root / pobysoPythonSage / src / pobyso.py @ 227
Historique | Voir | Annoter | Télécharger (77,31 ko)
1 |
"""
|
---|---|
2 |
@file pobyso.py
|
3 |
Actual functions to use in Sage
|
4 |
ST 2012-11-13
|
5 |
|
6 |
Command line syntax:
|
7 |
use from Sage (via the "load" or the "attach" commands)
|
8 |
|
9 |
pobyso functions come in five flavors:
|
10 |
- the _so_so (arguments and returned objects are pointers to Sollya objects,
|
11 |
includes the void function and the no arguments function that return a
|
12 |
pointer to a Sollya object);
|
13 |
- the _so_sa (argument are pointers to Sollya objects, returned objects are
|
14 |
Sage/Python objects or, more generally, information is transfered from the
|
15 |
Sollya world to Sage/Python world; e.g. functions without arguments that
|
16 |
return a Sage/Python object);
|
17 |
- the _sa_so (arguments are Sage/Python objects, returned objects are
|
18 |
pointers to Sollya objects);
|
19 |
- the sa_sa (arguments and returned objects are all Sage/Python objects);
|
20 |
- a catch all flavor, without any suffix, (e. g. functions that have no argument
|
21 |
nor return value).
|
22 |
This classification is not always very strict. Conversion functions from Sollya
|
23 |
to Sage/Python are sometimes decorated with Sage/Python arguments to set
|
24 |
the precision. These functions remain in the so_sa category.
|
25 |
NOTES:
|
26 |
Reported errors in Eclipse come from the calls to
|
27 |
the Sollya library
|
28 |
|
29 |
ToDo (among other things):
|
30 |
-memory management.
|
31 |
"""
|
32 |
from ctypes import * |
33 |
import re |
34 |
from sage.symbolic.expression_conversions import polynomial |
35 |
from sage.symbolic.expression_conversions import PolynomialConverter |
36 |
"""
|
37 |
Create the equivalent to an enum for the Sollya function types.
|
38 |
"""
|
39 |
(SOLLYA_BASE_FUNC_ABS, |
40 |
SOLLYA_BASE_FUNC_ACOS, |
41 |
SOLLYA_BASE_FUNC_ACOSH, |
42 |
SOLLYA_BASE_FUNC_ADD, |
43 |
SOLLYA_BASE_FUNC_ASIN, |
44 |
SOLLYA_BASE_FUNC_ASINH, |
45 |
SOLLYA_BASE_FUNC_ATAN, |
46 |
SOLLYA_BASE_FUNC_ATANH, |
47 |
SOLLYA_BASE_FUNC_CEIL, |
48 |
SOLLYA_BASE_FUNC_CONSTANT, |
49 |
SOLLYA_BASE_FUNC_COS, |
50 |
SOLLYA_BASE_FUNC_COSH, |
51 |
SOLLYA_BASE_FUNC_DIV, |
52 |
SOLLYA_BASE_FUNC_DOUBLE, |
53 |
SOLLYA_BASE_FUNC_DOUBLEDOUBLE, |
54 |
SOLLYA_BASE_FUNC_DOUBLEEXTENDED, |
55 |
SOLLYA_BASE_FUNC_ERF, |
56 |
SOLLYA_BASE_FUNC_ERFC, |
57 |
SOLLYA_BASE_FUNC_EXP, |
58 |
SOLLYA_BASE_FUNC_EXP_M1, |
59 |
SOLLYA_BASE_FUNC_FLOOR, |
60 |
SOLLYA_BASE_FUNC_FREE_VARIABLE, |
61 |
SOLLYA_BASE_FUNC_HALFPRECISION, |
62 |
SOLLYA_BASE_FUNC_LIBRARYCONSTANT, |
63 |
SOLLYA_BASE_FUNC_LIBRARYFUNCTION, |
64 |
SOLLYA_BASE_FUNC_LOG, |
65 |
SOLLYA_BASE_FUNC_LOG_10, |
66 |
SOLLYA_BASE_FUNC_LOG_1P, |
67 |
SOLLYA_BASE_FUNC_LOG_2, |
68 |
SOLLYA_BASE_FUNC_MUL, |
69 |
SOLLYA_BASE_FUNC_NEARESTINT, |
70 |
SOLLYA_BASE_FUNC_NEG, |
71 |
SOLLYA_BASE_FUNC_PI, |
72 |
SOLLYA_BASE_FUNC_POW, |
73 |
SOLLYA_BASE_FUNC_PROCEDUREFUNCTION, |
74 |
SOLLYA_BASE_FUNC_QUAD, |
75 |
SOLLYA_BASE_FUNC_SIN, |
76 |
SOLLYA_BASE_FUNC_SINGLE, |
77 |
SOLLYA_BASE_FUNC_SINH, |
78 |
