres | resultantsComputationsFullTime/resultantsComputationsCount |
975 | 194 | storres | print "Number of root finding rounds:", rootsComputationsCount |
976 | 194 | storres | print "Total CPU time spent in roots finding rounds:", \ |
977 | 194 | storres | rootsComputationsFullTime |
978 | 194 | storres | if rootsComputationsCount != 0: |
979 | 194 | storres | print "Average roots finding round CPU time:", \ |
980 | 194 | storres | rootsComputationsFullTime/rootsComputationsCount |
981 | 194 | storres | print "Global Wall time:", globalWallTime |
982 | 194 | storres | print "Global CPU time:", globalCpuTime |
983 | 194 | storres | ## Output counters |
984 | 194 | storres | # End srs_runSLZ-v01 |
985 | 194 | storres | |
986 | 194 | storres | def srs_run_SLZ_v02(inputFunction, |
987 | 194 | storres | inputLowerBound, |
988 | 194 | storres | inputUpperBound, |
989 | 194 | storres | alpha, |
990 | 194 | storres | degree, |
991 | 194 | storres | precision, |
992 | 194 | storres | emin, |
993 | 194 | storres | emax, |
994 | 194 | storres | targetHardnessToRound, |
995 | 194 | storres | debug = False): |
996 | 194 | storres | """ |
997 | 194 | storres | Changes from V1: |
998 | 194 | storres | 1- check for roots as soon as a resultant is computed; |
999 | 194 | storres | 2- once a non null resultant is found, check for roots; |
1000 | 194 | storres | 3- constant resultant == no root. |
1001 | 194 | storres | """ |
1002 | 194 | storres | |
1003 | 194 | storres | if debug: |
1004 | 194 | storres | print "Function :", inputFunction |
1005 | 194 | storres | print "Lower bound :", inputLowerBound |
1006 | 194 | storres | print "Upper bounds :", inputUpperBound |
1007 | 194 | storres | print "Alpha :", alpha |
1008 | 194 | storres | print "Degree :", degree |
1009 | 194 | storres | print "Precision :", precision |
1010 | 194 | storres | print "Emin :", emin |
1011 | 194 | storres | print "Emax :", emax |
1012 | 194 | storres | print "Target hardness-to-round:", targetHardnessToRound |
1013 | 194 | storres | |
1014 | 194 | storres | ## Important constants. |
1015 | 194 | storres | ### Stretch the interval if no error happens. |
1016 | 194 | storres | noErrorIntervalStretch = 1 + 2^(-5) |
1017 | 194 | storres | ### If no vector validates the Coppersmith condition, shrink the interval |
1018 | 194 | storres | # by the following factor. |
1019 | 194 | storres | noCoppersmithIntervalShrink = 1/2 |
1020 | 194 | storres | ### If only (or at least) one vector validates the Coppersmith condition, |
1021 | 194 | storres | # shrink the interval by the following factor. |
1022 | 194 | storres | oneCoppersmithIntervalShrink = 3/4 |
1023 | 194 | storres | #### If only null resultants are found, shrink the interval by the |
1024 | 194 | storres | # following factor. |
1025 | 194 | storres | onlyNullResultantsShrink = 3/4 |
1026 | 194 | storres | ## Structures. |
1027 | 194 | storres | RRR = RealField(precision) |
1028 | 194 | storres | RRIF = RealIntervalField(precision) |
1029 | 194 | storres | ## Converting input bound into the "right" field. |
1030 | 194 | storres | lowerBound = RRR(inputLowerBound) |
1031 | 194 | storres | upperBound = RRR(inputUpperBound) |
1032 | 194 | storres | ## Before going any further, check domain and image binade conditions. |
1033 | 194 | storres | print inputFunction(1).n() |
1034 | 206 | storres | output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
1035 | 206 | storres | if output is None: |
1036 | 206 | storres | print "Invalid domain/image binades. Domain:",\ |
1037 | 206 | storres | lowerBound, upperBound, "Images:", \ |
1038 | 206 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
1039 | 206 | storres | raise Exception("Invalid domain/image binades.") |
1040 | 206 | storres | lb = output[0] ; ub = output[1] |
1041 | 194 | storres | if lb != lowerBound or ub != upperBound: |
1042 | 194 | storres | print "lb:", lb, " - ub:", ub |
1043 | 194 | storres | print "Invalid domain/image binades. Domain:",\ |
1044 | 194 | storres | lowerBound, upperBound, "Images:", \ |
1045 | 194 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
1046 | 194 | storres | raise Exception("Invalid domain/image binades.") |
1047 | 194 | storres | # |
1048 | 194 | storres | ## Progam initialization |
1049 | 194 | storres | ### Approximation polynomial accuracy and hardness to round. |
1050 | 194 | storres | polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
1051 | 194 | storres | polyTargetHardnessToRound = targetHardnessToRound + 1 |
1052 | 194 | storres | ### Significand to integer conversion ratio. |
1053 | 194 | storres | toIntegerFactor = 2^(precision-1) |
1054 | 194 | storres | print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
1055 | 194 | storres | ### Variables and rings for polynomials and root searching. |
1056 | 194 | storres | i=var('i') |
1057 | 194 | storres | t=var('t') |
1058 | 194 | storres | inputFunctionVariable = inputFunction.variables()[0] |
1059 | 194 | storres | function = inputFunction.subs({inputFunctionVariable:i}) |
1060 | 194 | storres | # Polynomial Rings over the integers, for root finding. |
1061 | 194 | storres | Zi = ZZ[i] |
1062 | 194 | storres | Zt = ZZ[t] |
1063 | 194 | storres | Zit = ZZ[i,t] |
1064 | 194 | storres | ## Number of iterations limit. |
1065 | 194 | storres | maxIter = 100000 |
1066 | 194 | storres | # |
1067 | 194 | storres | ## Compute the scaled function and the degree, in their Sollya version |
1068 | 194 | storres | # once for all. |
1069 | 194 | storres | (scaledf, sdlb, sdub, silb, siub) = \ |
1070 | 194 | storres | slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
1071 | 194 | storres | print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
1072 | 194 | storres | scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
1073 | 194 | storres | degreeSo = pobyso_constant_from_int_sa_so(degree) |
1074 | 194 | storres | # |
1075 | 194 | storres | ## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
1076 | 194 | storres | domainBoundsInterval = RRIF(lowerBound, upperBound) |
1077 | 194 | storres | (unscalingFunction, scalingFunction) = \ |
1078 | 194 | storres | slz_interval_scaling_expression(domainBoundsInterval, i) |
1079 | 194 | storres | #print scalingFunction, unscalingFunction |
1080 | 194 | storres | ## Set the Sollya internal precision (with an arbitrary minimum of 192). |
1081 | 194 | storres | internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
1082 | 194 | storres | if internalSollyaPrec < 192: |
1083 | 194 | storres | internalSollyaPrec = 192 |
1084 | 194 | storres | pobyso_set_prec_sa_so(internalSollyaPrec) |
1085 | 194 | storres | print "Sollya internal precision:", internalSollyaPrec |
1086 | 194 | storres | ## Some variables. |
1087 | 194 | storres | ### General variables |
1088 | 194 | storres | lb = sdlb |
1089 | 194 | storres | ub = sdub |
1090 | 194 | storres | nbw = 0 |
1091 | 194 | storres | intervalUlp = ub.ulp() |
1092 | 194 | storres | #### Will be set by slz_interval_and_polynomila_to_sage. |
1093 | 194 | storres | ic = 0 |
1094 | 194 | storres | icAsInt = 0 # Set from ic. |
1095 | 194 | storres | solutionsSet = set() |
1096 | 194 | storres | tsErrorWidth = [] |
1097 | 194 | storres | csErrorVectors = [] |
1098 | 194 | storres | csVectorsResultants = [] |
1099 | 194 | storres | floatP = 0 # Taylor polynomial. |
1100 | 194 | storres | floatPcv = 0 # Ditto with variable change. |
1101 | 194 | storres | intvl = "" # Taylor interval |
1102 | 194 | storres | terr = 0 # Taylor error. |
1103 | 194 | storres | iterCount = 0 |
1104 | 194 | storres | htrnSet = set() |
1105 | 194 | storres | ### Timers and counters. |
1106 | 194 | storres | wallTimeStart = 0 |
1107 | 194 | storres | cpuTimeStart = 0 |
1108 | 194 | storres | taylCondFailedCount = 0 |
1109 | 194 | storres | coppCondFailedCount = 0 |
1110 | 194 | storres | resultCondFailedCount = 0 |
1111 | 194 | storres | coppCondFailed = False |
1112 | 194 | storres | resultCondFailed = False |
1113 | 194 | storres | globalResultsList = [] |
1114 | 194 | storres | basisConstructionsCount = 0 |
1115 | 194 | storres | basisConstructionsFullTime = 0 |
1116 | 194 | storres | basisConstructionTime = 0 |
1117 | 194 | storres | reductionsCount = 0 |
1118 | 194 | storres | reductionsFullTime = 0 |
1119 | 194 | storres | reductionTime = 0 |
1120 | 194 | storres | resultantsComputationsCount = 0 |
1121 | 194 | storres | resultantsComputationsFullTime = 0 |
1122 | 194 | storres | resultantsComputationTime = 0 |
1123 | 194 | storres | rootsComputationsCount = 0 |
1124 | 194 | storres | rootsComputationsFullTime = 0 |
1125 | 194 | storres | rootsComputationTime = 0 |
1126 | 194 | storres | |
1127 | 194 | storres | ## Global times are started here. |
1128 | 194 | storres | wallTimeStart = walltime() |
1129 | 194 | storres | cpuTimeStart = cputime() |
1130 | 194 | storres | ## Main loop. |
1131 | 194 | storres | while True: |
1132 | 194 | storres | if lb >= sdub: |
1133 | 194 | storres | print "Lower bound reached upper bound." |
1134 | 194 | storres | break |
1135 | 194 | storres | if iterCount == maxIter: |
1136 | 194 | storres | print "Reached maxIter. Aborting" |
1137 | 194 | storres | break |
1138 | 194 | storres | iterCount += 1 |
1139 | 194 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1140 | 194 | storres | "log2(numbers)." |
1141 | 194 | storres | ### Compute a Sollya polynomial that will honor the Taylor condition. |
1142 | 194 | storres | prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
1143 | 194 | storres | degreeSo, |
1144 | 194 | storres | lb, |
1145 | 194 | storres | ub, |
1146 | 194 | storres | polyApproxAccur) |
1147 | 194 | storres | ### Convert back the data into Sage space. |
1148 | 194 | storres | (floatP, floatPcv, intvl, ic, terr) = \ |
1149 | 194 | storres | slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
1150 | 194 | storres | prceSo[1], prceSo[2], |
1151 | 194 | storres | prceSo[3])) |
1152 | 194 | storres | intvl = RRIF(intvl) |
1153 | 194 | storres | ## Clean-up Sollya stuff. |
1154 | 194 | storres | for elem in prceSo: |
1155 | 194 | storres | sollya_lib_clear_obj(elem) |
1156 | 194 | storres | #print floatP, floatPcv, intvl, ic, terr |
1157 | 194 | storres | #print floatP |
1158 | 194 | storres | #print intvl.endpoints()[0].n(), \ |
1159 | 194 | storres | # ic.n(), |
1160 | 194 | storres | #intvl.endpoints()[1].n() |
1161 | 194 | storres | ### Check returned data. |
1162 | 194 | storres | #### Is approximation error OK? |
1163 | 194 | storres | if terr > polyApproxAccur: |
1164 | 194 | storres | exceptionErrorMess = \ |
1165 | 194 | storres | "Approximation failed - computed error:" + \ |
1166 | 194 | storres | str(terr) + " - target error: " |
1167 | 194 | storres | exceptionErrorMess += \ |
1168 | 194 | storres | str(polyApproxAccur) + ". Aborting!" |
1169 | 194 | storres | raise Exception(exceptionErrorMess) |
1170 | 194 | storres | #### Is lower bound OK? |
1171 | 194 | storres | if lb != intvl.endpoints()[0]: |
1172 | 194 | storres | exceptionErrorMess = "Wrong lower bound:" + \ |
1173 | 194 | storres | str(lb) + ". Aborting!" |
1174 | 194 | storres | raise Exception(exceptionErrorMess) |
1175 | 194 | storres | #### Set upper bound. |
1176 | 194 | storres | if ub > intvl.endpoints()[1]: |
1177 | 194 | storres | ub = intvl.endpoints()[1] |
1178 | 194 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1179 | 194 | storres | "log2(numbers)." |
1180 | 194 | storres | taylCondFailedCount += 1 |
1181 | 194 | storres | #### Is interval not degenerate? |
1182 | 194 | storres | if lb >= ub: |
1183 | 194 | storres | exceptionErrorMess = "Degenerate interval: " + \ |
1184 | 194 | storres | "lowerBound(" + str(lb) +\ |
1185 | 194 | storres | ")>= upperBound(" + str(ub) + \ |
1186 | 194 | storres | "). Aborting!" |
1187 | 194 | storres | raise Exception(exceptionErrorMess) |
1188 | 194 | storres | #### Is interval center ok? |
1189 | 194 | storres | if ic <= lb or ic >= ub: |
1190 | 194 | storres | exceptionErrorMess = "Invalid interval center for " + \ |
1191 | 194 | storres | str(lb) + ',' + str(ic) + ',' + \ |
1192 | 194 | storres | str(ub) + ". Aborting!" |
1193 | 194 | storres | raise Exception(exceptionErrorMess) |
1194 | 194 | storres | ##### Current interval width and reset future interval width. |
1195 | 194 | storres | bw = ub - lb |
1196 | 194 | storres | nbw = 0 |
1197 | 194 | storres | icAsInt = int(ic * toIntegerFactor) |
1198 | 194 | storres | #### The following ratio is always >= 1. In case we may want to |
1199 | 197 | storres | # enlarge the interval |
1200 | 194 | storres | curTaylErrRat = polyApproxAccur / terr |
1201 | 197 | storres | ### Make the integral transformations. |
1202 | 197 | storres | #### Bounds and interval center. |
1203 | 194 | storres | intIc = int(ic * toIntegerFactor) |
1204 | 194 | storres | intLb = int(lb * toIntegerFactor) - intIc |
1205 | 194 | storres | intUb = int(ub * toIntegerFactor) - intIc |
1206 | 194 | storres | # |
1207 | 197 | storres | #### Polynomials |
1208 | 194 | storres | basisConstructionTime = cputime() |
1209 | 194 | storres | ##### To a polynomial with rational coefficients with rational arguments |
1210 | 194 | storres | ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
1211 | 194 | storres | ##### To a polynomial with rational coefficients with integer arguments |
1212 | 194 | storres | ratIntP = \ |
1213 | 194 | storres | slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
1214 | 197 | storres | ##### Ultimately a multivariate polynomial with integer coefficients |
1215 | 197 | storres | # with integer arguments. |
1216 | 194 | storres | coppersmithTuple = \ |
1217 | 194 | storres | slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
1218 | 194 | storres | precision, |
1219 | 194 | storres | targetHardnessToRound, |
1220 | 194 | storres | i, t) |
1221 | 194 | storres | #### Recover Coppersmith information. |
1222 | 194 | storres | intIntP = coppersmithTuple[0] |
1223 | 194 | storres | N = coppersmithTuple[1] |
1224 | 194 | storres | nAtAlpha = N^alpha |
1225 | 194 | storres | tBound = coppersmithTuple[2] |
1226 | 194 | storres | leastCommonMultiple = coppersmithTuple[3] |
1227 | 194 | storres | iBound = max(abs(intLb),abs(intUb)) |
1228 | 194 | storres | basisConstructionsFullTime += cputime(basisConstructionTime) |
1229 | 194 | storres | basisConstructionsCount += 1 |
1230 | 194 | storres | reductionTime = cputime() |
1231 | 197 | storres | #### Compute the reduced polynomials. |
1232 | 194 | storres | ccReducedPolynomialsList = \ |
1233 | 212 | storres | slz_compute_coppersmith_reduced_polynomials(intIntP, |
1234 | 212 | storres | alpha, |
1235 | 212 | storres | N, |
1236 | 212 | storres | iBound, |
1237 | 212 | storres | tBound) |
1238 | 194 | storres | if ccReducedPolynomialsList is None: |
1239 | 194 | storres | raise Exception("Reduction failed.") |
1240 | 194 | storres | reductionsFullTime += cputime(reductionTime) |
1241 | 194 | storres | reductionsCount += 1 |
1242 | 194 | storres | if len(ccReducedPolynomialsList) < 2: |
1243 | 194 | storres | print "Nothing to form resultants with." |
1244 | 194 | storres | |
1245 | 194 | storres | coppCondFailedCount += 1 |
1246 | 194 | storres | coppCondFailed = True |
1247 | 194 | storres | ##### Apply a different shrink factor according to |
1248 | 194 | storres | # the number of compliant polynomials. |
1249 | 194 | storres | if len(ccReducedPolynomialsList) == 0: |
1250 | 194 | storres | ub = lb + bw * noCoppersmithIntervalShrink |
1251 | 194 | storres | else: # At least one compliant polynomial. |
1252 | 194 | storres | ub = lb + bw * oneCoppersmithIntervalShrink |
1253 | 194 | storres | if ub > sdub: |
1254 | 194 | storres | ub = sdub |
1255 | 194 | storres | if lb == ub: |
1256 | 194 | storres | raise Exception("Cant shrink interval \ |
1257 | 194 | storres | anymore to get Coppersmith condition.") |
1258 | 194 | storres | nbw = 0 |
1259 | 194 | storres | continue |
1260 | 194 | storres | #### We have at least two polynomials. |
1261 | 194 | storres | # Let us try to compute resultants. |
1262 | 194 | storres | # For each resultant computed, go for the solutions. |
1263 | 194 | storres | ##### Build the pairs list. |
1264 | 194 | storres | polyPairsList = [] |
1265 | 194 | storres | for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
1266 | 194 | storres | for polyInnerIndex in xrange(polyOuterIndex+1, |
1267 | 194 | storres | len(ccReducedPolynomialsList)): |
1268 | 194 | storres | polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
1269 | 194 | storres | ccReducedPolynomialsList[polyInnerIndex])) |
1270 | 197 | storres | #### Actual root search. |
1271 | 197 | storres | rootsSet = set() |
1272 | 197 | storres | hasNonNullResultant = False |
1273 | 194 | storres | for polyPair in polyPairsList: |
1274 | 197 | storres | if hasNonNullResultant: |
1275 | 197 | storres | break |
1276 | 197 | storres | resultantsComputationTime = cputime() |
1277 | 197 | storres | currentResultant = \ |
1278 | 197 | storres | slz_resultant(polyPair[0], |
1279 | 197 | storres | polyPair[1], |
1280 | 197 | storres | t) |
1281 | 194 | storres | resultantsComputationsFullTime += cputime(resultantsComputationTime) |
1282 | 194 | storres | resultantsComputationsCount += 1 |
1283 | 197 | storres | if currentResultant is None: |
1284 | 197 | storres | print "Nul resultant" |
1285 | 197 | storres | continue # Next polyPair. |
1286 | 197 | storres | else: |
1287 | 194 | storres | hasNonNullResultant = True |
1288 | 197 | storres | #### We have a non null resultant. From now on, whatever the |
1289 | 197 | storres | # root search yields, no extra root search is necessary. |
1290 | 197 | storres | #### A constant resultant leads to no root. Root search is done. |
1291 | 194 | storres | if currentResultant.degree() < 1: |