SOLLYA_BASE_FUNC_SQRT, |
79 |
SOLLYA_BASE_FUNC_SUB, |
80 |
SOLLYA_BASE_FUNC_TAN, |
81 |
SOLLYA_BASE_FUNC_TANH, |
82 |
SOLLYA_BASE_FUNC_TRIPLEDOUBLE) = map(int,xrange(44)) |
83 |
print "\nSuperficial pobyso check..." |
84 |
print "First constant - SOLLYA_BASE_FUNC_ABS: ", SOLLYA_BASE_FUNC_ABS |
85 |
print "Last constant - SOLLYA_BASE_FUNC_TRIPLEDOUBLE: ", SOLLYA_BASE_FUNC_TRIPLEDOUBLE |
86 |
|
87 |
pobyso_max_arity = 9
|
88 |
|
89 |
def pobyso_absolute_so_so(): |
90 |
return(sollya_lib_absolute(None)) |
91 |
|
92 |
def pobyso_autoprint(arg): |
93 |
sollya_lib_autoprint(arg, None)
|
94 |
|
95 |
def pobyso_autoprint_so_so(arg): |
96 |
sollya_lib_autoprint(arg,None)
|
97 |
|
98 |
def pobyso_bounds_to_range_sa_so(rnLowerBoundSa, rnUpperBoundSa, \ |
99 |
precisionSa=None):
|
100 |
"""
|
101 |
Return a Sollya range from to 2 RealField Sage elements.
|
102 |
The Sollya range element has a sufficient precision to hold all
|
103 |
the digits of the widest of the Sage bounds.
|
104 |
"""
|
105 |
# Sanity check.
|
106 |
if rnLowerBoundSa > rnUpperBoundSa:
|
107 |
return None |
108 |
# Precision stuff.
|
109 |
if precisionSa is None: |
110 |
# Check for the largest precision.
|
111 |
lbPrecSa = rnLowerBoundSa.parent().precision() |
112 |
ubPrecSa = rnLowerBoundSa.parent().precision() |
113 |
maxPrecSa = max(lbPrecSa, ubPrecSa)
|
114 |
else:
|
115 |
maxPrecSa = precisionSa |
116 |
# From Sage to Sollya bounds.
|
117 |
# lowerBoundSo = sollya_lib_constant(get_rn_value(rnLowerBoundSa),
|
118 |
# maxPrecSa)
|
119 |
lowerBoundSo = pobyso_constant_sa_so(rnLowerBoundSa, |
120 |
maxPrecSa) |
121 |
upperBoundSo = pobyso_constant_sa_so(rnUpperBoundSa, |
122 |
maxPrecSa) |
123 |
|
124 |
# From Sollya bounds to range.
|
125 |
rangeSo = sollya_lib_range(lowerBoundSo, upperBoundSo) |
126 |
# Back to original precision.
|
127 |
# Clean up
|
128 |
sollya_lib_clear_obj(lowerBoundSo) |
129 |
sollya_lib_clear_obj(upperBoundSo) |
130 |
return rangeSo
|
131 |
# End pobyso_bounds_to_range_sa_so
|
132 |
|
133 |
def pobyso_build_end_elliptic_list_so_so(*args): |
134 |
"""
|
135 |
From argumrny Sollya objects, create a Sollya end elliptic list.
|
136 |
Elements of the list are "eaten" (should not be cleared individualy,
|
137 |
are cleared when the list is cleared).
|
138 |
"""
|
139 |
if len(args) == 0: |
140 |
## Called with an empty list produced "error".
|
141 |
return sollya_lib_build_end_elliptic_list(None) |
142 |
index = 0
|
143 |
## One can not append elements to an elliptic list, prepend only is
|
144 |
# permitted.
|
145 |
for argument in reversed(args): |
146 |
if index == 0: |
147 |
listSo = sollya_lib_build_end_elliptic_list(argument, None)
|
148 |
else:
|
149 |
listSo = sollya_lib_prepend(argument, listSo) |
150 |
index += 1
|
151 |
return listSo
|
152 |
|
153 |
# End pobyso_build_end_elliptic_list_so_so
|
154 |
|
155 |
def pobyso_build_function_sub_so_so(exp1So, exp2So): |
156 |
return(sollya_lib_build_function_sub(exp1So, exp2So))
|
157 |
|
158 |
def pobyso_change_var_in_function_so_so(funcSo, chvarExpSo): |
159 |
"""
|
160 |
Variable change in a function.