1292 | 194 | storres | print "Resultant is constant:", currentResultant |
1293 | 197 | storres | continue # Next polyPair and should break. |
1294 | 197 | storres | #### Actual roots computation. |
1295 | 197 | storres | rootsComputationTime = cputime() |
1296 | 194 | storres | ##### Compute i roots |
1297 | 194 | storres | iRootsList = Zi(currentResultant).roots() |
1298 | 197 | storres | ##### For each iRoot, compute the corresponding tRoots and |
1299 | 197 | storres | # and build populate the .rootsSet. |
1300 | 194 | storres | for iRoot in iRootsList: |
1301 | 194 | storres | ####### Roots returned by roots() are (value, multiplicity) |
1302 | 194 | storres | # tuples. |
1303 | 194 | storres | #print "iRoot:", iRoot |
1304 | 194 | storres | ###### Use the tRoot against each polynomial, alternatively. |
1305 | 197 | storres | for indexInPair in range(0,2): |
1306 | 197 | storres | currentPolynomial = polyPair[indexInPair] |
1307 | 194 | storres | ####### If the polynomial is univariate, just drop it. |
1308 | 194 | storres | if len(currentPolynomial.variables()) < 2: |
1309 | 194 | storres | print " Current polynomial is not in two variables." |
1310 | 197 | storres | continue # Next indexInPair |
1311 | 194 | storres | tRootsList = \ |
1312 | 194 | storres | Zt(currentPolynomial.subs({currentPolynomial.variables()[0]:iRoot[0]})).roots() |
1313 | 194 | storres | ####### The tRootsList can be empty, hence the test. |
1314 | 194 | storres | if len(tRootsList) == 0: |
1315 | 194 | storres | print " No t root." |
1316 | 197 | storres | continue # Next indexInPair |
1317 | 194 | storres | for tRoot in tRootsList: |
1318 | 197 | storres | rootsSet.add((iRoot[0], tRoot[0])) |
1319 | 197 | storres | # End of roots computation. |
1320 | 197 | storres | rootsComputationsFullTime = cputime(rootsComputationTime) |
1321 | 197 | storres | rootsComputationsCount += 1 |
1322 | 197 | storres | # End loop for polyPair in polyParsList. Will break at next iteration. |
1323 | 197 | storres | # since a non null resultant was found. |
1324 | 197 | storres | #### Prepare for results for the current interval.. |
1325 | 194 | storres | intervalResultsList = [] |
1326 | 194 | storres | intervalResultsList.append((lb, ub)) |
1327 | 194 | storres | #### Check roots. |
1328 | 194 | storres | rootsResultsList = [] |
1329 | 197 | storres | for root in rootsSet: |
1330 | 194 | storres | specificRootResultsList = [] |
1331 | 194 | storres | failingBounds = [] |
1332 | 194 | storres | intIntPdivN = intIntP(root[0], root[1]) / N |
1333 | 194 | storres | if int(intIntPdivN) != intIntPdivN: |
1334 | 194 | storres | continue # Next root |
1335 | 194 | storres | # Root qualifies for modular equation, test it for hardness to round. |
1336 | 194 | storres | hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
1337 | 194 | storres | #print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
1338 | 194 | storres | #print scalingFunction |
1339 | 194 | storres | scaledHardToRoundCaseAsFloat = \ |
1340 | 194 | storres | scalingFunction(hardToRoundCaseAsFloat) |
1341 | 194 | storres | print "Candidate HTRNc at x =", \ |
1342 | 194 | storres | scaledHardToRoundCaseAsFloat.n().str(base=2), |
1343 | 194 | storres | if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
1344 | 194 | storres | function, |
1345 | 194 | storres | 2^-(targetHardnessToRound), |
1346 | 194 | storres | RRR): |
1347 | 194 | storres | print hardToRoundCaseAsFloat, "is HTRN case." |
1348 | 194 | storres | if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
1349 | 194 | storres | print "Found in interval." |
1350 | 194 | storres | else: |
1351 | 194 | storres | print "Found out of interval." |
1352 | 194 | storres | specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
1353 | 194 | storres | # Check the root is in the bounds |
1354 | 194 | storres | if abs(root[0]) > iBound or abs(root[1]) > tBound: |
1355 | 197 | storres | print "Root", root, "is out of bounds for modular equation." |
1356 | 194 | storres | if abs(root[0]) > iBound: |
1357 | 194 | storres | print "root[0]:", root[0] |
1358 | 194 | storres | print "i bound:", iBound |
1359 | 194 | storres | failingBounds.append('i') |
1360 | 194 | storres | failingBounds.append(root[0]) |
1361 | 194 | storres | failingBounds.append(iBound) |
1362 | 194 | storres | if abs(root[1]) > tBound: |
1363 | 194 | storres | print "root[1]:", root[1] |
1364 | 194 | storres | print "t bound:", tBound |
1365 | 194 | storres | failingBounds.append('t') |
1366 | 194 | storres | failingBounds.append(root[1]) |
1367 | 194 | storres | failingBounds.append(tBound) |
1368 | 194 | storres | if len(failingBounds) > 0: |
1369 | 194 | storres | specificRootResultsList.append(failingBounds) |
1370 | 194 | storres | else: # From slz_is_htrn... |
1371 | 194 | storres | print "is not an HTRN case." |
1372 | 194 | storres | if len(specificRootResultsList) > 0: |
1373 | 194 | storres | rootsResultsList.append(specificRootResultsList) |
1374 | 194 | storres | if len(rootsResultsList) > 0: |
1375 | 194 | storres | intervalResultsList.append(rootsResultsList) |
1376 | 197 | storres | ### Check if a non null resultant was found. If not shrink the interval. |
1377 | 197 | storres | if not hasNonNullResultant: |
1378 | 197 | storres | print "Only null resultants for this reduction, shrinking interval." |
1379 | 197 | storres | resultCondFailed = True |
1380 | 197 | storres | resultCondFailedCount += 1 |
1381 | 197 | storres | ### Shrink interval for next iteration. |
1382 | 197 | storres | ub = lb + bw * onlyNullResultantsShrink |
1383 | 197 | storres | if ub > sdub: |
1384 | 197 | storres | ub = sdub |
1385 | 197 | storres | nbw = 0 |
1386 | 197 | storres | continue |
1387 | 194 | storres | #### An intervalResultsList has at least the bounds. |
1388 | 194 | storres | globalResultsList.append(intervalResultsList) |
1389 | 194 | storres | #### Compute an incremented width for next upper bound, only |
1390 | 194 | storres | # if not Coppersmith condition nor resultant condition |
1391 | 194 | storres | # failed at the previous run. |
1392 | 194 | storres | if not coppCondFailed and not resultCondFailed: |
1393 | 194 | storres | nbw = noErrorIntervalStretch * bw |
1394 | 194 | storres | else: |
1395 | 194 | storres | nbw = bw |
1396 | 194 | storres | ##### Reset the failure flags. They will be raised |
1397 | 194 | storres | # again if needed. |
1398 | 194 | storres | coppCondFailed = False |
1399 | 194 | storres | resultCondFailed = False |
1400 | 194 | storres | #### For next iteration (at end of loop) |
1401 | 194 | storres | #print "nbw:", nbw |
1402 | 194 | storres | lb = ub |
1403 | 194 | storres | ub += nbw |
1404 | 194 | storres | if ub > sdub: |
1405 | 194 | storres | ub = sdub |
1406 | 194 | storres | |
1407 | 194 | storres | # End while True |
1408 | 194 | storres | ## Main loop just ended. |
1409 | 194 | storres | globalWallTime = walltime(wallTimeStart) |
1410 | 194 | storres | globalCpuTime = cputime(cpuTimeStart) |
1411 | 194 | storres | ## Output results |
1412 | 194 | storres | print ; print "Intervals and HTRNs" ; print |
1413 | 194 | storres | for intervalResultsList in globalResultsList: |
1414 | 222 | storres | intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
1415 | 222 | storres | "," + str(intervalResultsList[0][1]) + "]" |
1416 | 222 | storres | print intervalResultString, |
1417 | 194 | storres | if len(intervalResultsList) > 1: |
1418 | 194 | storres | rootsResultsList = intervalResultsList[1] |
1419 | 222 | storres | specificRootResultIndex = 0 |
1420 | 194 | storres | for specificRootResultsList in rootsResultsList: |
1421 | 222 | storres | if specificRootResultIndex == 0: |
1422 | 222 | storres | print "\t", specificRootResultsList[0], |
1423 | 222 | storres | else: |
1424 | 222 | storres | print " " * len(intervalResultString), "\t", \ |
1425 | 222 | storres | specificRootResultsList[0], |
1426 | 194 | storres | if len(specificRootResultsList) > 1: |
1427 | 222 | storres | print specificRootResultsList[1] |
1428 | 222 | storres | specificRootResultIndex += 1 |
1429 | 194 | storres | print ; print |
1430 | 194 | storres | #print globalResultsList |
1431 | 194 | storres | # |
1432 | 194 | storres | print "Timers and counters" |
1433 | 194 | storres | |
1434 | 194 | storres | print "Number of iterations:", iterCount |
1435 | 194 | storres | print "Taylor condition failures:", taylCondFailedCount |
1436 | 194 | storres | print "Coppersmith condition failures:", coppCondFailedCount |
1437 | 194 | storres | print "Resultant condition failures:", resultCondFailedCount |
1438 | 194 | storres | print "Iterations count: ", iterCount |
1439 | 194 | storres | print "Number of intervals:", len(globalResultsList) |
1440 | 194 | storres | print "Number of basis constructions:", basisConstructionsCount |
1441 | 194 | storres | print "Total CPU time spent in basis constructions:", \ |
1442 | 194 | storres | basisConstructionsFullTime |
1443 | 194 | storres | if basisConstructionsCount != 0: |
1444 | 194 | storres | print "Average basis construction CPU time:", \ |
1445 | 194 | storres | basisConstructionsFullTime/basisConstructionsCount |
1446 | 194 | storres | print "Number of reductions:", reductionsCount |
1447 | 194 | storres | print "Total CPU time spent in reductions:", reductionsFullTime |
1448 | 194 | storres | if reductionsCount != 0: |
1449 | 194 | storres | print "Average reduction CPU time:", \ |
1450 | 194 | storres | reductionsFullTime/reductionsCount |
1451 | 194 | storres | print "Number of resultants computation rounds:", \ |
1452 | 194 | storres | resultantsComputationsCount |
1453 | 194 | storres | print "Total CPU time spent in resultants computation rounds:", \ |
1454 | 194 | storres | resultantsComputationsFullTime |
1455 | 194 | storres | if resultantsComputationsCount != 0: |
1456 | 194 | storres | print "Average resultants computation round CPU time:", \ |
1457 | 194 | storres | resultantsComputationsFullTime/resultantsComputationsCount |
1458 | 194 | storres | print "Number of root finding rounds:", rootsComputationsCount |
1459 | 194 | storres | print "Total CPU time spent in roots finding rounds:", \ |
1460 | 194 | storres | rootsComputationsFullTime |
1461 | 194 | storres | if rootsComputationsCount != 0: |
1462 | 194 | storres | print "Average roots finding round CPU time:", \ |
1463 | 194 | storres | rootsComputationsFullTime/rootsComputationsCount |
1464 | 194 | storres | print "Global Wall time:", globalWallTime |
1465 | 194 | storres | print "Global CPU time:", globalCpuTime |
1466 | 194 | storres | ## Output counters |
1467 | 194 | storres | # End srs_runSLZ-v02 |
1468 | 194 | storres | |
1469 | 212 | storres | def srs_run_SLZ_v03(inputFunction, |
1470 | 212 | storres | inputLowerBound, |
1471 | 212 | storres | inputUpperBound, |
1472 | 212 | storres | alpha, |
1473 | 212 | storres | degree, |
1474 | 212 | storres | precision, |
1475 | 212 | storres | emin, |
1476 | 212 | storres | emax, |
1477 | 212 | storres | targetHardnessToRound, |
1478 | 212 | storres | debug = False): |
1479 | 212 | storres | """ |
1480 | 212 | storres | Changes from V2: |
1481 | 212 | storres | Root search is changed: |
1482 | 212 | storres | - we compute the resultants in i and in t; |
1483 | 212 | storres | - we compute the roots set of each of these resultants; |
1484 | 212 | storres | - we combine all the possible pairs between the two sets; |
1485 | 212 | storres | - we check these pairs in polynomials for correctness. |
1486 | 212 | storres | Changes from V1: |
1487 | 212 | storres | 1- check for roots as soon as a resultant is computed; |
1488 | 212 | storres | 2- once a non null resultant is found, check for roots; |
1489 | 212 | storres | 3- constant resultant == no root. |
1490 | 212 | storres | """ |
1491 | 212 | storres | |
1492 | 212 | storres | if debug: |
1493 | 212 | storres | print "Function :", inputFunction |
1494 | 212 | storres | print "Lower bound :", inputLowerBound |
1495 | 212 | storres | print "Upper bounds :", inputUpperBound |
1496 | 212 | storres | print "Alpha :", alpha |
1497 | 212 | storres | print "Degree :", degree |
1498 | 212 | storres | print "Precision :", precision |
1499 | 212 | storres | print "Emin :", emin |
1500 | 212 | storres | print "Emax :", emax |
1501 | 212 | storres | print "Target hardness-to-round:", targetHardnessToRound |
1502 | 212 | storres | |
1503 | 212 | storres | ## Important constants. |
1504 | 212 | storres | ### Stretch the interval if no error happens. |
1505 | 212 | storres | noErrorIntervalStretch = 1 + 2^(-5) |
1506 | 212 | storres | ### If no vector validates the Coppersmith condition, shrink the interval |
1507 | 212 | storres | # by the following factor. |
1508 | 212 | storres | noCoppersmithIntervalShrink = 1/2 |
1509 | 212 | storres | ### If only (or at least) one vector validates the Coppersmith condition, |
1510 | 212 | storres | # shrink the interval by the following factor. |
1511 | 212 | storres | oneCoppersmithIntervalShrink = 3/4 |
1512 | 212 | storres | #### If only null resultants are found, shrink the interval by the |
1513 | 212 | storres | # following factor. |
1514 | 212 | storres | onlyNullResultantsShrink = 3/4 |
1515 | 212 | storres | ## Structures. |
1516 | 212 | storres | RRR = RealField(precision) |
1517 | 212 | storres | RRIF = RealIntervalField(precision) |
1518 | 212 | storres | ## Converting input bound into the "right" field. |
1519 | 212 | storres | lowerBound = RRR(inputLowerBound) |
1520 | 212 | storres | upperBound = RRR(inputUpperBound) |
1521 | 212 | storres | ## Before going any further, check domain and image binade conditions. |
1522 | 212 | storres | print inputFunction(1).n() |
1523 | 212 | storres | output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
1524 | 212 | storres | if output is None: |
1525 | 212 | storres | print "Invalid domain/image binades. Domain:",\ |
1526 | 212 | storres | lowerBound, upperBound, "Images:", \ |
1527 | 212 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
1528 | 212 | storres | raise Exception("Invalid domain/image binades.") |
1529 | 212 | storres | lb = output[0] ; ub = output[1] |
1530 | 212 | storres | if lb != lowerBound or ub != upperBound: |
1531 | 212 | storres | print "lb:", lb, " - ub:", ub |
1532 | 212 | storres | print "Invalid domain/image binades. Domain:",\ |
1533 | 212 | storres | lowerBound, upperBound, "Images:", \ |
1534 | 212 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
1535 | 212 | storres | raise Exception("Invalid domain/image binades.") |
1536 | 212 | storres | # |
1537 | 212 | storres | ## Progam initialization |
1538 | 212 | storres | ### Approximation polynomial accuracy and hardness to round. |
1539 | 212 | storres | polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
1540 | 212 | storres | polyTargetHardnessToRound = targetHardnessToRound + 1 |
1541 | 212 | storres | ### Significand to integer conversion ratio. |
1542 | 212 | storres | toIntegerFactor = 2^(precision-1) |
1543 | 212 | storres | print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
1544 | 212 | storres | ### Variables and rings for polynomials and root searching. |
1545 | 212 | storres | i=var('i') |
1546 | 212 | storres | t=var('t') |
1547 | 212 | storres | inputFunctionVariable = inputFunction.variables()[0] |
1548 | 212 | storres | function = inputFunction.subs({inputFunctionVariable:i}) |
1549 | 212 | storres | # Polynomial Rings over the integers, for root finding. |
1550 | 212 | storres | Zi = ZZ[i] |
1551 | 212 | storres | Zt = ZZ[t] |
1552 | 212 | storres | Zit = ZZ[i,t] |
1553 | 212 | storres | ## Number of iterations limit. |
1554 | 212 | storres | maxIter = 100000 |
1555 | 212 | storres | # |
1556 | 212 | storres | ## Compute the scaled function and the degree, in their Sollya version |
1557 | 212 | storres | # once for all. |
1558 | 212 | storres | (scaledf, sdlb, sdub, silb, siub) = \ |
1559 | 212 | storres | slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
1560 | 212 | storres | print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
1561 | 212 | storres | scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
1562 | 212 | storres | degreeSo = pobyso_constant_from_int_sa_so(degree) |
1563 | 212 | storres | # |
1564 | 212 | storres | ## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
1565 | 212 | storres | domainBoundsInterval = RRIF(lowerBound, upperBound) |
1566 | 212 | storres | (unscalingFunction, scalingFunction) = \ |
1567 | 212 | storres | slz_interval_scaling_expression(domainBoundsInterval, i) |
1568 | 212 | storres | #print scalingFunction, unscalingFunction |
1569 | 212 | storres | ## Set the Sollya internal precision (with an arbitrary minimum of 192). |
1570 | 212 | storres | internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
1571 | 212 | storres | if internalSollyaPrec < 192: |
1572 | 212 | storres | internalSollyaPrec = 192 |
1573 | 212 | storres | pobyso_set_prec_sa_so(internalSollyaPrec) |
1574 | 212 | storres | print "Sollya internal precision:", internalSollyaPrec |
1575 | 212 | storres | ## Some variables. |
1576 | 212 | storres | ### General variables |
1577 | 212 | storres | lb = sdlb |
1578 | 212 | storres | ub = sdub |
1579 | 212 | storres | nbw = 0 |
1580 | 212 | storres | intervalUlp = ub.ulp() |
1581 | 212 | storres | #### Will be set by slz_interval_and_polynomila_to_sage. |
1582 | 212 | storres | ic = 0 |
1583 | 212 | storres | icAsInt = 0 # Set from ic. |
1584 | 212 | storres | solutionsSet = set() |
1585 | 212 | storres | tsErrorWidth = [] |
1586 | 212 | storres | csErrorVectors = [] |
1587 | 212 | storres | csVectorsResultants = [] |
1588 | 212 | storres | floatP = 0 # Taylor polynomial. |
1589 | 212 | storres | floatPcv = 0 # Ditto with variable change. |
1590 | 212 | storres | intvl = "" # Taylor interval |
1591 | 212 | storres | terr = 0 # Taylor error. |