|
161 |
"""
|
162 |
return(sollya_lib_evaluate(funcSo,chvarExpSo))
|
163 |
# End pobyso_change_var_in_function_so_so
|
164 |
|
165 |
def pobyso_chebyshevform_so_so(functionSo, degreeSo, intervalSo): |
166 |
resultSo = sollya_lib_chebyshevform(functionSo, degreeSo, intervalSo) |
167 |
return(resultSo)
|
168 |
# End pobyso_chebyshevform_so_so.
|
169 |
|
170 |
def pobyso_clear_taylorform_sa_so(taylorFormSaSo): |
171 |
"""
|
172 |
This method is necessary to correctly clean up the memory from Taylor forms.
|
173 |
These are made of a Sollya object, a Sollya object list, a Sollya object.
|
174 |
For no clearly understood reason, sollya_lib_clear_object_list crashed
|
175 |
when applied to the object list.
|
176 |
Here, we decompose it into Sage list of Sollya objects references and we
|
177 |
clear them one by one.
|
178 |
"""
|
179 |
sollya_lib_clear_obj(taylorFormSaSo[0])
|
180 |
(coefficientsErrorsListSaSo, numElementsSa, isEndEllipticSa) = \ |
181 |
pobyso_get_list_elements_so_so(taylorFormSaSo[1])
|
182 |
for element in coefficientsErrorsListSaSo: |
183 |
sollya_lib_clear_obj(element) |
184 |
sollya_lib_clear_obj(taylorFormSaSo[1])
|
185 |
sollya_lib_clear_obj(taylorFormSaSo[2])
|
186 |
# End pobyso_clear_taylorform_sa_so
|
187 |
|
188 |
def pobyso_cmp(rnArgSa, cteSo): |
189 |
"""
|
190 |
Compare the MPFR value a RealNumber with that of a Sollya constant.
|
191 |
|
192 |
Get the value of the Sollya constant into a RealNumber and compare
|
193 |
using MPFR. Could be optimized by working directly with a mpfr_t
|
194 |
for the intermediate number.
|
195 |
"""
|
196 |
# Get the precision of the Sollya constant to build a Sage RealNumber
|
197 |
# with enough precision.to hold it.
|
198 |
precisionOfCte = c_int(0)
|
199 |
# From the Sollya constant, create a local Sage RealNumber.
|
200 |
sollya_lib_get_prec_of_constant(precisionOfCte, cteSo) |
201 |
#print "Precision of constant: ", precisionOfCte
|
202 |
RRRR = RealField(precisionOfCte.value) |
203 |
rnLocalSa = RRRR(0)
|
204 |
sollya_lib_get_constant(get_rn_value(rnLocalSa), cteSo) |
205 |
#
|
206 |
## Compare the Sage RealNumber version of the Sollya constant with rnArg.
|
207 |
return(cmp_rn_value(rnArgSa, rnLocal))
|
208 |
# End pobyso_smp
|
209 |
|
210 |
def pobyso_compute_pos_function_abs_val_bounds_sa_sa(funcSa, lowerBoundSa, \ |
211 |
upperBoundSa): |
212 |
"""
|
213 |
TODO: completely rework and test.
|
214 |
"""
|
215 |
pobyso = pobyso_name_free_variable_sa_so(funcSa.variables()[0])
|
216 |
funcSo = pobyso_parse_string(funcSa._assume_str().replace('_SAGE_VAR_', '')) |
217 |
rangeSo = pobyso_range_sa_so(lowerBoundSa, upperBoundSa) |
218 |
infnormSo = pobyso_infnorm_so_so(funcSo,rangeSo) |
219 |
# Sollya return the infnorm as an interval.
|
220 |
fMaxSa = pobyso_get_interval_from_range_so_sa(infnormSo) |
221 |
# Get the top bound and compute the binade top limit.
|
222 |
fMaxUpperBoundSa = fMaxSa.upper() |
223 |
binadeTopLimitSa = 2**ceil(fMaxUpperBoundSa.log2())
|
224 |
# Put up together the function to use to compute the lower bound.
|
225 |
funcAuxSo = pobyso_parse_string(str(binadeTopLimitSa) + \
|
226 |
'-(' + f._assume_str().replace('_SAGE_VAR_', '') + ')') |
227 |
pobyso_autoprint(funcAuxSo) |
228 |
# Clear the Sollya range before a new call to infnorm and issue the call.
|
229 |
sollya_lib_clear_obj(infnormSo) |
230 |
infnormSo = pobyso_infnorm_so_so(funcAuxSo,rangeSo) |
231 |
fMinSa = pobyso_get_interval_from_range_so_sa(infnormSo) |
232 |
sollya_lib_clear_obj(infnormSo) |
233 |
fMinLowerBoundSa = binadeTopLimitSa - fMinSa.lower() |
234 |
# Compute the maximum of the precisions of the different bounds.
|
235 |
maxPrecSa = max([fMinLowerBoundSa.parent().precision(), \
|
236 |
fMaxUpperBoundSa.parent().precision()]) |
237 |
# Create a RealIntervalField and create an interval with the "good" bounds.
|
238 |
RRRI = RealIntervalField(maxPrecSa) |
239 |
imageIntervalSa = RRRI(fMinLowerBoundSa, fMaxUpperBoundSa) |
240 |
# Free the unneeded Sollya objects
|
241 |
sollya_lib_clear_obj(funcSo) |
242 |
sollya_lib_clear_obj(funcAuxSo) |
243 |
sollya_lib_clear_obj(rangeSo) |
244 |
return(imageIntervalSa)
|
245 |
# End pobyso_compute_pos_function_abs_val_bounds_sa_sa
|
246 |
|
247 |
def pobyso_compute_precision_decay_ratio_function_sa_so(): |
248 |
"""
|
249 |
Compute the precision decay ratio function for polynomial
|
250 |
coefficient progressive trucation.
|
251 |
"""
|
252 |
functionText = """
|
253 |
proc(deg, a, b, we, wq)
|
254 |
{
|
255 |
k = we * (exp(x/a)-1) + wq * (b*x)^2 + (1-we-wq) * x;
|
256 |
return k/k(d);
|
257 |
};
|
258 |
"""
|
259 |
return pobyso_parse_string_sa_so(functionText)
|
260 |
# End pobyso_compute_precision_decay_ratio_function.
|
261 |
|
262 |
|
263 |
def pobyso_constant(rnArg): |
264 |
""" Legacy function. See pobyso_constant_sa_so. """
|
265 |
return(pobyso_constant_sa_so(rnArg))
|
266 |
|
267 |
def pobyso_constant_sa_so(rnArgSa, precisionSa=None): |
268 |
"""
|
269 |
Create a Sollya constant from a Sage RealNumber.
|
270 |
The sollya_lib_constant() function creates a constant
|
271 |
with the same precision as the source.
|
272 |
"""
|
273 |
## Precision stuff. If one wants to change precisions,
|
274 |
# everything takes place in Sage. That only makes
|
275 |
# sense if one wants to reduce the precision.
|
276 |
# TODO: revisit precision stuff with new technique.
|
277 |
if not precisionSa is None: |
278 |
RRR = RealField(precisionSa) |
279 |
rnArgSa = RRR(rnArgSa) |
280 |
#print rnArgSa, rnArgSa.precision()
|
281 |
# Sollya constant creation takes place here.
|
282 |
return sollya_lib_constant(get_rn_value(rnArgSa))
|
283 |
# End pobyso_constant_sa_so
|
284 |
|
285 |
def pobyso_constant_0_sa_so(): |
286 |
"""
|
287 |
Obvious.
|
288 |
"""
|
289 |
return pobyso_constant_from_int_sa_so(0) |
290 |
|
291 |
def pobyso_constant_1(): |
292 |
"""
|
293 |
Obvious.
|
294 |
Legacy function. See pobyso_constant_so_so.
|
295 |
"""
|
296 |
return pobyso_constant_1_sa_so()
|
297 |
|
298 |
def pobyso_constant_1_sa_so(): |
299 |
"""
|
300 |
Obvious.