1592 | 212 | storres | iterCount = 0 |
1593 | 212 | storres | htrnSet = set() |
1594 | 212 | storres | ### Timers and counters. |
1595 | 212 | storres | wallTimeStart = 0 |
1596 | 212 | storres | cpuTimeStart = 0 |
1597 | 212 | storres | taylCondFailedCount = 0 |
1598 | 212 | storres | coppCondFailedCount = 0 |
1599 | 212 | storres | resultCondFailedCount = 0 |
1600 | 212 | storres | coppCondFailed = False |
1601 | 212 | storres | resultCondFailed = False |
1602 | 212 | storres | globalResultsList = [] |
1603 | 212 | storres | basisConstructionsCount = 0 |
1604 | 212 | storres | basisConstructionsFullTime = 0 |
1605 | 212 | storres | basisConstructionTime = 0 |
1606 | 212 | storres | reductionsCount = 0 |
1607 | 212 | storres | reductionsFullTime = 0 |
1608 | 212 | storres | reductionTime = 0 |
1609 | 212 | storres | resultantsComputationsCount = 0 |
1610 | 212 | storres | resultantsComputationsFullTime = 0 |
1611 | 212 | storres | resultantsComputationTime = 0 |
1612 | 212 | storres | rootsComputationsCount = 0 |
1613 | 212 | storres | rootsComputationsFullTime = 0 |
1614 | 212 | storres | rootsComputationTime = 0 |
1615 | 212 | storres | |
1616 | 212 | storres | ## Global times are started here. |
1617 | 212 | storres | wallTimeStart = walltime() |
1618 | 212 | storres | cpuTimeStart = cputime() |
1619 | 212 | storres | ## Main loop. |
1620 | 212 | storres | while True: |
1621 | 212 | storres | if lb >= sdub: |
1622 | 212 | storres | print "Lower bound reached upper bound." |
1623 | 212 | storres | break |
1624 | 212 | storres | if iterCount == maxIter: |
1625 | 212 | storres | print "Reached maxIter. Aborting" |
1626 | 212 | storres | break |
1627 | 212 | storres | iterCount += 1 |
1628 | 212 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1629 | 212 | storres | "log2(numbers)." |
1630 | 212 | storres | ### Compute a Sollya polynomial that will honor the Taylor condition. |
1631 | 212 | storres | prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
1632 | 212 | storres | degreeSo, |
1633 | 212 | storres | lb, |
1634 | 212 | storres | ub, |
1635 | 212 | storres | polyApproxAccur) |
1636 | 212 | storres | ### Convert back the data into Sage space. |
1637 | 212 | storres | (floatP, floatPcv, intvl, ic, terr) = \ |
1638 | 212 | storres | slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
1639 | 212 | storres | prceSo[1], prceSo[2], |
1640 | 212 | storres | prceSo[3])) |
1641 | 212 | storres | intvl = RRIF(intvl) |
1642 | 212 | storres | ## Clean-up Sollya stuff. |
1643 | 212 | storres | for elem in prceSo: |
1644 | 212 | storres | sollya_lib_clear_obj(elem) |
1645 | 212 | storres | #print floatP, floatPcv, intvl, ic, terr |
1646 | 212 | storres | #print floatP |
1647 | 212 | storres | #print intvl.endpoints()[0].n(), \ |
1648 | 212 | storres | # ic.n(), |
1649 | 212 | storres | #intvl.endpoints()[1].n() |
1650 | 212 | storres | ### Check returned data. |
1651 | 212 | storres | #### Is approximation error OK? |
1652 | 212 | storres | if terr > polyApproxAccur: |
1653 | 212 | storres | exceptionErrorMess = \ |
1654 | 212 | storres | "Approximation failed - computed error:" + \ |
1655 | 212 | storres | str(terr) + " - target error: " |
1656 | 212 | storres | exceptionErrorMess += \ |
1657 | 212 | storres | str(polyApproxAccur) + ". Aborting!" |
1658 | 212 | storres | raise Exception(exceptionErrorMess) |
1659 | 212 | storres | #### Is lower bound OK? |
1660 | 212 | storres | if lb != intvl.endpoints()[0]: |
1661 | 212 | storres | exceptionErrorMess = "Wrong lower bound:" + \ |
1662 | 212 | storres | str(lb) + ". Aborting!" |
1663 | 212 | storres | raise Exception(exceptionErrorMess) |
1664 | 212 | storres | #### Set upper bound. |
1665 | 212 | storres | if ub > intvl.endpoints()[1]: |
1666 | 212 | storres | ub = intvl.endpoints()[1] |
1667 | 212 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1668 | 212 | storres | "log2(numbers)." |
1669 | 212 | storres | taylCondFailedCount += 1 |
1670 | 212 | storres | #### Is interval not degenerate? |
1671 | 212 | storres | if lb >= ub: |
1672 | 212 | storres | exceptionErrorMess = "Degenerate interval: " + \ |
1673 | 212 | storres | "lowerBound(" + str(lb) +\ |
1674 | 212 | storres | ")>= upperBound(" + str(ub) + \ |
1675 | 212 | storres | "). Aborting!" |
1676 | 212 | storres | raise Exception(exceptionErrorMess) |
1677 | 212 | storres | #### Is interval center ok? |
1678 | 212 | storres | if ic <= lb or ic >= ub: |
1679 | 212 | storres | exceptionErrorMess = "Invalid interval center for " + \ |
1680 | 212 | storres | str(lb) + ',' + str(ic) + ',' + \ |
1681 | 212 | storres | str(ub) + ". Aborting!" |
1682 | 212 | storres | raise Exception(exceptionErrorMess) |
1683 | 212 | storres | ##### Current interval width and reset future interval width. |
1684 | 212 | storres | bw = ub - lb |
1685 | 212 | storres | nbw = 0 |
1686 | 212 | storres | icAsInt = int(ic * toIntegerFactor) |
1687 | 212 | storres | #### The following ratio is always >= 1. In case we may want to |
1688 | 212 | storres | # enlarge the interval |
1689 | 212 | storres | curTaylErrRat = polyApproxAccur / terr |
1690 | 212 | storres | ### Make the integral transformations. |
1691 | 212 | storres | #### Bounds and interval center. |
1692 | 212 | storres | intIc = int(ic * toIntegerFactor) |
1693 | 212 | storres | intLb = int(lb * toIntegerFactor) - intIc |
1694 | 212 | storres | intUb = int(ub * toIntegerFactor) - intIc |
1695 | 212 | storres | # |
1696 | 212 | storres | #### Polynomials |
1697 | 212 | storres | basisConstructionTime = cputime() |
1698 | 212 | storres | ##### To a polynomial with rational coefficients with rational arguments |
1699 | 212 | storres | ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
1700 | 212 | storres | ##### To a polynomial with rational coefficients with integer arguments |
1701 | 212 | storres | ratIntP = \ |
1702 | 212 | storres | slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
1703 | 212 | storres | ##### Ultimately a multivariate polynomial with integer coefficients |
1704 | 212 | storres | # with integer arguments. |
1705 | 212 | storres | coppersmithTuple = \ |
1706 | 212 | storres | slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
1707 | 212 | storres | precision, |
1708 | 212 | storres | targetHardnessToRound, |
1709 | 212 | storres | i, t) |
1710 | 212 | storres | #### Recover Coppersmith information. |
1711 | 212 | storres | intIntP = coppersmithTuple[0] |
1712 | 212 | storres | N = coppersmithTuple[1] |
1713 | 212 | storres | nAtAlpha = N^alpha |
1714 | 212 | storres | tBound = coppersmithTuple[2] |
1715 | 212 | storres | leastCommonMultiple = coppersmithTuple[3] |
1716 | 212 | storres | iBound = max(abs(intLb),abs(intUb)) |
1717 | 212 | storres | basisConstructionsFullTime += cputime(basisConstructionTime) |
1718 | 212 | storres | basisConstructionsCount += 1 |
1719 | 212 | storres | reductionTime = cputime() |
1720 | 212 | storres | #### Compute the reduced polynomials. |
1721 | 212 | storres | ccReducedPolynomialsList = \ |
1722 | 212 | storres | slz_compute_coppersmith_reduced_polynomials(intIntP, |
1723 | 212 | storres | alpha, |
1724 | 212 | storres | N, |
1725 | 212 | storres | iBound, |
1726 | 212 | storres | tBound) |
1727 | 212 | storres | if ccReducedPolynomialsList is None: |
1728 | 212 | storres | raise Exception("Reduction failed.") |
1729 | 212 | storres | reductionsFullTime += cputime(reductionTime) |
1730 | 212 | storres | reductionsCount += 1 |
1731 | 212 | storres | if len(ccReducedPolynomialsList) < 2: |
1732 | 212 | storres | print "Nothing to form resultants with." |
1733 | 212 | storres | |
1734 | 212 | storres | coppCondFailedCount += 1 |
1735 | 212 | storres | coppCondFailed = True |
1736 | 212 | storres | ##### Apply a different shrink factor according to |
1737 | 212 | storres | # the number of compliant polynomials. |
1738 | 212 | storres | if len(ccReducedPolynomialsList) == 0: |
1739 | 212 | storres | ub = lb + bw * noCoppersmithIntervalShrink |
1740 | 212 | storres | else: # At least one compliant polynomial. |
1741 | 212 | storres | ub = lb + bw * oneCoppersmithIntervalShrink |
1742 | 212 | storres | if ub > sdub: |
1743 | 212 | storres | ub = sdub |
1744 | 212 | storres | if lb == ub: |
1745 | 212 | storres | raise Exception("Cant shrink interval \ |
1746 | 212 | storres | anymore to get Coppersmith condition.") |
1747 | 212 | storres | nbw = 0 |
1748 | 212 | storres | continue |
1749 | 212 | storres | #### We have at least two polynomials. |
1750 | 212 | storres | # Let us try to compute resultants. |
1751 | 212 | storres | # For each resultant computed, go for the solutions. |
1752 | 212 | storres | ##### Build the pairs list. |
1753 | 212 | storres | polyPairsList = [] |
1754 | 212 | storres | for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
1755 | 212 | storres | for polyInnerIndex in xrange(polyOuterIndex+1, |
1756 | 212 | storres | len(ccReducedPolynomialsList)): |
1757 | 212 | storres | polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
1758 | 212 | storres | ccReducedPolynomialsList[polyInnerIndex])) |
1759 | 212 | storres | #### Actual root search. |
1760 | 212 | storres | rootsSet = set() |
1761 | 212 | storres | hasNonNullResultant = False |
1762 | 212 | storres | for polyPair in polyPairsList: |
1763 | 212 | storres | if hasNonNullResultant: |
1764 | 212 | storres | break |
1765 | 212 | storres | resultantsComputationTime = cputime() |
1766 | 212 | storres | currentResultantI = \ |
1767 | 212 | storres | slz_resultant(polyPair[0], |
1768 | 212 | storres | polyPair[1], |
1769 | 212 | storres | t) |
1770 | 212 | storres | resultantsComputationsCount += 1 |
1771 | 212 | storres | if currentResultantI is None: |
1772 | 212 | storres | resultantsComputationsFullTime += \ |
1773 | 212 | storres | cputime(resultantsComputationTime) |
1774 | 212 | storres | print "Nul resultant" |
1775 | 212 | storres | continue # Next polyPair. |
1776 | 212 | storres | currentResultantT = \ |
1777 | 212 | storres | slz_resultant(polyPair[0], |
1778 | 212 | storres | polyPair[1], |
1779 | 212 | storres | i) |
1780 | 212 | storres | resultantsComputationsFullTime += cputime(resultantsComputationTime) |
1781 | 212 | storres | resultantsComputationsCount += 1 |
1782 | 212 | storres | if currentResultantT is None: |
1783 | 212 | storres | print "Nul resultant" |
1784 | 212 | storres | continue # Next polyPair. |
1785 | 212 | storres | else: |
1786 | 212 | storres | hasNonNullResultant = True |
1787 | 212 | storres | #### We have a non null resultants pair. From now on, whatever the |
1788 | 212 | storres | # root search yields, no extra root search is necessary. |
1789 | 212 | storres | #### A constant resultant leads to no root. Root search is done. |
1790 | 212 | storres | if currentResultantI.degree() < 1: |
1791 | 212 | storres | print "Resultant is constant:", currentResultantI |
1792 | 212 | storres | break # Next polyPair and should break. |
1793 | 212 | storres | if currentResultantT.degree() < 1: |
1794 | 212 | storres | print "Resultant is constant:", currentResultantT |
1795 | 212 | storres | break # Next polyPair and should break. |
1796 | 212 | storres | #### Actual roots computation. |
1797 | 212 | storres | rootsComputationTime = cputime() |
1798 | 212 | storres | ##### Compute i roots |
1799 | 212 | storres | iRootsList = Zi(currentResultantI).roots() |
1800 | 212 | storres | rootsComputationsCount += 1 |
1801 | 212 | storres | if len(iRootsList) == 0: |
1802 | 212 | storres | rootsComputationsFullTime = cputime(rootsComputationTime) |
1803 | 212 | storres | print "No roots in \"i\"." |
1804 | 212 | storres | break # No roots in i. |
1805 | 212 | storres | tRootsList = Zt(currentResultantT).roots() |
1806 | 212 | storres | rootsComputationsFullTime = cputime(rootsComputationTime) |
1807 | 212 | storres | rootsComputationsCount += 1 |
1808 | 212 | storres | if len(tRootsList) == 0: |
1809 | 212 | storres | print "No roots in \"t\"." |
1810 | 212 | storres | break # No roots in i. |
1811 | 212 | storres | ##### For each iRoot, get a tRoot and check against the polynomials. |
1812 | 212 | storres | for iRoot in iRootsList: |
1813 | 212 | storres | ####### Roots returned by roots() are (value, multiplicity) |
1814 | 212 | storres | # tuples. |
1815 | 212 | storres | #print "iRoot:", iRoot |
1816 | 212 | storres | for tRoot in tRootsList: |
1817 | 212 | storres | ###### Use the tRoot against each polynomial, alternatively. |
1818 | 212 | storres | if polyPair[0](iRoot[0],tRoot[0]) != 0: |
1819 | 212 | storres | continue |
1820 | 212 | storres | if polyPair[1](iRoot[0],tRoot[0]) != 0: |
1821 | 212 | storres | continue |
1822 | 212 | storres | rootsSet.add((iRoot[0], tRoot[0])) |
1823 | 212 | storres | # End of roots computation. |
1824 | 212 | storres | # End loop for polyPair in polyParsList. Will break at next iteration. |
1825 | 212 | storres | # since a non null resultant was found. |
1826 | 212 | storres | #### Prepare for results for the current interval.. |
1827 | 212 | storres | intervalResultsList = [] |
1828 | 212 | storres | intervalResultsList.append((lb, ub)) |
1829 | 212 | storres | #### Check roots. |
1830 | 212 | storres | rootsResultsList = [] |
1831 | 212 | storres | for root in rootsSet: |
1832 | 212 | storres | specificRootResultsList = [] |
1833 | 212 | storres | failingBounds = [] |
1834 | 212 | storres | intIntPdivN = intIntP(root[0], root[1]) / N |
1835 | 212 | storres | if int(intIntPdivN) != intIntPdivN: |
1836 | 212 | storres | continue # Next root |
1837 | 212 | storres | # Root qualifies for modular equation, test it for hardness to round. |
1838 | 212 | storres | hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
1839 | 212 | storres | #print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
1840 | 212 | storres | #print scalingFunction |
1841 | 212 | storres | scaledHardToRoundCaseAsFloat = \ |
1842 | 212 | storres | scalingFunction(hardToRoundCaseAsFloat) |
1843 | 212 | storres | print "Candidate HTRNc at x =", \ |
1844 | 212 | storres | scaledHardToRoundCaseAsFloat.n().str(base=2), |
1845 | 212 | storres | if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
1846 | 212 | storres | function, |
1847 | 212 | storres | 2^-(targetHardnessToRound), |
1848 | 212 | storres | RRR): |
1849 | 212 | storres | print hardToRoundCaseAsFloat, "is HTRN case." |
1850 | 212 | storres | if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
1851 | 212 | storres | print "Found in interval." |
1852 | 212 | storres | else: |
1853 | 212 | storres | print "Found out of interval." |
1854 | 212 | storres | specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
1855 | 212 | storres | # Check the root is in the bounds |
1856 | 212 | storres | if abs(root[0]) > iBound or abs(root[1]) > tBound: |
1857 | 212 | storres | print "Root", root, "is out of bounds for modular equation." |
1858 | 212 | storres | if abs(root[0]) > iBound: |
1859 | 212 | storres | print "root[0]:", root[0] |
1860 | 212 | storres | print "i bound:", iBound |
1861 | 212 | storres | failingBounds.append('i') |
1862 | 212 | storres | failingBounds.append(root[0]) |
1863 | 212 | storres | failingBounds.append(iBound) |
1864 | 212 | storres | if abs(root[1]) > tBound: |
1865 | 212 | storres | print "root[1]:", root[1] |
1866 | 212 | storres | print "t bound:", tBound |
1867 | 212 | storres | failingBounds.append('t') |
1868 | 212 | storres | failingBounds.append(root[1]) |
1869 | 212 | storres | failingBounds.append(tBound) |
1870 | 212 | storres | if len(failingBounds) > 0: |
1871 | 212 | storres | specificRootResultsList.append(failingBounds) |
1872 | 212 | storres | else: # From slz_is_htrn... |
1873 | 212 | storres | print "is not an HTRN case." |
1874 | 212 | storres | if len(specificRootResultsList) > 0: |
1875 | 212 | storres | rootsResultsList.append(specificRootResultsList) |
1876 | 212 | storres | if len(rootsResultsList) > 0: |
1877 | 212 | storres | intervalResultsList.append(rootsResultsList) |
1878 | 212 | storres | ### Check if a non null resultant was found. If not shrink the interval. |
1879 | 212 | storres | if not hasNonNullResultant: |
1880 | 212 | storres | print "Only null resultants for this reduction, shrinking interval." |
1881 | 212 | storres | resultCondFailed = True |
1882 | 212 | storres | resultCondFailedCount += 1 |
1883 | 212 | storres | ### Shrink interval for next iteration. |
1884 | 212 | storres | ub = lb + bw * onlyNullResultantsShrink |
1885 | 212 | storres | if ub > sdub: |
1886 | 212 | storres | ub = sdub |
1887 | 212 | storres | nbw = 0 |
1888 | 212 | storres | continue |
1889 | 212 | storres | #### An intervalResultsList has at least the bounds. |
1890 | 212 | storres | globalResultsList.append(intervalResultsList) |
1891 | 212 | storres | #### Compute an incremented width for next upper bound, only |
1892 | 212 | storres | # if not Coppersmith condition nor resultant condition |
1893 | 212 | storres | # failed at the previous run. |
1894 | 212 | storres | if not coppCondFailed and not resultCondFailed: |
1895 | 212 | storres | nbw = noErrorIntervalStretch * bw |
1896 | 212 | storres | else: |
1897 | 212 | storres | nbw = bw |
1898 | 212 | storres | ##### Reset the failure flags. They will be raised |
1899 | 212 | storres | # again if needed. |
1900 | 212 | storres | coppCondFailed = False |
1901 | 212 | storres | resultCondFailed = False |
1902 | 212 | storres | #### For next iteration (at end of loop) |
1903 | 212 | storres | #print "nbw:", nbw |
1904 | 212 | storres | lb = ub |
1905 | 212 | storres | ub += nbw |
1906 | 212 | storres | if ub > sdub: |
1907 | 212 | storres | ub = sdub |
1908 | 212 | storres | |
1909 | 212 | storres | # End while True |
1910 | 212 | storres | ## Main loop just ended. |
1911 | 212 | storres | globalWallTime = walltime(wallTimeStart) |