|
301 |
"""
|
302 |
return(pobyso_constant_from_int_sa_so(1)) |
303 |
|
304 |
def pobyso_constant_from_int(anInt): |
305 |
""" Legacy function. See pobyso_constant_from_int_sa_so. """
|
306 |
return pobyso_constant_from_int_sa_so(anInt)
|
307 |
|
308 |
def pobyso_constant_from_int_sa_so(anInt): |
309 |
"""
|
310 |
Get a Sollya constant from a Sage int.
|
311 |
"""
|
312 |
return sollya_lib_constant_from_int64(long(anInt)) |
313 |
|
314 |
def pobyso_constant_from_int_so_sa(constSo): |
315 |
"""
|
316 |
Get a Sage int from a Sollya int constant.
|
317 |
Usefull for precision or powers in polynomials.
|
318 |
"""
|
319 |
constSa = c_long(0)
|
320 |
sollya_lib_get_constant_as_int64(byref(constSa), constSo) |
321 |
return constSa.value
|
322 |
# End pobyso_constant_from_int_so_sa
|
323 |
|
324 |
def pobyso_constant_from_mpq_sa_so(rationalSa): |
325 |
"""
|
326 |
Make a Sollya constant from Sage rational.
|
327 |
The Sollya constant is an unevaluated expression.
|
328 |
Hence no precision argument is needed.
|
329 |
It is better to leave this way since Sollya has its own
|
330 |
optimized evaluation mecanism that tries very hard to
|
331 |
return exact values or at least faithful ones.
|
332 |
"""
|
333 |
ratExprSo = \ |
334 |
sollya_lib_constant_from_mpq(sgmp_get_rational_value(rationalSa)) |
335 |
return ratExprSo
|
336 |
# End pobyso_constant_from_mpq_sa_so.
|
337 |
|
338 |
def pobyso_constant_sollya_prec_sa_so(rnArgSa): |
339 |
"""
|
340 |
Create a Sollya constant from a Sage RealNumber at the
|
341 |
current precision in Sollya.
|
342 |
"""
|
343 |
currentSollyaPrecSa = pobyso_get_prec_so_sa() |
344 |
return pobyso_constant_sa_so(rnArgSa, currentSollyaPrecSa)
|
345 |
# End pobyso_constant_sollya_prec_sa_so
|
346 |
|
347 |
def pobyso_end_elliptic_list_so_sa_so(objectsListSo, intCountSa): |
348 |
"""
|
349 |
Create a Sollya end elliptic list made of the objectListSo[0] to
|
350 |
objectsListSo[intCountSa-1] objects.
|
351 |
"""
|
352 |
return sollya_lib_end_elliptic_list(objectSo, int(intCountSa)) |
353 |
|
354 |
def pobyso_error_so(): |
355 |
return sollya_lib_error(None) |
356 |
# End pobyso_error().
|
357 |
|
358 |
def pobyso_evaluate_so_so(funcSo, argumentSo): |
359 |
"""
|
360 |
Evaluates funcSo for arguemntSo through sollya_lib_evaluate().
|
361 |
"""
|
362 |
return sollya_lib_evaluate(funcSo, argumentSo)
|
363 |
# End pobyso_evaluate_so_so.
|
364 |
|
365 |
def pobyso_float_poly_sa_so(polySa, precSa = None): |
366 |
"""
|
367 |
Create a Sollya polynomial from a Sage RealField polynomial.
|
368 |
"""
|
369 |
## TODO: filter arguments.
|
370 |
## Precision. If a precision is given, convert the polynomial
|
371 |
# into the right polynomial field. If not convert it straight
|
372 |
# to Sollya.
|
373 |
sollyaPrecChanged = False
|
374 |
(initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
375 |
if precSa is None: |
376 |
precSa = polySa.parent().base_ring().precision() |
377 |
if (precSa > initialSollyaPrecSa):
|
378 |
if precSa <= 2: |
379 |
print inspect.stack()[0][3], ": precision change <= 2 requested" |
380 |
precSo = pobyso_constant_from_int(precSa) |
381 |
pobyso_set_prec_so_so(precSo) |
382 |
sollya_lib_clear_obj(precSo) |
383 |
sollyaPrecChanged = True
|
384 |
## Get exponents and coefficients.
|
385 |
exponentsSa = polySa.exponents() |
386 |
coefficientsSa = polySa.coefficients() |
387 |
## Build the polynomial.
|
388 |
polySo = None
|
389 |
for coefficientSa, exponentSa in zip(coefficientsSa, exponentsSa): |
390 |
#print coefficientSa.n(prec=precSa), exponentSa
|
391 |
coefficientSo = \ |
392 |
pobyso_constant_sa_so(coefficientSa) |
393 |
#pobyso_autoprint(coefficientSo)
|
394 |
exponentSo = \ |
395 |
pobyso_constant_from_int_sa_so(exponentSa) |
396 |
#pobyso_autoprint(exponentSo)
|
397 |
monomialSo = sollya_lib_build_function_pow( |
398 |
sollya_lib_build_function_free_variable(), |
399 |
exponentSo) |
400 |
polyTermSo = sollya_lib_build_function_mul(coefficientSo, |
401 |
monomialSo) |
402 |
if polySo is None: |
403 |
polySo = polyTermSo |
404 |
else:
|
405 |
polySo = sollya_lib_build_function_add(polySo, polyTermSo) |
406 |
if sollyaPrecChanged:
|
407 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
408 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
409 |
return polySo
|
410 |
# End pobyso_float_poly_sa_so
|
411 |
|
412 |
def pobyso_float_poly_so_sa(polySo, realFieldSa=None): |
413 |
"""
|
414 |
Convert a Sollya polynomial into a Sage floating-point polynomial.
|
415 |
If no realField is given, a RealField corresponding to the maximum
|
416 |
precision of the coefficients is internally computed.
|
417 |
The real field is not returned but can be easily retrieved from
|
418 |
the polynomial itself.
|
419 |
ALGORITHM:
|
420 |
- (optional) compute the RealField of the coefficients;
|
421 |
- convert the Sollya expression into a Sage expression;
|
422 |
- convert the Sage expression into a Sage polynomial
|
423 |
"""
|
424 |
if realFieldSa is None: |
425 |
expressionPrecSa = pobyso_get_max_prec_of_exp_so_sa(polySo) |
426 |
#print "Maximum precision of Sollya polynomial coefficients:", expressionPrecSa
|
427 |
if expressionPrecSa < 2 or expressionPrecSa > 2147483391: |
428 |
print "Maximum degree of expression:", expressionPrecSa |
429 |
realFieldSa = RealField(expressionPrecSa) |
430 |
#print "Sollya expression before...",
|
431 |
#pobyso_autoprint(polySo)
|
432 |
|
433 |
expressionSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, |
434 |
realFieldSa) |
435 |
#print "...Sollya expression after."
|
436 |
#pobyso_autoprint(polySo)
|
437 |
polyVariableSa = expressionSa.variables()[0]
|
438 |
polyRingSa = realFieldSa[str(polyVariableSa)]
|
439 |
#print polyRingSa
|
440 |
# Do not use the polynomial(expressionSa, ring=polyRingSa) form!
|
441 |
polynomialSa = polyRingSa(expressionSa) |
442 |
polyCoeffsListSa = polynomialSa.coefficients() |
443 |
#for coeff in polyCoeffsListSa:
|
444 |
# print coeff.abs().n()
|
445 |
return polynomialSa
|
446 |
# End pobyso_float_poly_so_sa
|
447 |
|
448 |
def pobyso_free_variable(): |
449 |
"""
|
450 |
Ultra thin wrapper around the sollya_lib_function_build_free_variable function.
|
451 |
"""
|
452 |
return sollya_lib_build_function_free_variable()
|
453 |
|
454 |
def pobyso_function_type_as_string(funcType): |
455 |
""" Legacy function. See pobyso_function_type_as_string_so_sa. """
|
456 |
return(pobyso_function_type_as_string_so_sa(funcType))
|
457 |
|
458 |
def pobyso_function_type_as_string_so_sa(funcType): |
459 |
"""
|
460 |
Numeric Sollya function codes -> Sage mathematical function names.
|
461 |
Notice that pow -> ^ (a la Sage, not a la Python).