1912 | 212 | storres | globalCpuTime = cputime(cpuTimeStart) |
1913 | 212 | storres | ## Output results |
1914 | 212 | storres | print ; print "Intervals and HTRNs" ; print |
1915 | 212 | storres | for intervalResultsList in globalResultsList: |
1916 | 222 | storres | intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
1917 | 222 | storres | "," + str(intervalResultsList[0][1]) + "]" |
1918 | 222 | storres | print intervalResultString, |
1919 | 212 | storres | if len(intervalResultsList) > 1: |
1920 | 212 | storres | rootsResultsList = intervalResultsList[1] |
1921 | 222 | storres | specificRootResultIndex = 0 |
1922 | 212 | storres | for specificRootResultsList in rootsResultsList: |
1923 | 222 | storres | if specificRootResultIndex == 0: |
1924 | 222 | storres | print "\t", specificRootResultsList[0], |
1925 | 222 | storres | else: |
1926 | 222 | storres | print " " * len(intervalResultString), "\t", \ |
1927 | 222 | storres | specificRootResultsList[0], |
1928 | 212 | storres | if len(specificRootResultsList) > 1: |
1929 | 222 | storres | print specificRootResultsList[1] |
1930 | 222 | storres | specificRootResultIndex += 1 |
1931 | 212 | storres | print ; print |
1932 | 212 | storres | #print globalResultsList |
1933 | 212 | storres | # |
1934 | 212 | storres | print "Timers and counters" |
1935 | 212 | storres | |
1936 | 212 | storres | print "Number of iterations:", iterCount |
1937 | 212 | storres | print "Taylor condition failures:", taylCondFailedCount |
1938 | 212 | storres | print "Coppersmith condition failures:", coppCondFailedCount |
1939 | 212 | storres | print "Resultant condition failures:", resultCondFailedCount |
1940 | 212 | storres | print "Iterations count: ", iterCount |
1941 | 212 | storres | print "Number of intervals:", len(globalResultsList) |
1942 | 212 | storres | print "Number of basis constructions:", basisConstructionsCount |
1943 | 212 | storres | print "Total CPU time spent in basis constructions:", \ |
1944 | 212 | storres | basisConstructionsFullTime |
1945 | 212 | storres | if basisConstructionsCount != 0: |
1946 | 212 | storres | print "Average basis construction CPU time:", \ |
1947 | 212 | storres | basisConstructionsFullTime/basisConstructionsCount |
1948 | 212 | storres | print "Number of reductions:", reductionsCount |
1949 | 212 | storres | print "Total CPU time spent in reductions:", reductionsFullTime |
1950 | 212 | storres | if reductionsCount != 0: |
1951 | 212 | storres | print "Average reduction CPU time:", \ |
1952 | 212 | storres | reductionsFullTime/reductionsCount |
1953 | 212 | storres | print "Number of resultants computation rounds:", \ |
1954 | 212 | storres | resultantsComputationsCount |
1955 | 212 | storres | print "Total CPU time spent in resultants computation rounds:", \ |
1956 | 212 | storres | resultantsComputationsFullTime |
1957 | 212 | storres | if resultantsComputationsCount != 0: |
1958 | 212 | storres | print "Average resultants computation round CPU time:", \ |
1959 | 212 | storres | resultantsComputationsFullTime/resultantsComputationsCount |
1960 | 212 | storres | print "Number of root finding rounds:", rootsComputationsCount |
1961 | 212 | storres | print "Total CPU time spent in roots finding rounds:", \ |
1962 | 212 | storres | rootsComputationsFullTime |
1963 | 212 | storres | if rootsComputationsCount != 0: |
1964 | 212 | storres | print "Average roots finding round CPU time:", \ |
1965 | 212 | storres | rootsComputationsFullTime/rootsComputationsCount |
1966 | 212 | storres | print "Global Wall time:", globalWallTime |
1967 | 212 | storres | print "Global CPU time:", globalCpuTime |
1968 | 212 | storres | ## Output counters |
1969 | 212 | storres | # End srs_runSLZ-v03 |
1970 | 212 | storres | |
1971 | 213 | storres | def srs_run_SLZ_v04(inputFunction, |
1972 | 212 | storres | inputLowerBound, |
1973 | 212 | storres | inputUpperBound, |
1974 | 212 | storres | alpha, |
1975 | 212 | storres | degree, |
1976 | 212 | storres | precision, |
1977 | 212 | storres | emin, |
1978 | 212 | storres | emax, |
1979 | 212 | storres | targetHardnessToRound, |
1980 | 212 | storres | debug = False): |
1981 | 212 | storres | """ |
1982 | 213 | storres | Changes from V3: |
1983 | 213 | storres | Root search is changed again: |
1984 | 213 | storres | - only resultants in i are computed; |
1985 | 219 | storres | - roots in i are searched for; |
1986 | 213 | storres | - if any, they are tested for hardness-to-round. |
1987 | 212 | storres | Changes from V2: |
1988 | 212 | storres | Root search is changed: |
1989 | 212 | storres | - we compute the resultants in i and in t; |
1990 | 212 | storres | - we compute the roots set of each of these resultants; |
1991 | 212 | storres | - we combine all the possible pairs between the two sets; |
1992 | 212 | storres | - we check these pairs in polynomials for correctness. |
1993 | 212 | storres | Changes from V1: |
1994 | 212 | storres | 1- check for roots as soon as a resultant is computed; |
1995 | 212 | storres | 2- once a non null resultant is found, check for roots; |
1996 | 212 | storres | 3- constant resultant == no root. |
1997 | 212 | storres | """ |
1998 | 212 | storres | |
1999 | 212 | storres | if debug: |
2000 | 212 | storres | print "Function :", inputFunction |
2001 | 212 | storres | print "Lower bound :", inputLowerBound |
2002 | 212 | storres | print "Upper bounds :", inputUpperBound |
2003 | 212 | storres | print "Alpha :", alpha |
2004 | 212 | storres | print "Degree :", degree |
2005 | 212 | storres | print "Precision :", precision |
2006 | 212 | storres | print "Emin :", emin |
2007 | 212 | storres | print "Emax :", emax |
2008 | 212 | storres | print "Target hardness-to-round:", targetHardnessToRound |
2009 | 212 | storres | |
2010 | 212 | storres | ## Important constants. |
2011 | 212 | storres | ### Stretch the interval if no error happens. |
2012 | 212 | storres | noErrorIntervalStretch = 1 + 2^(-5) |
2013 | 212 | storres | ### If no vector validates the Coppersmith condition, shrink the interval |
2014 | 212 | storres | # by the following factor. |
2015 | 212 | storres | noCoppersmithIntervalShrink = 1/2 |
2016 | 212 | storres | ### If only (or at least) one vector validates the Coppersmith condition, |
2017 | 212 | storres | # shrink the interval by the following factor. |
2018 | 212 | storres | oneCoppersmithIntervalShrink = 3/4 |
2019 | 212 | storres | #### If only null resultants are found, shrink the interval by the |
2020 | 212 | storres | # following factor. |
2021 | 212 | storres | onlyNullResultantsShrink = 3/4 |
2022 | 212 | storres | ## Structures. |
2023 | 212 | storres | RRR = RealField(precision) |
2024 | 212 | storres | RRIF = RealIntervalField(precision) |
2025 | 212 | storres | ## Converting input bound into the "right" field. |
2026 | 212 | storres | lowerBound = RRR(inputLowerBound) |
2027 | 212 | storres | upperBound = RRR(inputUpperBound) |
2028 | 212 | storres | ## Before going any further, check domain and image binade conditions. |
2029 | 212 | storres | print inputFunction(1).n() |
2030 | 212 | storres | output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
2031 | 212 | storres | if output is None: |
2032 | 212 | storres | print "Invalid domain/image binades. Domain:",\ |
2033 | 212 | storres | lowerBound, upperBound, "Images:", \ |
2034 | 212 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
2035 | 212 | storres | raise Exception("Invalid domain/image binades.") |
2036 | 212 | storres | lb = output[0] ; ub = output[1] |
2037 | 212 | storres | if lb != lowerBound or ub != upperBound: |
2038 | 212 | storres | print "lb:", lb, " - ub:", ub |
2039 | 212 | storres | print "Invalid domain/image binades. Domain:",\ |
2040 | 212 | storres | lowerBound, upperBound, "Images:", \ |
2041 | 212 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
2042 | 212 | storres | raise Exception("Invalid domain/image binades.") |
2043 | 212 | storres | # |
2044 | 212 | storres | ## Progam initialization |
2045 | 212 | storres | ### Approximation polynomial accuracy and hardness to round. |
2046 | 212 | storres | polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
2047 | 212 | storres | polyTargetHardnessToRound = targetHardnessToRound + 1 |
2048 | 212 | storres | ### Significand to integer conversion ratio. |
2049 | 212 | storres | toIntegerFactor = 2^(precision-1) |
2050 | 212 | storres | print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
2051 | 212 | storres | ### Variables and rings for polynomials and root searching. |
2052 | 212 | storres | i=var('i') |
2053 | 212 | storres | t=var('t') |
2054 | 212 | storres | inputFunctionVariable = inputFunction.variables()[0] |
2055 | 212 | storres | function = inputFunction.subs({inputFunctionVariable:i}) |
2056 | 212 | storres | # Polynomial Rings over the integers, for root finding. |
2057 | 212 | storres | Zi = ZZ[i] |
2058 | 212 | storres | Zt = ZZ[t] |
2059 | 212 | storres | Zit = ZZ[i,t] |
2060 | 212 | storres | ## Number of iterations limit. |
2061 | 212 | storres | maxIter = 100000 |
2062 | 212 | storres | # |
2063 | 212 | storres | ## Compute the scaled function and the degree, in their Sollya version |
2064 | 212 | storres | # once for all. |
2065 | 212 | storres | (scaledf, sdlb, sdub, silb, siub) = \ |
2066 | 212 | storres | slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
2067 | 212 | storres | print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
2068 | 212 | storres | scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
2069 | 212 | storres | degreeSo = pobyso_constant_from_int_sa_so(degree) |
2070 | 212 | storres | # |
2071 | 212 | storres | ## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
2072 | 212 | storres | domainBoundsInterval = RRIF(lowerBound, upperBound) |
2073 | 212 | storres | (unscalingFunction, scalingFunction) = \ |
2074 | 212 | storres | slz_interval_scaling_expression(domainBoundsInterval, i) |
2075 | 212 | storres | #print scalingFunction, unscalingFunction |
2076 | 212 | storres | ## Set the Sollya internal precision (with an arbitrary minimum of 192). |
2077 | 212 | storres | internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
2078 | 212 | storres | if internalSollyaPrec < 192: |
2079 | 212 | storres | internalSollyaPrec = 192 |
2080 | 212 | storres | pobyso_set_prec_sa_so(internalSollyaPrec) |
2081 | 212 | storres | print "Sollya internal precision:", internalSollyaPrec |
2082 | 212 | storres | ## Some variables. |
2083 | 212 | storres | ### General variables |
2084 | 212 | storres | lb = sdlb |
2085 | 212 | storres | ub = sdub |
2086 | 212 | storres | nbw = 0 |
2087 | 212 | storres | intervalUlp = ub.ulp() |
2088 | 212 | storres | #### Will be set by slz_interval_and_polynomila_to_sage. |
2089 | 212 | storres | ic = 0 |
2090 | 212 | storres | icAsInt = 0 # Set from ic. |
2091 | 212 | storres | solutionsSet = set() |
2092 | 212 | storres | tsErrorWidth = [] |
2093 | 212 | storres | csErrorVectors = [] |
2094 | 212 | storres | csVectorsResultants = [] |
2095 | 212 | storres | floatP = 0 # Taylor polynomial. |
2096 | 212 | storres | floatPcv = 0 # Ditto with variable change. |
2097 | 212 | storres | intvl = "" # Taylor interval |
2098 | 212 | storres | terr = 0 # Taylor error. |
2099 | 212 | storres | iterCount = 0 |
2100 | 212 | storres | htrnSet = set() |
2101 | 212 | storres | ### Timers and counters. |
2102 | 212 | storres | wallTimeStart = 0 |
2103 | 212 | storres | cpuTimeStart = 0 |
2104 | 212 | storres | taylCondFailedCount = 0 |
2105 | 212 | storres | coppCondFailedCount = 0 |
2106 | 212 | storres | resultCondFailedCount = 0 |
2107 | 212 | storres | coppCondFailed = False |
2108 | 212 | storres | resultCondFailed = False |
2109 | 212 | storres | globalResultsList = [] |
2110 | 212 | storres | basisConstructionsCount = 0 |
2111 | 212 | storres | basisConstructionsFullTime = 0 |
2112 | 212 | storres | basisConstructionTime = 0 |
2113 | 212 | storres | reductionsCount = 0 |
2114 | 212 | storres | reductionsFullTime = 0 |
2115 | 212 | storres | reductionTime = 0 |
2116 | 212 | storres | resultantsComputationsCount = 0 |
2117 | 212 | storres | resultantsComputationsFullTime = 0 |
2118 | 212 | storres | resultantsComputationTime = 0 |
2119 | 212 | storres | rootsComputationsCount = 0 |
2120 | 212 | storres | rootsComputationsFullTime = 0 |
2121 | 212 | storres | rootsComputationTime = 0 |
2122 | 212 | storres | |
2123 | 212 | storres | ## Global times are started here. |
2124 | 212 | storres | wallTimeStart = walltime() |
2125 | 212 | storres | cpuTimeStart = cputime() |
2126 | 212 | storres | ## Main loop. |
2127 | 212 | storres | while True: |
2128 | 212 | storres | if lb >= sdub: |
2129 | 212 | storres | print "Lower bound reached upper bound." |
2130 | 212 | storres | break |
2131 | 212 | storres | if iterCount == maxIter: |
2132 | 212 | storres | print "Reached maxIter. Aborting" |
2133 | 212 | storres | break |
2134 | 212 | storres | iterCount += 1 |
2135 | 212 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
2136 | 212 | storres | "log2(numbers)." |
2137 | 212 | storres | ### Compute a Sollya polynomial that will honor the Taylor condition. |
2138 | 212 | storres | prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
2139 | 212 | storres | degreeSo, |
2140 | 212 | storres | lb, |
2141 | 212 | storres | ub, |
2142 | 212 | storres | polyApproxAccur) |
2143 | 212 | storres | ### Convert back the data into Sage space. |
2144 | 212 | storres | (floatP, floatPcv, intvl, ic, terr) = \ |
2145 | 212 | storres | slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
2146 | 212 | storres | prceSo[1], prceSo[2], |
2147 | 212 | storres | prceSo[3])) |
2148 | 212 | storres | intvl = RRIF(intvl) |
2149 | 212 | storres | ## Clean-up Sollya stuff. |
2150 | 212 | storres | for elem in prceSo: |
2151 | 212 | storres | sollya_lib_clear_obj(elem) |
2152 | 212 | storres | #print floatP, floatPcv, intvl, ic, terr |
2153 | 212 | storres | #print floatP |
2154 | 212 | storres | #print intvl.endpoints()[0].n(), \ |
2155 | 212 | storres | # ic.n(), |
2156 | 212 | storres | #intvl.endpoints()[1].n() |
2157 | 212 | storres | ### Check returned data. |
2158 | 212 | storres | #### Is approximation error OK? |
2159 | 212 | storres | if terr > polyApproxAccur: |
2160 | 212 | storres | exceptionErrorMess = \ |
2161 | 212 | storres | "Approximation failed - computed error:" + \ |
2162 | 212 | storres | str(terr) + " - target error: " |
2163 | 212 | storres | exceptionErrorMess += \ |
2164 | 212 | storres | str(polyApproxAccur) + ". Aborting!" |
2165 | 212 | storres | raise Exception(exceptionErrorMess) |
2166 | 212 | storres | #### Is lower bound OK? |
2167 | 212 | storres | if lb != intvl.endpoints()[0]: |
2168 | 212 | storres | exceptionErrorMess = "Wrong lower bound:" + \ |
2169 | 212 | storres | str(lb) + ". Aborting!" |
2170 | 212 | storres | raise Exception(exceptionErrorMess) |
2171 | 212 | storres | #### Set upper bound. |
2172 | 212 | storres | if ub > intvl.endpoints()[1]: |
2173 | 212 | storres | ub = intvl.endpoints()[1] |
2174 | 212 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
2175 | 212 | storres | "log2(numbers)." |
2176 | 212 | storres | taylCondFailedCount += 1 |
2177 | 212 | storres | #### Is interval not degenerate? |
2178 | 212 | storres | if lb >= ub: |
2179 | 212 | storres | exceptionErrorMess = "Degenerate interval: " + \ |
2180 | 212 | storres | "lowerBound(" + str(lb) +\ |
2181 | 212 | storres | ")>= upperBound(" + str(ub) + \ |
2182 | 212 | storres | "). Aborting!" |
2183 | 212 | storres | raise Exception(exceptionErrorMess) |
2184 | 212 | storres | #### Is interval center ok? |
2185 | 212 | storres | if ic <= lb or ic >= ub: |
2186 | 212 | storres | exceptionErrorMess = "Invalid interval center for " + \ |
2187 | 212 | storres | str(lb) + ',' + str(ic) + ',' + \ |
2188 | 212 | storres | str(ub) + ". Aborting!" |
2189 | 212 | storres | raise Exception(exceptionErrorMess) |
2190 | 212 | storres | ##### Current interval width and reset future interval width. |
2191 | 212 | storres | bw = ub - lb |
2192 | 212 | storres | nbw = 0 |
2193 | 212 | storres | icAsInt = int(ic * toIntegerFactor) |
2194 | 212 | storres | #### The following ratio is always >= 1. In case we may want to |
2195 | 212 | storres | # enlarge the interval |
2196 | 212 | storres | curTaylErrRat = polyApproxAccur / terr |
2197 | 212 | storres | ### Make the integral transformations. |
2198 | 212 | storres | #### Bounds and interval center. |
2199 | 212 | storres | intIc = int(ic * toIntegerFactor) |
2200 | 212 | storres | intLb = int(lb * toIntegerFactor) - intIc |
2201 | 212 | storres | intUb = int(ub * toIntegerFactor) - intIc |
2202 | 212 | storres | # |
2203 | 212 | storres | #### Polynomials |
2204 | 212 | storres | basisConstructionTime = cputime() |
2205 | 212 | storres | ##### To a polynomial with rational coefficients with rational arguments |
2206 | 212 | storres | ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
2207 | 212 | storres | ##### To a polynomial with rational coefficients with integer arguments |
2208 | 212 | storres | ratIntP = \ |
2209 | 212 | storres | slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
2210 | 212 | storres | ##### Ultimately a multivariate polynomial with integer coefficients |
2211 | 212 | storres | # with integer arguments. |
2212 | 212 | storres | coppersmithTuple = \ |
2213 | 212 | storres | slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
2214 | 212 | storres | precision, |
2215 | 212 | storres | targetHardnessToRound, |
2216 | 212 | storres | i, t) |
2217 | 212 | storres | #### Recover Coppersmith information. |
2218 | 212 | storres | intIntP = coppersmithTuple[0] |
2219 | 212 | storres | N = coppersmithTuple[1] |
2220 | 212 | storres | nAtAlpha = N^alpha |
2221 | 212 | storres | tBound = coppersmithTuple[2] |