|
462 |
"""
|
463 |
if funcType == SOLLYA_BASE_FUNC_ABS:
|
464 |
return "abs" |
465 |
elif funcType == SOLLYA_BASE_FUNC_ACOS:
|
466 |
return "arccos" |
467 |
elif funcType == SOLLYA_BASE_FUNC_ACOSH:
|
468 |
return "arccosh" |
469 |
elif funcType == SOLLYA_BASE_FUNC_ADD:
|
470 |
return "+" |
471 |
elif funcType == SOLLYA_BASE_FUNC_ASIN:
|
472 |
return "arcsin" |
473 |
elif funcType == SOLLYA_BASE_FUNC_ASINH:
|
474 |
return "arcsinh" |
475 |
elif funcType == SOLLYA_BASE_FUNC_ATAN:
|
476 |
return "arctan" |
477 |
elif funcType == SOLLYA_BASE_FUNC_ATANH:
|
478 |
return "arctanh" |
479 |
elif funcType == SOLLYA_BASE_FUNC_CEIL:
|
480 |
return "ceil" |
481 |
elif funcType == SOLLYA_BASE_FUNC_CONSTANT:
|
482 |
return "cte" |
483 |
elif funcType == SOLLYA_BASE_FUNC_COS:
|
484 |
return "cos" |
485 |
elif funcType == SOLLYA_BASE_FUNC_COSH:
|
486 |
return "cosh" |
487 |
elif funcType == SOLLYA_BASE_FUNC_DIV:
|
488 |
return "/" |
489 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLE:
|
490 |
return "double" |
491 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLEDOUBLE:
|
492 |
return "doubleDouble" |
493 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLEEXTENDED:
|
494 |
return "doubleDxtended" |
495 |
elif funcType == SOLLYA_BASE_FUNC_ERF:
|
496 |
return "erf" |
497 |
elif funcType == SOLLYA_BASE_FUNC_ERFC:
|
498 |
return "erfc" |
499 |
elif funcType == SOLLYA_BASE_FUNC_EXP:
|
500 |
return "exp" |
501 |
elif funcType == SOLLYA_BASE_FUNC_EXP_M1:
|
502 |
return "expm1" |
503 |
elif funcType == SOLLYA_BASE_FUNC_FLOOR:
|
504 |
return "floor" |
505 |
elif funcType == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
506 |
return "freeVariable" |
507 |
elif funcType == SOLLYA_BASE_FUNC_HALFPRECISION:
|
508 |
return "halfPrecision" |
509 |
elif funcType == SOLLYA_BASE_FUNC_LIBRARYCONSTANT:
|
510 |
return "libraryConstant" |
511 |
elif funcType == SOLLYA_BASE_FUNC_LIBRARYFUNCTION:
|
512 |
return "libraryFunction" |
513 |
elif funcType == SOLLYA_BASE_FUNC_LOG:
|
514 |
return "log" |
515 |
elif funcType == SOLLYA_BASE_FUNC_LOG_10:
|
516 |
return "log10" |
517 |
elif funcType == SOLLYA_BASE_FUNC_LOG_1P:
|
518 |
return "log1p" |
519 |
elif funcType == SOLLYA_BASE_FUNC_LOG_2:
|
520 |
return "log2" |
521 |
elif funcType == SOLLYA_BASE_FUNC_MUL:
|
522 |
return "*" |
523 |
elif funcType == SOLLYA_BASE_FUNC_NEARESTINT:
|
524 |
return "round" |
525 |
elif funcType == SOLLYA_BASE_FUNC_NEG:
|
526 |
return "__neg__" |
527 |
elif funcType == SOLLYA_BASE_FUNC_PI:
|
528 |
return "pi" |
529 |
elif funcType == SOLLYA_BASE_FUNC_POW:
|
530 |
return "^" |
531 |
elif funcType == SOLLYA_BASE_FUNC_PROCEDUREFUNCTION:
|
532 |
return "procedureFunction" |
533 |
elif funcType == SOLLYA_BASE_FUNC_QUAD:
|
534 |
return "quad" |
535 |
elif funcType == SOLLYA_BASE_FUNC_SIN:
|
536 |
return "sin" |
537 |
elif funcType == SOLLYA_BASE_FUNC_SINGLE:
|
538 |
return "single" |
539 |
elif funcType == SOLLYA_BASE_FUNC_SINH:
|
540 |
return "sinh" |
541 |
elif funcType == SOLLYA_BASE_FUNC_SQRT:
|
542 |
return "sqrt" |
543 |
elif funcType == SOLLYA_BASE_FUNC_SUB:
|
544 |
return "-" |
545 |
elif funcType == SOLLYA_BASE_FUNC_TAN:
|
546 |
return "tan" |
547 |
elif funcType == SOLLYA_BASE_FUNC_TANH:
|
548 |
return "tanh" |
549 |
elif funcType == SOLLYA_BASE_FUNC_TRIPLEDOUBLE:
|
550 |
return "tripleDouble" |
551 |
else:
|
552 |
return None |
553 |
|
554 |
def pobyso_get_constant(rnArgSa, constSo): |
555 |
""" Legacy function. See pobyso_get_constant_so_sa. """
|
556 |
return pobyso_get_constant_so_sa(rnArgSa, constSo)
|
557 |
# End pobyso_get_constant
|
558 |
|
559 |
def pobyso_get_constant_so_sa(rnArgSa, constSo): |
560 |
"""
|
561 |
Set the value of rnArgSo to the value of constSo in MPFR_RNDN mode.