2222 | 212 | storres | leastCommonMultiple = coppersmithTuple[3] |
2223 | 212 | storres | iBound = max(abs(intLb),abs(intUb)) |
2224 | 212 | storres | basisConstructionsFullTime += cputime(basisConstructionTime) |
2225 | 212 | storres | basisConstructionsCount += 1 |
2226 | 212 | storres | reductionTime = cputime() |
2227 | 212 | storres | #### Compute the reduced polynomials. |
2228 | 212 | storres | ccReducedPolynomialsList = \ |
2229 | 213 | storres | slz_compute_coppersmith_reduced_polynomials(intIntP, |
2230 | 213 | storres | alpha, |
2231 | 213 | storres | N, |
2232 | 213 | storres | iBound, |
2233 | 213 | storres | tBound) |
2234 | 212 | storres | if ccReducedPolynomialsList is None: |
2235 | 212 | storres | raise Exception("Reduction failed.") |
2236 | 212 | storres | reductionsFullTime += cputime(reductionTime) |
2237 | 212 | storres | reductionsCount += 1 |
2238 | 212 | storres | if len(ccReducedPolynomialsList) < 2: |
2239 | 212 | storres | print "Nothing to form resultants with." |
2240 | 212 | storres | |
2241 | 212 | storres | coppCondFailedCount += 1 |
2242 | 212 | storres | coppCondFailed = True |
2243 | 212 | storres | ##### Apply a different shrink factor according to |
2244 | 212 | storres | # the number of compliant polynomials. |
2245 | 212 | storres | if len(ccReducedPolynomialsList) == 0: |
2246 | 212 | storres | ub = lb + bw * noCoppersmithIntervalShrink |
2247 | 212 | storres | else: # At least one compliant polynomial. |
2248 | 212 | storres | ub = lb + bw * oneCoppersmithIntervalShrink |
2249 | 212 | storres | if ub > sdub: |
2250 | 212 | storres | ub = sdub |
2251 | 212 | storres | if lb == ub: |
2252 | 212 | storres | raise Exception("Cant shrink interval \ |
2253 | 212 | storres | anymore to get Coppersmith condition.") |
2254 | 212 | storres | nbw = 0 |
2255 | 212 | storres | continue |
2256 | 212 | storres | #### We have at least two polynomials. |
2257 | 212 | storres | # Let us try to compute resultants. |
2258 | 212 | storres | # For each resultant computed, go for the solutions. |
2259 | 212 | storres | ##### Build the pairs list. |
2260 | 212 | storres | polyPairsList = [] |
2261 | 212 | storres | for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
2262 | 212 | storres | for polyInnerIndex in xrange(polyOuterIndex+1, |
2263 | 212 | storres | len(ccReducedPolynomialsList)): |
2264 | 212 | storres | polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
2265 | 212 | storres | ccReducedPolynomialsList[polyInnerIndex])) |
2266 | 212 | storres | #### Actual root search. |
2267 | 213 | storres | iRootsSet = set() |
2268 | 212 | storres | hasNonNullResultant = False |
2269 | 212 | storres | for polyPair in polyPairsList: |
2270 | 212 | storres | resultantsComputationTime = cputime() |
2271 | 212 | storres | currentResultantI = \ |
2272 | 212 | storres | slz_resultant(polyPair[0], |
2273 | 212 | storres | polyPair[1], |
2274 | 212 | storres | t) |
2275 | 212 | storres | resultantsComputationsCount += 1 |
2276 | 213 | storres | resultantsComputationsFullTime += \ |
2277 | 213 | storres | cputime(resultantsComputationTime) |
2278 | 213 | storres | #### Function slz_resultant returns None both for None and O |
2279 | 213 | storres | # resultants. |
2280 | 212 | storres | if currentResultantI is None: |
2281 | 212 | storres | print "Nul resultant" |
2282 | 212 | storres | continue # Next polyPair. |
2283 | 213 | storres | ## We deleted the currentResultantI computation. |
2284 | 213 | storres | #### We have a non null resultant. From now on, whatever this |
2285 | 212 | storres | # root search yields, no extra root search is necessary. |
2286 | 213 | storres | hasNonNullResultant = True |
2287 | 212 | storres | #### A constant resultant leads to no root. Root search is done. |
2288 | 212 | storres | if currentResultantI.degree() < 1: |
2289 | 212 | storres | print "Resultant is constant:", currentResultantI |
2290 | 213 | storres | break # There is no root. |
2291 | 213 | storres | #### Actual iroots computation. |
2292 | 213 | storres | rootsComputationTime = cputime() |
2293 | 212 | storres | iRootsList = Zi(currentResultantI).roots() |
2294 | 212 | storres | rootsComputationsCount += 1 |
2295 | 213 | storres | rootsComputationsFullTime = cputime(rootsComputationTime) |
2296 | 212 | storres | if len(iRootsList) == 0: |
2297 | 212 | storres | print "No roots in \"i\"." |
2298 | 212 | storres | break # No roots in i. |
2299 | 213 | storres | else: |
2300 | 213 | storres | for iRoot in iRootsList: |
2301 | 213 | storres | # A root is given as a (value, multiplicity) tuple. |
2302 | 213 | storres | iRootsSet.add(iRoot[0]) |
2303 | 213 | storres | # End loop for polyPair in polyParsList. We only loop again if a |
2304 | 213 | storres | # None or zero resultant is found. |
2305 | 212 | storres | #### Prepare for results for the current interval.. |
2306 | 212 | storres | intervalResultsList = [] |
2307 | 212 | storres | intervalResultsList.append((lb, ub)) |
2308 | 212 | storres | #### Check roots. |
2309 | 212 | storres | rootsResultsList = [] |
2310 | 213 | storres | for iRoot in iRootsSet: |
2311 | 212 | storres | specificRootResultsList = [] |
2312 | 213 | storres | failingBounds = [] |
2313 | 212 | storres | # Root qualifies for modular equation, test it for hardness to round. |
2314 | 213 | storres | hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor) |
2315 | 212 | storres | #print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
2316 | 212 | storres | #print scalingFunction |
2317 | 212 | storres | scaledHardToRoundCaseAsFloat = \ |
2318 | 212 | storres | scalingFunction(hardToRoundCaseAsFloat) |
2319 | 212 | storres | print "Candidate HTRNc at x =", \ |
2320 | 212 | storres | scaledHardToRoundCaseAsFloat.n().str(base=2), |
2321 | 212 | storres | if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
2322 | 212 | storres | function, |
2323 | 212 | storres | 2^-(targetHardnessToRound), |
2324 | 212 | storres | RRR): |
2325 | 212 | storres | print hardToRoundCaseAsFloat, "is HTRN case." |
2326 | 213 | storres | specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
2327 | 212 | storres | if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
2328 | 212 | storres | print "Found in interval." |
2329 | 212 | storres | else: |
2330 | 212 | storres | print "Found out of interval." |
2331 | 213 | storres | # Check the i root is within the i bound. |
2332 | 213 | storres | if abs(iRoot) > iBound: |
2333 | 213 | storres | print "IRoot", iRoot, "is out of bounds for modular equation." |
2334 | 213 | storres | print "i bound:", iBound |
2335 | 213 | storres | failingBounds.append('i') |
2336 | 213 | storres | failingBounds.append(iRoot) |
2337 | 213 | storres | failingBounds.append(iBound) |
2338 | 212 | storres | if len(failingBounds) > 0: |
2339 | 212 | storres | specificRootResultsList.append(failingBounds) |
2340 | 212 | storres | else: # From slz_is_htrn... |
2341 | 212 | storres | print "is not an HTRN case." |
2342 | 212 | storres | if len(specificRootResultsList) > 0: |
2343 | 212 | storres | rootsResultsList.append(specificRootResultsList) |
2344 | 212 | storres | if len(rootsResultsList) > 0: |
2345 | 212 | storres | intervalResultsList.append(rootsResultsList) |
2346 | 212 | storres | ### Check if a non null resultant was found. If not shrink the interval. |
2347 | 212 | storres | if not hasNonNullResultant: |
2348 | 212 | storres | print "Only null resultants for this reduction, shrinking interval." |
2349 | 212 | storres | resultCondFailed = True |
2350 | 212 | storres | resultCondFailedCount += 1 |
2351 | 212 | storres | ### Shrink interval for next iteration. |
2352 | 212 | storres | ub = lb + bw * onlyNullResultantsShrink |
2353 | 212 | storres | if ub > sdub: |
2354 | 212 | storres | ub = sdub |
2355 | 212 | storres | nbw = 0 |
2356 | 212 | storres | continue |
2357 | 212 | storres | #### An intervalResultsList has at least the bounds. |
2358 | 212 | storres | globalResultsList.append(intervalResultsList) |
2359 | 212 | storres | #### Compute an incremented width for next upper bound, only |
2360 | 212 | storres | # if not Coppersmith condition nor resultant condition |
2361 | 212 | storres | # failed at the previous run. |
2362 | 212 | storres | if not coppCondFailed and not resultCondFailed: |
2363 | 212 | storres | nbw = noErrorIntervalStretch * bw |
2364 | 212 | storres | else: |
2365 | 212 | storres | nbw = bw |
2366 | 212 | storres | ##### Reset the failure flags. They will be raised |
2367 | 212 | storres | # again if needed. |
2368 | 212 | storres | coppCondFailed = False |
2369 | 212 | storres | resultCondFailed = False |
2370 | 212 | storres | #### For next iteration (at end of loop) |
2371 | 212 | storres | #print "nbw:", nbw |
2372 | 212 | storres | lb = ub |
2373 | 212 | storres | ub += nbw |
2374 | 212 | storres | if ub > sdub: |
2375 | 212 | storres | ub = sdub |
2376 | 212 | storres | |
2377 | 212 | storres | # End while True |
2378 | 212 | storres | ## Main loop just ended. |
2379 | 212 | storres | globalWallTime = walltime(wallTimeStart) |
2380 | 212 | storres | globalCpuTime = cputime(cpuTimeStart) |
2381 | 212 | storres | ## Output results |
2382 | 212 | storres | print ; print "Intervals and HTRNs" ; print |
2383 | 212 | storres | for intervalResultsList in globalResultsList: |
2384 | 222 | storres | intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
2385 | 222 | storres | "," + str(intervalResultsList[0][1]) + "]" |
2386 | 222 | storres | print intervalResultString, |
2387 | 212 | storres | if len(intervalResultsList) > 1: |
2388 | 212 | storres | rootsResultsList = intervalResultsList[1] |
2389 | 222 | storres | specificRootResultIndex = 0 |
2390 | 212 | storres | for specificRootResultsList in rootsResultsList: |
2391 | 222 | storres | if specificRootResultIndex == 0: |
2392 | 222 | storres | print "\t", specificRootResultsList[0], |
2393 | 222 | storres | else: |
2394 | 222 | storres | print " " * len(intervalResultString), "\t", \ |
2395 | 222 | storres | specificRootResultsList[0], |
2396 | 212 | storres | if len(specificRootResultsList) > 1: |
2397 | 222 | storres | print specificRootResultsList[1] |
2398 | 222 | storres | specificRootResultIndex += 1 |
2399 | 212 | storres | print ; print |
2400 | 212 | storres | #print globalResultsList |
2401 | 212 | storres | # |
2402 | 212 | storres | print "Timers and counters" |
2403 | 212 | storres | |
2404 | 212 | storres | print "Number of iterations:", iterCount |
2405 | 212 | storres | print "Taylor condition failures:", taylCondFailedCount |
2406 | 212 | storres | print "Coppersmith condition failures:", coppCondFailedCount |
2407 | 212 | storres | print "Resultant condition failures:", resultCondFailedCount |
2408 | 212 | storres | print "Iterations count: ", iterCount |
2409 | 212 | storres | print "Number of intervals:", len(globalResultsList) |
2410 | 212 | storres | print "Number of basis constructions:", basisConstructionsCount |
2411 | 212 | storres | print "Total CPU time spent in basis constructions:", \ |
2412 | 212 | storres | basisConstructionsFullTime |
2413 | 212 | storres | if basisConstructionsCount != 0: |
2414 | 212 | storres | print "Average basis construction CPU time:", \ |
2415 | 212 | storres | basisConstructionsFullTime/basisConstructionsCount |
2416 | 212 | storres | print "Number of reductions:", reductionsCount |
2417 | 212 | storres | print "Total CPU time spent in reductions:", reductionsFullTime |
2418 | 212 | storres | if reductionsCount != 0: |
2419 | 212 | storres | print "Average reduction CPU time:", \ |
2420 | 212 | storres | reductionsFullTime/reductionsCount |
2421 | 212 | storres | print "Number of resultants computation rounds:", \ |
2422 | 212 | storres | resultantsComputationsCount |
2423 | 212 | storres | print "Total CPU time spent in resultants computation rounds:", \ |
2424 | 212 | storres | resultantsComputationsFullTime |
2425 | 212 | storres | if resultantsComputationsCount != 0: |
2426 | 212 | storres | print "Average resultants computation round CPU time:", \ |
2427 | 212 | storres | resultantsComputationsFullTime/resultantsComputationsCount |
2428 | 212 | storres | print "Number of root finding rounds:", rootsComputationsCount |
2429 | 212 | storres | print "Total CPU time spent in roots finding rounds:", \ |
2430 | 212 | storres | rootsComputationsFullTime |
2431 | 212 | storres | if rootsComputationsCount != 0: |
2432 | 212 | storres | print "Average roots finding round CPU time:", \ |
2433 | 212 | storres | rootsComputationsFullTime/rootsComputationsCount |
2434 | 212 | storres | print "Global Wall time:", globalWallTime |
2435 | 212 | storres | print "Global CPU time:", globalCpuTime |
2436 | 212 | storres | ## Output counters |
2437 | 213 | storres | # End srs_runSLZ-v04 |
2438 | 213 | storres | |
2439 | 219 | storres | def srs_run_SLZ_v05(inputFunction, |
2440 | 219 | storres | inputLowerBound, |
2441 | 219 | storres | inputUpperBound, |
2442 | 219 | storres | alpha, |
2443 | 219 | storres | degree, |
2444 | 219 | storres | precision, |
2445 | 219 | storres | emin, |
2446 | 219 | storres | emax, |
2447 | 219 | storres | targetHardnessToRound, |
2448 | 219 | storres | debug = False): |
2449 | 219 | storres | """ |
2450 | 219 | storres | Changes from V4: |
2451 | 219 | storres | Approximation polynomial has coefficients rounded. |
2452 | 219 | storres | Changes from V3: |
2453 | 219 | storres | Root search is changed again: |
2454 | 219 | storres | - only resultants in i are computed; |
2455 | 219 | storres | - roots in i are searched for; |
2456 | 219 | storres | - if any, they are tested for hardness-to-round. |
2457 | 219 | storres | Changes from V2: |
2458 | 219 | storres | Root search is changed: |
2459 | 219 | storres | - we compute the resultants in i and in t; |
2460 | 219 | storres | - we compute the roots set of each of these resultants; |
2461 | 219 | storres | - we combine all the possible pairs between the two sets; |
2462 | 219 | storres | - we check these pairs in polynomials for correctness. |
2463 | 219 | storres | Changes from V1: |
2464 | 219 | storres | 1- check for roots as soon as a resultant is computed; |
2465 | 219 | storres | 2- once a non null resultant is found, check for roots; |
2466 | 219 | storres | 3- constant resultant == no root. |
2467 | 219 | storres | """ |
2468 | 219 | storres | |
2469 | 219 | storres | if debug: |
2470 | 219 | storres | print "Function :", inputFunction |
2471 | 219 | storres | print "Lower bound :", inputLowerBound |
2472 | 219 | storres | print "Upper bounds :", inputUpperBound |
2473 | 219 | storres | print "Alpha :", alpha |
2474 | 219 | storres | print "Degree :", degree |
2475 | 219 | storres | print "Precision :", precision |
2476 | 219 | storres | print "Emin :", emin |
2477 | 219 | storres | print "Emax :", emax |
2478 | 219 | storres | print "Target hardness-to-round:", targetHardnessToRound |
2479 | 219 | storres | |
2480 | 219 | storres | ## Important constants. |
2481 | 219 | storres | ### Stretch the interval if no error happens. |
2482 | 219 | storres | noErrorIntervalStretch = 1 + 2^(-5) |
2483 | 219 | storres | ### If no vector validates the Coppersmith condition, shrink the interval |
2484 | 219 | storres | # by the following factor. |
2485 | 219 | storres | noCoppersmithIntervalShrink = 1/2 |
2486 | 219 | storres | ### If only (or at least) one vector validates the Coppersmith condition, |
2487 | 219 | storres | # shrink the interval by the following factor. |
2488 | 219 | storres | oneCoppersmithIntervalShrink = 3/4 |
2489 | 219 | storres | #### If only null resultants are found, shrink the interval by the |
2490 | 219 | storres | # following factor. |
2491 | 219 | storres | onlyNullResultantsShrink = 3/4 |
2492 | 219 | storres | ## Structures. |
2493 | 219 | storres | RRR = RealField(precision) |
2494 | 219 | storres | RRIF = RealIntervalField(precision) |
2495 | 219 | storres | ## Converting input bound into the "right" field. |
2496 | 219 | storres | lowerBound = RRR(inputLowerBound) |
2497 | 219 | storres | upperBound = RRR(inputUpperBound) |
2498 | 219 | storres | ## Before going any further, check domain and image binade conditions. |
2499 | 219 | storres | print inputFunction(1).n() |
2500 | 219 | storres | output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
2501 | 219 | storres | if output is None: |
2502 | 219 | storres | print "Invalid domain/image binades. Domain:",\ |
2503 | 219 | storres | lowerBound, upperBound, "Images:", \ |
2504 | 219 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
2505 | 219 | storres | raise Exception("Invalid domain/image binades.") |
2506 | 219 | storres | lb = output[0] ; ub = output[1] |
2507 | 219 | storres | if lb != lowerBound or ub != upperBound: |
2508 | 219 | storres | print "lb:", lb, " - ub:", ub |
2509 | 219 | storres | print "Invalid domain/image binades. Domain:",\ |
2510 | 219 | storres | lowerBound, upperBound, "Images:", \ |
2511 | 219 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
2512 | 219 | storres | raise Exception("Invalid domain/image binades.") |
2513 | 219 | storres | # |
2514 | 219 | storres | ## Progam initialization |
2515 | 219 | storres | ### Approximation polynomial accuracy and hardness to round. |
2516 | 219 | storres | polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
2517 | 219 | storres | polyTargetHardnessToRound = targetHardnessToRound + 1 |
2518 | 219 | storres | ### Significand to integer conversion ratio. |
2519 | 219 | storres | toIntegerFactor = 2^(precision-1) |
2520 | 219 | storres | print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
2521 | 219 | storres | ### Variables and rings for polynomials and root searching. |
2522 | 219 | storres | i=var('i') |
2523 | 219 | storres | t=var('t') |
2524 | 219 | storres | inputFunctionVariable = inputFunction.variables()[0] |
2525 | 219 | storres | function = inputFunction.subs({inputFunctionVariable:i}) |
2526 | 219 | storres | # Polynomial Rings over the integers, for root finding. |
2527 | 219 | storres | Zi = ZZ[i] |
2528 | 219 | storres | Zt = ZZ[t] |
2529 | 219 | storres | Zit = ZZ[i,t] |
2530 | 219 | storres | ## Number of iterations limit. |
2531 | 219 | storres | maxIter = 100000 |
2532 | 219 | storres | # |
2533 | 219 | storres | ## Compute the scaled function and the degree, in their Sollya version |
2534 | 219 | storres | # once for all. |
2535 | 219 | storres | (scaledf, sdlb, sdub, silb, siub) = \ |
2536 | 219 | storres | slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
2537 | 219 | storres | print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
2538 | 219 | storres | scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
2539 | 219 | storres | degreeSo = pobyso_constant_from_int_sa_so(degree) |
2540 | 219 | storres | # |
2541 | 219 | storres | ## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
2542 | 219 | storres | domainBoundsInterval = RRIF(lowerBound, upperBound) |
2543 | 219 | storres | (unscalingFunction, scalingFunction) = \ |
2544 | 219 | storres | slz_interval_scaling_expression(domainBoundsInterval, i) |
2545 | 219 | storres | #print scalingFunction, unscalingFunction |
2546 | 219 | storres | ## Set the Sollya internal precision (with an arbitrary minimum of 192). |
2547 | 219 | storres | internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
2548 | 219 | storres | if internalSollyaPrec < 192: |
2549 | 219 | storres | internalSollyaPrec = 192 |
2550 | 219 | storres | pobyso_set_prec_sa_so(internalSollyaPrec) |
2551 | 219 | storres | print "Sollya internal precision:", internalSollyaPrec |
2552 | 219 | storres | ## Some variables. |
2553 | 219 | storres | ### General variables |
2554 | 219 | storres | lb = sdlb |
2555 | 219 | storres | ub = sdub |
2556 | 219 | storres | nbw = 0 |
2557 | 219 | storres | intervalUlp = ub.ulp() |
2558 | 219 | storres | #### Will be set by slz_interval_and_polynomila_to_sage. |
2559 | 219 | storres | ic = 0 |
2560 | 219 | storres | icAsInt = 0 # Set from ic. |
2561 | 219 | storres | solutionsSet = set() |
2562 | 219 | storres | tsErrorWidth = [] |
2563 | 219 | storres | csErrorVectors = [] |
2564 | 219 | storres | csVectorsResultants = [] |
2565 | 219 | storres | floatP = 0 # Taylor polynomial. |
2566 | 219 | storres | floatPcv = 0 # Ditto with variable change. |
2567 | 219 | storres | intvl = "" # Taylor interval |
2568 | 219 | storres | terr = 0 # Taylor error. |
2569 | 219 | storres | iterCount = 0 |
2570 | 219 | storres | htrnSet = set() |
2571 | 219 | storres | ### Timers and counters. |
2572 | 219 | storres | wallTimeStart = 0 |
2573 | 219 | storres | cpuTimeStart = 0 |
2574 | 219 | storres | taylCondFailedCount = 0 |
2575 | 219 | storres | coppCondFailedCount = 0 |
2576 | 219 | storres | resultCondFailedCount = 0 |
2577 | 219 | storres | coppCondFailed = False |
2578 | 219 | storres | resultCondFailed = False |
2579 | 219 | storres | globalResultsList = [] |
2580 | 219 | storres | basisConstructionsCount = 0 |
2581 | 219 | storres | basisConstructionsFullTime = 0 |
2582 | 219 | storres | basisConstructionTime = 0 |
2583 | 219 | storres | reductionsCount = 0 |
2584 | 219 | storres | reductionsFullTime = 0 |
2585 | 219 | storres | reductionTime = 0 |
2586 | 219 | storres | resultantsComputationsCount = 0 |
2587 | 219 | storres | resultantsComputationsFullTime = 0 |
2588 | 219 | storres | resultantsComputationTime = 0 |
2589 | 219 | storres | rootsComputationsCount = 0 |
2590 | 219 | storres | rootsComputationsFullTime = 0 |
2591 | 219 | storres | rootsComputationTime = 0 |
2592 | 219 | storres | |
2593 | 219 | storres | ## Global times are started here. |
2594 | 219 | storres | wallTimeStart = walltime() |
2595 | 219 | storres | cpuTimeStart = cputime() |
2596 | 219 | storres | ## Main loop. |
2597 | 219 | storres | while True: |
2598 | 219 | storres | if lb >= sdub: |
2599 | 219 | storres | print "Lower bound reached upper bound." |
2600 | 219 | storres | break |
2601 | 219 | storres | if iterCount == maxIter: |
2602 | 219 | storres | print "Reached maxIter. Aborting" |
2603 | 219 | storres | break |
2604 | 219 | storres | iterCount += 1 |
2605 | 219 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
2606 | 219 | storres | "log2(numbers)." |
2607 | 219 | storres | ### Compute a Sollya polynomial that will honor the Taylor condition. |
2608 | 219 | storres | prceSo = slz_compute_polynomial_and_interval_01(scaledfSo, |
2609 | 219 | storres | degreeSo, |
2610 | 219 | storres | lb, |
2611 | 219 | storres | ub, |
2612 | 219 | storres | polyApproxAccur) |
2613 | 230 | storres | if debug: |
2614 | 230 | storres | print "Approximation polynomial computed." |
2615 | 225 | storres | if prceSo is None: |
2616 | 225 | storres | raise Exception("Could not compute an approximation polynomial.") |
2617 | 219 | storres | ### Convert back the data into Sage space. |
2618 | 219 | storres | (floatP, floatPcv, intvl, ic, terr) = \ |
2619 | 219 | storres | slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
2620 | 219 | storres | prceSo[1], prceSo[2], |
2621 | 219 | storres | prceSo[3])) |
2622 | 219 | storres | intvl = RRIF(intvl) |
2623 | 219 | storres | ## Clean-up Sollya stuff. |
2624 | 219 | storres | for elem in prceSo: |
2625 | 219 | storres | sollya_lib_clear_obj(elem) |
2626 | 219 | storres | #print floatP, floatPcv, intvl, ic, terr |
2627 | 219 | storres | #print floatP |
2628 | 219 | storres | #print intvl.endpoints()[0].n(), \ |
2629 | 219 | storres | # ic.n(), |
2630 | 219 | storres | #intvl.endpoints()[1].n() |
2631 | 219 | storres | ### Check returned data. |
2632 | 219 | storres | #### Is approximation error OK? |
2633 | 219 | storres | if terr > polyApproxAccur: |
2634 | 219 | storres | exceptionErrorMess = \ |
2635 | 219 | storres | "Approximation failed - computed error:" + \ |
2636 | 219 | storres | str(terr) + " - target error: " |
2637 | 219 | storres | exceptionErrorMess += \ |
2638 | 219 | storres | str(polyApproxAccur) + ". Aborting!" |
2639 | 219 | storres | raise Exception(exceptionErrorMess) |
2640 | 219 | storres | #### Is lower bound OK? |
2641 | 219 | storres | if lb != intvl.endpoints()[0]: |
2642 | 219 | storres | exceptionErrorMess = "Wrong lower bound:" + \ |
2643 | 219 | storres | str(lb) + ". Aborting!" |
2644 | 219 | storres | raise Exception(exceptionErrorMess) |
2645 | 219 | storres | #### Set upper bound. |
2646 | 219 | storres | if ub > intvl.endpoints()[1]: |
2647 | 219 | storres | ub = intvl.endpoints()[1] |
2648 | 219 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
2649 | 219 | storres | "log2(numbers)." |
2650 | 219 | storres | taylCondFailedCount += 1 |
2651 | 219 | storres | #### Is interval not degenerate? |
2652 | 219 | storres | if lb >= ub: |
2653 | 219 | storres | exceptionErrorMess = "Degenerate interval: " + \ |
2654 | 219 | storres | "lowerBound(" + str(lb) +\ |
2655 | 219 | storres | ")>= upperBound(" + str(ub) + \ |
2656 | 219 | storres | "). Aborting!" |
2657 | 219 | storres | raise Exception(exceptionErrorMess) |
2658 | 219 | storres | #### Is interval center ok? |
2659 | 219 | storres | if ic <= lb or ic >= ub: |
2660 | 219 | storres | exceptionErrorMess = "Invalid interval center for " + \ |
2661 | 219 | storres | str(lb) + ',' + str(ic) + ',' + \ |
2662 | 219 | storres | str(ub) + ". Aborting!" |
2663 | 219 | storres | raise Exception(exceptionErrorMess) |
2664 | 219 | storres | ##### Current interval width and reset future interval width. |
2665 | 219 | storres | bw = ub - lb |
2666 | 219 | storres | nbw = 0 |
2667 | 219 | storres | icAsInt = int(ic * toIntegerFactor) |
2668 | 219 | storres | #### The following ratio is always >= 1. In case we may want to |
2669 | 219 | storres | # enlarge the interval |
2670 | 219 | storres | curTaylErrRat = polyApproxAccur / terr |
2671 | 219 | storres | ### Make the integral transformations. |
2672 | 219 | storres | #### Bounds and interval center. |
2673 | 219 | storres | intIc = int(ic * toIntegerFactor) |
2674 | 219 | storres | intLb = int(lb * toIntegerFactor) - intIc |
2675 | 219 | storres | intUb = int(ub * toIntegerFactor) - intIc |
2676 | 219 | storres | # |
2677 | 219 | storres | #### Polynomials |
2678 | 219 | storres | basisConstructionTime = cputime() |
2679 | 219 | storres | ##### To a polynomial with rational coefficients with rational arguments |
2680 | 219 | storres | ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
2681 | 219 | storres | ##### To a polynomial with rational coefficients with integer arguments |
2682 | 219 | storres | ratIntP = \ |
2683 | 219 | storres | slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
2684 | 219 | storres | ##### Ultimately a multivariate polynomial with integer coefficients |
2685 | 219 | storres | # with integer arguments. |
2686 | 219 | storres | coppersmithTuple = \ |
2687 | 219 | storres | slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
2688 | 219 | storres | precision, |
2689 | 219 | storres | targetHardnessToRound, |
2690 | 219 | storres | i, t) |
2691 | 219 | storres | #### Recover Coppersmith information. |
2692 | 219 | storres | intIntP = coppersmithTuple[0] |
2693 | 219 | storres | N = coppersmithTuple[1] |
2694 | 219 | storres | nAtAlpha = N^alpha |
2695 | 219 | storres | tBound = coppersmithTuple[2] |
2696 | 219 | storres | leastCommonMultiple = coppersmithTuple[3] |
2697 | 219 | storres | iBound = max(abs(intLb),abs(intUb)) |
2698 | 219 | storres | basisConstructionsFullTime += cputime(basisConstructionTime) |
2699 | 219 | storres | basisConstructionsCount += 1 |
2700 | 224 | storres | #### Compute the matrix to reduce for debug purpose. Otherwise |
2701 | 224 | storres | # slz_compute_coppersmith_reduced_polynomials does the job |
2702 | 224 | storres | # invisibly. |
2703 | 224 | storres | if debug: |
2704 | 224 | storres | matrixToReduce = slz_compute_initial_lattice_matrix(intIntP, |
2705 | 224 | storres | alpha, |
2706 | 224 | storres | N, |
2707 | 224 | storres | iBound, |
2708 | 224 | storres | tBound) |
2709 | 224 | storres | maxNorm = 0 |
2710 | 224 | storres | latticeSize = 0 |
2711 | 224 | storres | matrixFile = file('/tmp/matrixToReduce.txt', 'w') |
2712 | 224 | storres | for row in matrixToReduce.rows(): |
2713 | 224 | storres | currentNorm = row.norm() |
2714 | 224 | storres | if currentNorm > maxNorm: |
2715 | 224 | storres | maxNorm = currentNorm |
2716 | 224 | storres | latticeSize += 1 |
2717 | 224 | storres | for elem in row: |
2718 | 224 | storres | matrixFile.write(elem.str(base=2) + ",") |
2719 | 224 | storres | matrixFile.write("\n") |
2720 | 224 | storres | #matrixFile.write(matrixToReduce.str(radix="2") + "\n") |
2721 | 224 | storres | matrixFile.close() |
2722 | 224 | storres | #### We use here binary length as defined in LLL princepts. |
2723 | 224 | storres | binaryLength = latticeSize * log(maxNorm) |
2724 | 224 | storres | print "Binary length:", binaryLength.n() |
2725 | 224 | storres | raise Exception("Deliberate stop here.") |
2726 | 224 | storres | # End if debug |
2727 | 219 | storres | reductionTime = cputime() |
2728 | 219 | storres | #### Compute the reduced polynomials. |
2729 | 230 | storres | print "Starting reduction..." |
2730 | 219 | storres | ccReducedPolynomialsList = \ |
2731 | 219 | storres | slz_compute_coppersmith_reduced_polynomials(intIntP, |
2732 | 219 | storres | alpha, |
2733 | 219 | storres | N, |
2734 | 219 | storres | iBound, |
2735 | 219 | storres | tBound) |
2736 | 230 | storres | print "...reduction accomplished in", cputime(reductionTime), "s." |
2737 | 219 | storres | if ccReducedPolynomialsList is None: |
2738 | 219 | storres | raise Exception("Reduction failed.") |
2739 | 219 | storres | reductionsFullTime += cputime(reductionTime) |
2740 | 219 | storres | reductionsCount += 1 |
2741 | 219 | storres | if len(ccReducedPolynomialsList) < 2: |
2742 | 219 | storres | print "Nothing to form resultants with." |
2743 | 219 | storres | |
2744 | 219 | storres | coppCondFailedCount += 1 |
2745 | 219 | storres | coppCondFailed = True |
2746 | 219 | storres | ##### Apply a different shrink factor according to |
2747 | 219 | storres | # the number of compliant polynomials. |
2748 | 219 | storres | if len(ccReducedPolynomialsList) == 0: |
2749 | 219 | storres | ub = lb + bw * noCoppersmithIntervalShrink |
2750 | 219 | storres | else: # At least one compliant polynomial. |
2751 | 219 | storres | ub = lb + bw * oneCoppersmithIntervalShrink |
2752 | 219 | storres | if ub > sdub: |
2753 | 219 | storres | ub = sdub |
2754 | 219 | storres | if lb == ub: |
2755 | 219 | storres | raise Exception("Cant shrink interval \ |
2756 | 219 | storres | anymore to get Coppersmith condition.") |
2757 | 219 | storres | nbw = 0 |
2758 | 219 | storres | continue |
2759 | 219 | storres | #### We have at least two polynomials. |
2760 | 219 | storres | # Let us try to compute resultants. |
2761 | 219 | storres | # For each resultant computed, go for the solutions. |
2762 | 219 | storres | ##### Build the pairs list. |
2763 | 219 | storres | polyPairsList = [] |
2764 | 219 | storres | for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
2765 | 219 | storres | for polyInnerIndex in xrange(polyOuterIndex+1, |
2766 | 219 | storres | len(ccReducedPolynomialsList)): |
2767 | 219 | storres | polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
2768 | 219 | storres | ccReducedPolynomialsList[polyInnerIndex])) |
2769 | 219 | storres | #### Actual root search. |
2770 | 219 | storres | iRootsSet = set() |
2771 | 219 | storres | hasNonNullResultant = False |
2772 | 219 | storres | for polyPair in polyPairsList: |
2773 | 219 | storres | resultantsComputationTime = cputime() |
2774 | 219 | storres | currentResultantI = \ |
2775 | 219 | storres | slz_resultant(polyPair[0], |
2776 | 219 | storres | polyPair[1], |
2777 | 219 | storres | t) |
2778 | 219 | storres | resultantsComputationsCount += 1 |
2779 | 219 | storres | resultantsComputationsFullTime += \ |
2780 | 219 | storres | cputime(resultantsComputationTime) |
2781 | 219 | storres | #### Function slz_resultant returns None both for None and O |
2782 | 219 | storres | # resultants. |
2783 | 219 | storres | if currentResultantI is None: |
2784 | 219 | storres | print "Nul resultant" |
2785 | 219 | storres | continue # Next polyPair. |
2786 | 219 | storres | ## We deleted the currentResultantI computation. |
2787 | 219 | storres | #### We have a non null resultant. From now on, whatever this |
2788 | 219 | storres | # root search yields, no extra root search is necessary. |
2789 | 219 | storres | hasNonNullResultant = True |
2790 | 219 | storres | #### A constant resultant leads to no root. Root search is done. |
2791 | 219 | storres | if currentResultantI.degree() < 1: |
2792 | 219 | storres | print "Resultant is constant:", currentResultantI |
2793 | 219 | storres | break # There is no root. |
2794 | 219 | storres | #### Actual iroots computation. |
2795 | 219 | storres | rootsComputationTime = cputime() |
2796 | 219 | storres | iRootsList = Zi(currentResultantI).roots() |
2797 | 219 | storres | rootsComputationsCount += 1 |
2798 | 219 | storres | rootsComputationsFullTime = cputime(rootsComputationTime) |
2799 | 219 | storres | if len(iRootsList) == 0: |
2800 | 219 | storres | print "No roots in \"i\"." |
2801 | 219 | storres | break # No roots in i. |
2802 | 219 | storres | else: |
2803 | 219 | storres | for iRoot in iRootsList: |
2804 | 219 | storres | # A root is given as a (value, multiplicity) tuple. |
2805 | 219 | storres | iRootsSet.add(iRoot[0]) |
2806 | 219 | storres | # End loop for polyPair in polyParsList. We only loop again if a |
2807 | 219 | storres | # None or zero resultant is found. |
2808 | 219 | storres | #### Prepare for results for the current interval.. |
2809 | 219 | storres | intervalResultsList = [] |
2810 | 219 | storres | intervalResultsList.append((lb, ub)) |
2811 | 219 | storres | #### Check roots. |
2812 | 219 | storres | rootsResultsList = [] |
2813 | 219 | storres | for iRoot in iRootsSet: |
2814 | 219 | storres | specificRootResultsList = [] |
2815 | 219 | storres | failingBounds = [] |
2816 | 219 | storres | # Root qualifies for modular equation, test it for hardness to round. |
2817 | 219 | storres | hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor) |
2818 | 219 | storres | #print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
2819 | 219 | storres | #print scalingFunction |
2820 | 219 | storres | scaledHardToRoundCaseAsFloat = \ |
2821 | 219 | storres | scalingFunction(hardToRoundCaseAsFloat) |
2822 | 219 | storres | print "Candidate HTRNc at x =", \ |
2823 | 219 | storres | scaledHardToRoundCaseAsFloat.n().str(base=2), |
2824 | 219 | storres | if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
2825 | 219 | storres | function, |
2826 | 219 | storres | 2^-(targetHardnessToRound), |
2827 | 219 | storres | RRR): |
2828 | 219 | storres | print hardToRoundCaseAsFloat, "is HTRN case." |
2829 | 219 | storres | specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
2830 | 219 | storres | if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
2831 | 219 | storres | print "Found in interval." |
2832 | 219 | storres | else: |
2833 | 219 | storres | print "Found out of interval." |
2834 | 219 | storres | # Check the i root is within the i bound. |
2835 | 219 | storres | if abs(iRoot) > iBound: |
2836 | 219 | storres | print "IRoot", iRoot, "is out of bounds for modular equation." |
2837 | 219 | storres | print "i bound:", iBound |
2838 | 219 | storres | failingBounds.append('i') |
2839 | 219 | storres | failingBounds.append(iRoot) |
2840 | 219 | storres | failingBounds.append(iBound) |
2841 | 219 | storres | if len(failingBounds) > 0: |
2842 | 219 | storres | specificRootResultsList.append(failingBounds) |
2843 | 219 | storres | else: # From slz_is_htrn... |
2844 | 219 | storres | print "is not an HTRN case." |
2845 | 219 | storres | if len(specificRootResultsList) > 0: |
2846 | 219 | storres | rootsResultsList.append(specificRootResultsList) |
2847 | 219 | storres | if len(rootsResultsList) > 0: |
2848 | 219 | storres | intervalResultsList.append(rootsResultsList) |
2849 | 219 | storres | ### Check if a non null resultant was found. If not shrink the interval. |
2850 | 219 | storres | if not hasNonNullResultant: |
2851 | 219 | storres | print "Only null resultants for this reduction, shrinking interval." |
2852 | 219 | storres | resultCondFailed = True |
2853 | 219 | storres | resultCondFailedCount += 1 |
2854 | 219 | storres | ### Shrink interval for next iteration. |
2855 | 219 | storres | ub = lb + bw * onlyNullResultantsShrink |
2856 | 219 | storres | if ub > sdub: |
2857 | 219 | storres | ub = sdub |
2858 | 219 | storres | nbw = 0 |
2859 | 219 | storres | continue |
2860 | 219 | storres | #### An intervalResultsList has at least the bounds. |
2861 | 219 | storres | globalResultsList.append(intervalResultsList) |
2862 | 219 | storres | #### Compute an incremented width for next upper bound, only |
2863 | 219 | storres | # if not Coppersmith condition nor resultant condition |
2864 | 219 | storres | # failed at the previous run. |
2865 | 219 | storres | if not coppCondFailed and not resultCondFailed: |
2866 | 219 | storres | nbw = noErrorIntervalStretch * bw |
2867 | 219 | storres | else: |
2868 | 219 | storres | nbw = bw |
2869 | 219 | storres | ##### Reset the failure flags. They will be raised |
2870 | 219 | storres | # again if needed. |
2871 | 219 | storres | coppCondFailed = False |
2872 | 219 | storres | resultCondFailed = False |
2873 | 219 | storres | #### For next iteration (at end of loop) |
2874 | 219 | storres | #print "nbw:", nbw |
2875 | 219 | storres | lb = ub |
2876 | 219 | storres | ub += nbw |
2877 | 219 | storres | if ub > sdub: |
2878 | 219 | storres | ub = sdub |
2879 | 219 | storres | |
2880 | 219 | storres | # End while True |
2881 | 219 | storres | ## Main loop just ended. |
2882 | 219 | storres | globalWallTime = walltime(wallTimeStart) |
2883 | 219 | storres | globalCpuTime = cputime(cpuTimeStart) |
2884 | 219 | storres | ## Output results |
2885 | 219 | storres | print ; print "Intervals and HTRNs" ; print |
2886 | 219 | storres | for intervalResultsList in globalResultsList: |
2887 | 222 | storres | intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
2888 | 222 | storres | "," + str(intervalResultsList[0][1]) + "]" |
2889 | 222 | storres | print intervalResultString, |
2890 | 219 | storres | if len(intervalResultsList) > 1: |
2891 | 219 | storres | rootsResultsList = intervalResultsList[1] |
2892 | 222 | storres | specificRootResultIndex = 0 |
2893 | 219 | storres | for specificRootResultsList in rootsResultsList: |
2894 | 222 | storres | if specificRootResultIndex == 0: |
2895 | 222 | storres | print "\t", specificRootResultsList[0], |
2896 | 222 | storres | else: |
2897 | 222 | storres | print " " * len(intervalResultString), "\t", \ |
2898 | 222 | storres | specificRootResultsList[0], |
2899 | 219 | storres | if len(specificRootResultsList) > 1: |
2900 | 222 | storres | print specificRootResultsList[1] |
2901 | 222 | storres | specificRootResultIndex += 1 |
2902 | 219 | storres | print ; print |
2903 | 219 | storres | #print globalResultsList |
2904 | 219 | storres | # |
2905 | 219 | storres | print "Timers and counters" |
2906 | 219 | storres | |
2907 | 219 | storres | print "Number of iterations:", iterCount |
2908 | 219 | storres | print "Taylor condition failures:", taylCondFailedCount |
2909 | 219 | storres | print "Coppersmith condition failures:", coppCondFailedCount |
2910 | 219 | storres | print "Resultant condition failures:", resultCondFailedCount |
2911 | 219 | storres | print "Iterations count: ", iterCount |
2912 | 219 | storres | print "Number of intervals:", len(globalResultsList) |
2913 | 219 | storres | print "Number of basis constructions:", basisConstructionsCount |
2914 | 219 | storres | print "Total CPU time spent in basis constructions:", \ |
2915 | 219 | storres | basisConstructionsFullTime |
2916 | 219 | storres | if basisConstructionsCount != 0: |
2917 | 219 | storres | print "Average basis construction CPU time:", \ |
2918 | 219 | storres | basisConstructionsFullTime/basisConstructionsCount |
2919 | 219 | storres | print "Number of reductions:", reductionsCount |
2920 | 219 | storres | print "Total CPU time spent in reductions:", reductionsFullTime |
2921 | 219 | storres | if reductionsCount != 0: |
2922 | 219 | storres | print "Average reduction CPU time:", \ |
2923 | 219 | storres | reductionsFullTime/reductionsCount |
2924 | 219 | storres | print "Number of resultants computation rounds:", \ |
2925 | 219 | storres | resultantsComputationsCount |
2926 | 219 | storres | print "Total CPU time spent in resultants computation rounds:", \ |
2927 | 219 | storres | resultantsComputationsFullTime |
2928 | 219 | storres | if resultantsComputationsCount != 0: |
2929 | 219 | storres | print "Average resultants computation round CPU time:", \ |
2930 | 219 | storres | resultantsComputationsFullTime/resultantsComputationsCount |
2931 | 219 | storres | print "Number of root finding rounds:", rootsComputationsCount |
2932 | 219 | storres | print "Total CPU time spent in roots finding rounds:", \ |
2933 | 219 | storres | rootsComputationsFullTime |
2934 | 219 | storres | if rootsComputationsCount != 0: |
2935 | 219 | storres | print "Average roots finding round CPU time:", \ |
2936 | 219 | storres | rootsComputationsFullTime/rootsComputationsCount |
2937 | 219 | storres | print "Global Wall time:", globalWallTime |
2938 | 219 | storres | print "Global CPU time:", globalCpuTime |
2939 | 219 | storres | ## Output counters |
2940 | 219 | storres | # End srs_runSLZ-v05 |
2941 | 222 | storres | |
2942 | 222 | storres | def srs_run_SLZ_v06(inputFunction, |
2943 | 222 | storres | inputLowerBound, |
2944 | 222 | storres | inputUpperBound, |
2945 | 222 | storres | alpha, |
2946 | 222 | storres | degree, |
2947 | 222 | storres | precision, |
2948 | 222 | storres | emin, |
2949 | 222 | storres | emax, |
2950 | 222 | storres | targetHardnessToRound, |
2951 | 222 | storres | debug = True): |
2952 | 222 | storres | """ |
2953 | 222 | storres | Changes from V5: |
2954 | 222 | storres | Very verbose |
2955 | 222 | storres | Changes from V4: |
2956 | 222 | storres | Approximation polynomial has coefficients rounded. |
2957 | 222 | storres | Changes from V3: |
2958 | 222 | storres | Root search is changed again: |
2959 | 222 | storres | - only resultants in i are computed; |
2960 | 222 | storres | - roots in i are searched for; |
2961 | 222 | storres | - if any, they are tested for hardness-to-round. |
2962 | 222 | storres | Changes from V2: |
2963 | 222 | storres | Root search is changed: |
2964 | 222 | storres | - we compute the resultants in i and in t; |
2965 | 222 | storres | - we compute the roots set of each of these resultants; |
2966 | 222 | storres | - we combine all the possible pairs between the two sets; |
2967 | 222 | storres | - we check these pairs in polynomials for correctness. |
2968 | 222 | storres | Changes from V1: |
2969 | 222 | storres | 1- check for roots as soon as a resultant is computed; |
2970 | 222 | storres | 2- once a non null resultant is found, check for roots; |
2971 | 222 | storres | 3- constant resultant == no root. |
2972 | 222 | storres | """ |
2973 | 222 | storres | if debug: |
2974 | 222 | storres | print "Function :", inputFunction |
2975 | 222 | storres | print "Lower bound :", inputLowerBound |
2976 | 222 | storres | print "Upper bounds :", inputUpperBound |
2977 | 222 | storres | print "Alpha :", alpha |
2978 | 222 | storres | print "Degree :", degree |
2979 | 222 | storres | print "Precision :", precision |
2980 | 222 | storres | print "Emin :", emin |
2981 | 222 | storres | print "Emax :", emax |
2982 | 222 | storres | print "Target hardness-to-round:", targetHardnessToRound |
2983 | 222 | storres | |
2984 | 222 | storres | ## Important constants. |
2985 | 222 | storres | ### Stretch the interval if no error happens. |
2986 | 222 | storres | noErrorIntervalStretch = 1 + 2^(-5) |
2987 | 222 | storres | ### If no vector validates the Coppersmith condition, shrink the interval |
2988 | 222 | storres | # by the following factor. |
2989 | 222 | storres | noCoppersmithIntervalShrink = 1/2 |
2990 | 222 | storres | ### If only (or at least) one vector validates the Coppersmith condition, |
2991 | 222 | storres | # shrink the interval by the following factor. |
2992 | 222 | storres | oneCoppersmithIntervalShrink = 3/4 |
2993 | 222 | storres | #### If only null resultants are found, shrink the interval by the |
2994 | 222 | storres | # following factor. |
2995 | 222 | storres | onlyNullResultantsShrink = 3/4 |
2996 | 222 | storres | ## Structures. |
2997 | 222 | storres | RRR = RealField(precision) |
2998 | 222 | storres | RRIF = RealIntervalField(precision) |
2999 | 222 | storres | ## Converting input bound into the "right" field. |
3000 | 222 | storres | lowerBound = RRR(inputLowerBound) |
3001 | 222 | storres | upperBound = RRR(inputUpperBound) |
3002 | 222 | storres | ## Before going any further, check domain and image binade conditions. |
3003 | 222 | storres | print inputFunction(1).n() |
3004 | 222 | storres | output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
3005 | 222 | storres | if output is None: |
3006 | 222 | storres | print "Invalid domain/image binades. Domain:",\ |
3007 | 222 | storres | lowerBound, upperBound, "Images:", \ |
3008 | 222 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
3009 | 222 | storres | raise Exception("Invalid domain/image binades.") |
3010 | 222 | storres | lb = output[0] ; ub = output[1] |
3011 | 222 | storres | if lb != lowerBound or ub != upperBound: |
3012 | 222 | storres | print "lb:", lb, " - ub:", ub |
3013 | 222 | storres | print "Invalid domain/image binades. Domain:",\ |
3014 | 222 | storres | lowerBound, upperBound, "Images:", \ |
3015 | 222 | storres | inputFunction(lowerBound), inputFunction(upperBound) |
3016 | 222 | storres | raise Exception("Invalid domain/image binades.") |
3017 | 222 | storres | # |
3018 | 222 | storres | ## Progam initialization |
3019 | 222 | storres | ### Approximation polynomial accuracy and hardness to round. |
3020 | 222 | storres | polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
3021 | 222 | storres | polyTargetHardnessToRound = targetHardnessToRound + 1 |
3022 | 222 | storres | ### Significand to integer conversion ratio. |
3023 | 222 | storres | toIntegerFactor = 2^(precision-1) |
3024 | 222 | storres | print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
3025 | 222 | storres | ### Variables and rings for polynomials and root searching. |
3026 | 222 | storres | i=var('i') |
3027 | 222 | storres | t=var('t') |
3028 | 222 | storres | inputFunctionVariable = inputFunction.variables()[0] |
3029 | 222 | storres | function = inputFunction.subs({inputFunctionVariable:i}) |
3030 | 222 | storres | # Polynomial Rings over the integers, for root finding. |
3031 | 222 | storres | Zi = ZZ[i] |
3032 | 222 | storres | ## Number of iterations limit. |
3033 | 222 | storres | maxIter = 100000 |
3034 | 222 | storres | # |
3035 | 222 | storres | ## Compute the scaled function and the degree, in their Sollya version |
3036 | 222 | storres | # once for all. |
3037 | 222 | storres | (scaledf, sdlb, sdub, silb, siub) = \ |
3038 | 222 | storres | slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
3039 | 222 | storres | print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
3040 | 222 | storres | scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
3041 | 222 | storres | degreeSo = pobyso_constant_from_int_sa_so(degree) |
3042 | 222 | storres | # |
3043 | 222 | storres | ## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
3044 | 222 | storres | domainBoundsInterval = RRIF(lowerBound, upperBound) |
3045 | 222 | storres | (unscalingFunction, scalingFunction) = \ |
3046 | 222 | storres | slz_interval_scaling_expression(domainBoundsInterval, i) |
3047 | 222 | storres | #print scalingFunction, unscalingFunction |
3048 | 222 | storres | ## Set the Sollya internal precision (with an arbitrary minimum of 192). |
3049 | 222 | storres | internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
3050 | 222 | storres | if internalSollyaPrec < 192: |
3051 | 222 | storres | internalSollyaPrec = 192 |
3052 | 227 | storres | pobyso_lib_init() |
3053 | 222 | storres | pobyso_set_prec_sa_so(internalSollyaPrec) |
3054 | 222 | storres | print "Sollya internal precision:", internalSollyaPrec |
3055 | 222 | storres | targetPlusOnePrecRF = RealField(RRR.prec()+1) |
3056 | 222 | storres | if internalSollyaPrec < 1024: |
3057 | 222 | storres | quasiExactRF = RealField(1014) |
3058 | 222 | storres | else: |
3059 | 222 | storres | quasiExactRF = RealField(internalSollyaPrec) |
3060 | 222 | storres | ## Some variables. |
3061 | 222 | storres | ### General variables |
3062 | 222 | storres | lb = sdlb |
3063 | 222 | storres | ub = sdub |
3064 | 222 | storres | nbw = 0 |
3065 | 222 | storres | intervalUlp = ub.ulp() |
3066 | 222 | storres | #### Will be set by slz_interval_and_polynomila_to_sage. |
3067 | 222 | storres | ic = 0 |
3068 | 222 | storres | icAsInt = 0 # Set from ic. |
3069 | 222 | storres | solutionsSet = set() |
3070 | 222 | storres | tsErrorWidth = [] |
3071 | 222 | storres | csErrorVectors = [] |
3072 | 222 | storres | csVectorsResultants = [] |
3073 | 222 | storres | floatP = 0 # Taylor polynomial. |
3074 | 222 | storres | floatPcv = 0 # Ditto with variable change. |
3075 | 222 | storres | intvl = "" # Taylor interval |
3076 | 222 | storres | terr = 0 # Taylor error. |
3077 | 222 | storres | iterCount = 0 |
3078 | 222 | storres | htrnSet = set() |
3079 | 222 | storres | ### Timers and counters. |
3080 | 222 | storres | wallTimeStart = 0 |
3081 | 222 | storres | cpuTimeStart = 0 |
3082 | 222 | storres | taylCondFailedCount = 0 |
3083 | 222 | storres | coppCondFailedCount = 0 |
3084 | 222 | storres | resultCondFailedCount = 0 |
3085 | 222 | storres | coppCondFailed = False |
3086 | 222 | storres | resultCondFailed = False |
3087 | 222 | storres | globalResultsList = [] |
3088 | 222 | storres | basisConstructionsCount = 0 |
3089 | 222 | storres | basisConstructionsFullTime = 0 |
3090 | 222 | storres | basisConstructionTime = 0 |
3091 | 222 | storres | reductionsCount = 0 |
3092 | 222 | storres | reductionsFullTime = 0 |
3093 | 222 | storres | reductionTime = 0 |
3094 | 222 | storres | resultantsComputationsCount = 0 |
3095 | 222 | storres | resultantsComputationsFullTime = 0 |
3096 | 222 | storres | resultantsComputationTime = 0 |
3097 | 222 | storres | rootsComputationsCount = 0 |
3098 | 222 | storres | rootsComputationsFullTime = 0 |
3099 | 222 | storres | rootsComputationTime = 0 |
3100 | 222 | storres | |
3101 | 222 | storres | ## Global times are started here. |
3102 | 222 | storres | wallTimeStart = walltime() |
3103 | 222 | storres | cpuTimeStart = cputime() |
3104 | 222 | storres | ## Main loop. |
3105 | 222 | storres | while True: |
3106 | 222 | storres | if lb >= sdub: |
3107 | 222 | storres | print "Lower bound reached upper bound." |
3108 | 222 | storres | break |
3109 | 222 | storres | if iterCount == maxIter: |
3110 | 222 | storres | print "Reached maxIter. Aborting" |
3111 | 222 | storres | break |
3112 | 222 | storres | iterCount += 1 |
3113 | 222 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
3114 | 222 | storres | "log2(numbers)." |
3115 | 227 | storres | #print "Debugging..." |
3116 | 222 | storres | ### Compute a Sollya polynomial that will honor the Taylor condition. |
3117 | 227 | storres | prceSo = slz_compute_polynomial_and_interval_02(scaledfSo, |
3118 | 222 | storres | degreeSo, |
3119 | 222 | storres | lb, |
3120 | 222 | storres | ub, |
3121 | 222 | storres | polyApproxAccur, |
3122 | 222 | storres | debug=True) |
3123 | 222 | storres | if debug: |
3124 | 227 | storres | print "Sollya Taylor polynomial:", ; pobyso_autoprint(prceSo[0]) |
3125 | 227 | storres | print "Sollya interval :", ; pobyso_autoprint(prceSo[1]) |
3126 | 227 | storres | print "Sollya interval center :", ; pobyso_autoprint(prceSo[2]) |
3127 | 227 | storres | print "Sollya Taylor error :", ; pobyso_autoprint(prceSo[3]) |
3128 | 222 | storres | |
3129 | 222 | storres | ### Convert back the data into Sage space. |
3130 | 222 | storres | (floatP, floatPcv, intvl, ic, terr) = \ |
3131 | 222 | storres | slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
3132 | 222 | storres | prceSo[1], prceSo[2], |
3133 | 222 | storres | prceSo[3])) |
3134 | 228 | storres | print "Sage Taylor polynomial:", floatP, floatP.parent() |
3135 | 228 | storres | floatPcoeffs = floatP.coefficients() |
3136 | 228 | storres | for coeff in floatPcoeffs: |
3137 | 228 | storres | print coeff.n(prec=coeff.parent().prec()).str(base=2) |
3138 | 228 | storres | print coeff.n(prec=coeff.parent().prec()) |
3139 | 222 | storres | intvl = RRIF(intvl) |
3140 | 222 | storres | ## Clean-up Sollya stuff. |
3141 | 222 | storres | for elem in prceSo: |
3142 | 222 | storres | sollya_lib_clear_obj(elem) |
3143 | 222 | storres | #print floatP, floatPcv, intvl, ic, terr |
3144 | 222 | storres | #print floatP |
3145 | 222 | storres | #print intvl.endpoints()[0].n(), \ |
3146 | 222 | storres | # ic.n(), |
3147 | 222 | storres | #intvl.endpoints()[1].n() |
3148 | 222 | storres | ### Check returned data. |
3149 | 222 | storres | #### Is approximation error OK? |
3150 | 222 | storres | if terr > polyApproxAccur: |
3151 | 222 | storres | exceptionErrorMess = \ |
3152 | 222 | storres | "Approximation failed - computed error:" + \ |
3153 | 222 | storres | str(terr) + " - target error: " |
3154 | 222 | storres | exceptionErrorMess += \ |
3155 | 222 | storres | str(polyApproxAccur) + ". Aborting!" |
3156 | 222 | storres | raise Exception(exceptionErrorMess) |
3157 | 222 | storres | #### Is lower bound OK? |
3158 | 222 | storres | if lb != intvl.endpoints()[0]: |
3159 | 222 | storres | exceptionErrorMess = "Wrong lower bound:" + \ |
3160 | 222 | storres | str(lb) + ". Aborting!" |
3161 | 222 | storres | raise Exception(exceptionErrorMess) |
3162 | 222 | storres | #### Set upper bound. |
3163 | 222 | storres | if ub > intvl.endpoints()[1]: |
3164 | 222 | storres | ub = intvl.endpoints()[1] |
3165 | 222 | storres | print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
3166 | 222 | storres | "log2(numbers)." |
3167 | 222 | storres | taylCondFailedCount += 1 |
3168 | 222 | storres | #### Is interval not degenerate? |
3169 | 222 | storres | if lb >= ub: |
3170 | 222 | storres | exceptionErrorMess = "Degenerate interval: " + \ |
3171 | 222 | storres | "lowerBound(" + str(lb) +\ |
3172 | 222 | storres | ")>= upperBound(" + str(ub) + \ |
3173 | 222 | storres | "). Aborting!" |
3174 | 222 | storres | raise Exception(exceptionErrorMess) |
3175 | 222 | storres | #### Is interval center ok? |
3176 | 222 | storres | if ic <= lb or ic >= ub: |
3177 | 222 | storres | exceptionErrorMess = "Invalid interval center for " + \ |
3178 | 222 | storres | str(lb) + ',' + str(ic) + ',' + \ |
3179 | 222 | storres | str(ub) + ". Aborting!" |
3180 | 222 | storres | raise Exception(exceptionErrorMess) |
3181 | 222 | storres | ##### Current interval width and reset future interval width. |
3182 | 222 | storres | bw = ub - lb |
3183 | 222 | storres | nbw = 0 |
3184 | 222 | storres | icAsInt = int(ic * toIntegerFactor) |
3185 | 222 | storres | #### The following ratio is always >= 1. In case we may want to |
3186 | 222 | storres | # enlarge the interval |
3187 | 222 | storres | curTaylErrRat = polyApproxAccur / terr |
3188 | 222 | storres | ### Make the integral transformations. |
3189 | 222 | storres | #### Bounds and interval center. |
3190 | 222 | storres | intIc = int(ic * toIntegerFactor) |
3191 | 222 | storres | intLb = int(lb * toIntegerFactor) - intIc |
3192 | 222 | storres | intUb = int(ub * toIntegerFactor) - intIc |
3193 | 222 | storres | # |
3194 | 222 | storres | #### Polynomials |
3195 | 222 | storres | basisConstructionTime = cputime() |
3196 | 222 | storres | ##### To a polynomial with rational coefficients with rational arguments |
3197 | 222 | storres | ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
3198 | 222 | storres | if debug: |
3199 | 222 | storres | print "Polynomial: rational coefficients for rational argument:" |
3200 | 222 | storres | print ratRatP |
3201 | 222 | storres | ##### To a polynomial with rational coefficients with integer arguments |
3202 | 222 | storres | ratIntP = \ |
3203 | 222 | storres | slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
3204 | 222 | storres | if debug: |
3205 | 222 | storres | print "Polynomial: rational coefficients for integer argument:" |
3206 | 222 | storres | print ratIntP |
3207 | 222 | storres | ##### Ultimately a multivariate polynomial with integer coefficients |
3208 | 222 | storres | # with integer arguments. |
3209 | 222 | storres | coppersmithTuple = \ |
3210 | 222 | storres | slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
3211 | 222 | storres | precision, |
3212 | 222 | storres | targetHardnessToRound, |
3213 | 222 | storres | i, t) |
3214 | 222 | storres | #### Recover Coppersmith information. |
3215 | 222 | storres | intIntP = coppersmithTuple[0] |
3216 | 222 | storres | N = coppersmithTuple[1] |
3217 | 222 | storres | nAtAlpha = N^alpha |
3218 | 222 | storres | tBound = coppersmithTuple[2] |
3219 | 222 | storres | leastCommonMultiple = coppersmithTuple[3] |
3220 | 222 | storres | iBound = max(abs(intLb),abs(intUb)) |
3221 | 222 | storres | if debug: |
3222 | 222 | storres | print "Polynomial: integer coefficients for integer argument:" |
3223 | 222 | storres | print intIntP |
3224 | 222 | storres | print "N:", N |
3225 | 222 | storres | print "t bound:", tBound |
3226 | 222 | storres | print "i bound:", iBound |
3227 | 222 | storres | print "Least common multiple:", leastCommonMultiple |
3228 | 222 | storres | basisConstructionsFullTime += cputime(basisConstructionTime) |
3229 | 222 | storres | basisConstructionsCount += 1 |
3230 | 228 | storres | |
3231 | 222 | storres | #### Compute the matrix to reduce. |
3232 | 222 | storres | matrixToReduce = slz_compute_initial_lattice_matrix(intIntP, |
3233 | 222 | storres | alpha, |
3234 | 222 | storres | N, |
3235 | 222 | storres | iBound, |
3236 | 228 | storres | tBound, |
3237 | 228 | storres | True) |
3238 | 222 | storres | matrixFile = file('/tmp/matrixToReduce.txt', 'w') |
3239 | 222 | storres | for row in matrixToReduce.rows(): |
3240 | 222 | storres | matrixFile.write(str(row) + "\n") |
3241 | 222 | storres | matrixFile.close() |
3242 | 228 | storres | #raise Exception("Deliberate stop here.") |
3243 | 228 | storres | |
3244 | 222 | storres | reductionTime = cputime() |
3245 | 222 | storres | #### Compute the reduced polynomials. |
3246 | 222 | storres | ccReducedPolynomialsList = \ |
3247 | 229 | storres | slz_compute_coppersmith_reduced_polynomials_with_lattice_volume(intIntP, |
3248 | 222 | storres | alpha, |
3249 | 222 | storres | N, |
3250 | 222 | storres | iBound, |
3251 | 229 | storres | tBound, |
3252 | 229 | storres | True) |
3253 | 222 | storres | if ccReducedPolynomialsList is None: |
3254 | 222 | storres | raise Exception("Reduction failed.") |
3255 | 222 | storres | reductionsFullTime += cputime(reductionTime) |
3256 | 222 | storres | reductionsCount += 1 |
3257 | 222 | storres | if len(ccReducedPolynomialsList) < 2: |
3258 | 222 | storres | print "Nothing to form resultants with." |
3259 | 222 | storres | |
3260 | 222 | storres | coppCondFailedCount += 1 |
3261 | 222 | storres | coppCondFailed = True |
3262 | 222 | storres | ##### Apply a different shrink factor according to |
3263 | 222 | storres | # the number of compliant polynomials. |
3264 | 222 | storres | if len(ccReducedPolynomialsList) == 0: |
3265 | 222 | storres | ub = lb + bw * noCoppersmithIntervalShrink |
3266 | 222 | storres | else: # At least one compliant polynomial. |
3267 | 222 | storres | ub = lb + bw * oneCoppersmithIntervalShrink |
3268 | 222 | storres | if ub > sdub: |
3269 | 222 | storres | ub = sdub |
3270 | 222 | storres | if lb == ub: |
3271 | 222 | storres | raise Exception("Cant shrink interval \ |
3272 | 222 | storres | anymore to get Coppersmith condition.") |
3273 | 222 | storres | nbw = 0 |
3274 | 222 | storres | continue |
3275 | 222 | storres | #### We have at least two polynomials. |
3276 | 222 | storres | # Let us try to compute resultants. |
3277 | 222 | storres | # For each resultant computed, go for the solutions. |
3278 | 222 | storres | ##### Build the pairs list. |
3279 | 222 | storres | polyPairsList = [] |
3280 | 222 | storres | for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
3281 | 222 | storres | for polyInnerIndex in xrange(polyOuterIndex+1, |
3282 | 222 | storres | len(ccReducedPolynomialsList)): |
3283 | 222 | storres | polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
3284 | 222 | storres | ccReducedPolynomialsList[polyInnerIndex])) |
3285 | 222 | storres | #### Actual root search. |
3286 | 222 | storres | iRootsSet = set() |
3287 | 222 | storres | hasNonNullResultant = False |
3288 | 222 | storres | for polyPair in polyPairsList: |
3289 | 222 | storres | resultantsComputationTime = cputime() |
3290 | 222 | storres | currentResultantI = \ |
3291 | 222 | storres | slz_resultant(polyPair[0], |
3292 | 222 | storres | polyPair[1], |
3293 | 229 | storres | t, |
3294 | 229 | storres | debug=True) |
3295 | 222 | storres | resultantsComputationsCount += 1 |
3296 | 222 | storres | resultantsComputationsFullTime += \ |
3297 | 222 | storres | cputime(resultantsComputationTime) |
3298 | 222 | storres | #### Function slz_resultant returns None both for None and O |
3299 | 222 | storres | # resultants. |
3300 | 222 | storres | if currentResultantI is None: |
3301 | 222 | storres | print "Nul resultant" |
3302 | 222 | storres | continue # Next polyPair. |
3303 | 222 | storres | ## We deleted the currentResultantI computation. |
3304 | 222 | storres | #### We have a non null resultant. From now on, whatever this |
3305 | 222 | storres | # root search yields, no extra root search is necessary. |
3306 | 222 | storres | hasNonNullResultant = True |
3307 | 222 | storres | #### A constant resultant leads to no root. Root search is done. |
3308 | 222 | storres | if currentResultantI.degree() < 1: |
3309 | 222 | storres | print "Resultant is constant:", currentResultantI |
3310 | 222 | storres | break # There is no root. |
3311 | 222 | storres | #### Actual iroots computation. |
3312 | 222 | storres | rootsComputationTime = cputime() |
3313 | 222 | storres | iRootsList = Zi(currentResultantI).roots() |
3314 | 222 | storres | rootsComputationsCount += 1 |
3315 | 222 | storres | rootsComputationsFullTime = cputime(rootsComputationTime) |
3316 | 222 | storres | if len(iRootsList) == 0: |
3317 | 222 | storres | print "No roots in \"i\"." |
3318 | 222 | storres | break # No roots in i. |
3319 | 222 | storres | else: |
3320 | 222 | storres | for iRoot in iRootsList: |
3321 | 222 | storres | # A root is given as a (value, multiplicity) tuple. |
3322 | 222 | storres | iRootsSet.add(iRoot[0]) |
3323 | 222 | storres | # End loop for polyPair in polyParsList. We only loop again if a |
3324 | 222 | storres | # None or zero resultant is found. |
3325 | 222 | storres | #### Prepare for results for the current interval.. |
3326 | 222 | storres | intervalResultsList = [] |
3327 | 222 | storres | intervalResultsList.append((lb, ub)) |
3328 | 222 | storres | #### Check roots. |
3329 | 222 | storres | rootsResultsList = [] |
3330 | 222 | storres | for iRoot in iRootsSet: |
3331 | 222 | storres | specificRootResultsList = [] |
3332 | 222 | storres | failingBounds = [] |
3333 | 222 | storres | # Root qualifies for modular equation, test it for hardness to round. |
3334 | 222 | storres | hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor) |
3335 | 222 | storres | #print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
3336 | 222 | storres | #print scalingFunction |
3337 | 222 | storres | scaledHardToRoundCaseAsFloat = \ |
3338 | 222 | storres | scalingFunction(hardToRoundCaseAsFloat) |
3339 | 222 | storres | print "Candidate HTRNc at x =", \ |
3340 | 222 | storres | scaledHardToRoundCaseAsFloat.n().str(base=2), |
3341 | 222 | storres | if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
3342 | 222 | storres | function, |
3343 | 222 | storres | 2^-(targetHardnessToRound), |
3344 | 222 | storres | RRR, |
3345 | 222 | storres | targetPlusOnePrecRF, |
3346 | 222 | storres | quasiExactRF): |
3347 | 222 | storres | print hardToRoundCaseAsFloat, "is HTRN case." |
3348 | 222 | storres | specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
3349 | 222 | storres | if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
3350 | 222 | storres | print "Found in interval." |
3351 | 222 | storres | else: |
3352 | 222 | storres | print "Found out of interval." |
3353 | 222 | storres | # Check the i root is within the i bound. |
3354 | 222 | storres | if abs(iRoot) > iBound: |
3355 | 222 | storres | print "IRoot", iRoot, "is out of bounds for modular equation." |
3356 | 222 | storres | print "i bound:", iBound |
3357 | 222 | storres | failingBounds.append('i') |
3358 | 222 | storres | failingBounds.append(iRoot) |
3359 | 222 | storres | failingBounds.append(iBound) |
3360 | 222 | storres | if len(failingBounds) > 0: |
3361 | 222 | storres | specificRootResultsList.append(failingBounds) |
3362 | 222 | storres | else: # From slz_is_htrn... |
3363 | 229 | storres | print "is not an HTRN case for integer value:", iRoot |
3364 | 222 | storres | if len(specificRootResultsList) > 0: |
3365 | 222 | storres | rootsResultsList.append(specificRootResultsList) |
3366 | 222 | storres | if len(rootsResultsList) > 0: |
3367 | 222 | storres | intervalResultsList.append(rootsResultsList) |
3368 | 222 | storres | ### Check if a non null resultant was found. If not shrink the interval. |
3369 | 222 | storres | if not hasNonNullResultant: |
3370 | 222 | storres | print "Only null resultants for this reduction, shrinking interval." |
3371 | 222 | storres | resultCondFailed = True |
3372 | 222 | storres | resultCondFailedCount += 1 |
3373 | 222 | storres | ### Shrink interval for next iteration. |
3374 | 222 | storres | ub = lb + bw * onlyNullResultantsShrink |
3375 | 222 | storres | if ub > sdub: |
3376 | 222 | storres | ub = sdub |
3377 | 222 | storres | nbw = 0 |
3378 | 222 | storres | continue |
3379 | 222 | storres | #### An intervalResultsList has at least the bounds. |
3380 | 222 | storres | globalResultsList.append(intervalResultsList) |
3381 | 222 | storres | #### Compute an incremented width for next upper bound, only |
3382 | 222 | storres | # if not Coppersmith condition nor resultant condition |
3383 | 222 | storres | # failed at the previous run. |
3384 | 222 | storres | if not coppCondFailed and not resultCondFailed: |
3385 | 222 | storres | nbw = noErrorIntervalStretch * bw |
3386 | 222 | storres | else: |
3387 | 222 | storres | nbw = bw |
3388 | 222 | storres | ##### Reset the failure flags. They will be raised |
3389 | 222 | storres | # again if needed. |
3390 | 222 | storres | coppCondFailed = False |
3391 | 222 | storres | resultCondFailed = False |
3392 | 222 | storres | #### For next iteration (at end of loop) |
3393 | 222 | storres | #print "nbw:", nbw |
3394 | 222 | storres | lb = ub |
3395 | 222 | storres | ub += nbw |
3396 | 222 | storres | if ub > sdub: |
3397 | 222 | storres | ub = sdub |
3398 | 222 | storres | |
3399 | 222 | storres | # End while True |
3400 | 222 | storres | ## Main loop just ended. |
3401 | 222 | storres | globalWallTime = walltime(wallTimeStart) |
3402 | 222 | storres | globalCpuTime = cputime(cpuTimeStart) |
3403 | 222 | storres | ## Output results |
3404 | 222 | storres | print ; print "Intervals and HTRNs" ; print |
3405 | 222 | storres | for intervalResultsList in globalResultsList: |
3406 | 222 | storres | intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
3407 | 222 | storres | "," + str(intervalResultsList[0][1]) + "]" |
3408 | 222 | storres | print intervalResultString, |
3409 | 222 | storres | if len(intervalResultsList) > 1: |
3410 | 222 | storres | rootsResultsList = intervalResultsList[1] |
3411 | 222 | storres | specificRootResultIndex = 0 |
3412 | 222 | storres | for specificRootResultsList in rootsResultsList: |
3413 | 222 | storres | if specificRootResultIndex == 0: |
3414 | 222 | storres | print "\t", specificRootResultsList[0], |
3415 | 222 | storres | else: |
3416 | 222 | storres | print " " * len(intervalResultString), "\t", \ |
3417 | 222 | storres | specificRootResultsList[0], |
3418 | 222 | storres | if len(specificRootResultsList) > 1: |
3419 | 222 | storres | print specificRootResultsList[1] |
3420 | 222 | storres | specificRootResultIndex += 1 |
3421 | 222 | storres | print ; print |
3422 | 222 | storres | #print globalResultsList |
3423 | 222 | storres | # |
3424 | 222 | storres | print "Timers and counters" |
3425 | 222 | storres | |
3426 | 222 | storres | print "Number of iterations:", iterCount |
3427 | 222 | storres | print "Taylor condition failures:", taylCondFailedCount |
3428 | 222 | storres | print "Coppersmith condition failures:", coppCondFailedCount |
3429 | 222 | storres | print "Resultant condition failures:", resultCondFailedCount |
3430 | 222 | storres | print "Iterations count: ", iterCount |
3431 | 222 | storres | print "Number of intervals:", len(globalResultsList) |
3432 | 222 | storres | print "Number of basis constructions:", basisConstructionsCount |
3433 | 222 | storres | print "Total CPU time spent in basis constructions:", \ |
3434 | 222 | storres | basisConstructionsFullTime |
3435 | 222 | storres | if basisConstructionsCount != 0: |
3436 | 222 | storres | print "Average basis construction CPU time:", \ |
3437 | 222 | storres | basisConstructionsFullTime/basisConstructionsCount |
3438 | 222 | storres | print "Number of reductions:", reductionsCount |
3439 | 222 | storres | print "Total CPU time spent in reductions:", reductionsFullTime |
3440 | 222 | storres | if reductionsCount != 0: |
3441 | 222 | storres | print "Average reduction CPU time:", \ |
3442 | 222 | storres | reductionsFullTime/reductionsCount |
3443 | 222 | storres | print "Number of resultants computation rounds:", \ |
3444 | 222 | storres | resultantsComputationsCount |
3445 | 222 | storres | print "Total CPU time spent in resultants computation rounds:", \ |
3446 | 222 | storres | resultantsComputationsFullTime |
3447 | 222 | storres | if resultantsComputationsCount != 0: |
3448 | 222 | storres | print "Average resultants computation round CPU time:", \ |
3449 | 222 | storres | resultantsComputationsFullTime/resultantsComputationsCount |
3450 | 222 | storres | print "Number of root finding rounds:", rootsComputationsCount |
3451 | 222 | storres | print "Total CPU time spent in roots finding rounds:", \ |
3452 | 222 | storres | rootsComputationsFullTime |
3453 | 222 | storres | if rootsComputationsCount != 0: |
3454 | 222 | storres | print "Average roots finding round CPU time:", \ |
3455 | 222 | storres | rootsComputationsFullTime/rootsComputationsCount |
3456 | 222 | storres | print "Global Wall time:", globalWallTime |
3457 | 222 | storres | print "Global CPU time:", globalCpuTime |
3458 | 222 | storres | ## Output counters |
3459 | 222 | storres | # End srs_runSLZ-v06 |