|
562 |
rnArg must already exist and belong to some RealField.
|
563 |
We assume that constSo points to a Sollya constant.
|
564 |
"""
|
565 |
outcome = sollya_lib_get_constant(get_rn_value(rnArgSa), constSo) |
566 |
if outcome == 0: # Failure because constSo is not a constant expression. |
567 |
return None |
568 |
else:
|
569 |
return outcome
|
570 |
# End pobyso_get_constant_so_sa
|
571 |
|
572 |
def pobyso_get_constant_as_rn(ctExpSo): |
573 |
"""
|
574 |
Legacy function. See pobyso_get_constant_as_rn_so_sa.
|
575 |
"""
|
576 |
return(pobyso_get_constant_as_rn_so_sa(ctExpSo))
|
577 |
|
578 |
def pobyso_get_constant_as_rn_so_sa(constExpSo): |
579 |
"""
|
580 |
Get a Sollya constant as a Sage "real number".
|
581 |
The precision of the floating-point number returned is that of the Sollya
|
582 |
constant.
|
583 |
"""
|
584 |
#print "Before computing precision of variable..."
|
585 |
#pobyso_autoprint(constExpSo)
|
586 |
precisionSa = pobyso_get_prec_of_constant_so_sa(constExpSo) |
587 |
#print "precisionSa:", precisionSa
|
588 |
## If the expression can not be exactly converted, None is returned.
|
589 |
# In this case opt for the Sollya current expression.
|
590 |
if precisionSa is None: |
591 |
precisionSa = pobyso_get_prec_so_sa() |
592 |
RRRR = RealField(precisionSa) |
593 |
rnSa = RRRR(0)
|
594 |
outcome = sollya_lib_get_constant(get_rn_value(rnSa), constExpSo) |
595 |
if outcome == 0: |
596 |
return None |
597 |
else:
|
598 |
return rnSa
|
599 |
# End pobyso_get_constant_as_rn_so_sa
|
600 |
|
601 |
def pobyso_get_constant_as_rn_with_rf(ctExp, realField): |
602 |
"""
|
603 |
Legacy function. See pobyso_get_constant_as_rn_with_rf_so_sa.
|
604 |
"""
|
605 |
return pobyso_get_constant_as_rn_with_rf_so_sa(ctExp, realField)
|
606 |
# End pobyso_get_constant_as_rn_with_rf
|
607 |
|
608 |
def pobyso_get_constant_as_rn_with_rf_so_sa(ctExpSo, realFieldSa = None): |
609 |
"""
|
610 |
Get a Sollya constant as a Sage "real number".
|
611 |
If no real field is specified, the precision of the floating-point number
|
612 |
returned is that of the Sollya constant.
|
613 |
Otherwise is is that of the real field. Hence rounding may happen.
|
614 |
"""
|
615 |
if realFieldSa is None: |
616 |
return pobyso_get_constant_as_rn_so_sa(ctExpSo)
|
617 |
rnSa = realFieldSa(0)
|
618 |
outcome = sollya_lib_get_constant(get_rn_value(rnSa), ctExpSo) |
619 |
if outcome == 0: |
620 |
return None |
621 |
else:
|
622 |
return rnSa
|
623 |
# End pobyso_get_constant_as_rn_with_rf_so_sa
|
624 |
|
625 |
def pobyso_get_free_variable_name(): |
626 |
"""
|
627 |
Legacy function. See pobyso_get_free_variable_name_so_sa.
|
628 |
"""
|
629 |
return(pobyso_get_free_variable_name_so_sa())
|
630 |
|
631 |
def pobyso_get_free_variable_name_so_sa(): |
632 |
return sollya_lib_get_free_variable_name()
|
633 |
|
634 |
def pobyso_get_function_arity(expressionSo): |
635 |
"""
|
636 |
Legacy function. See pobyso_get_function_arity_so_sa.
|
637 |
"""
|
638 |
return(pobyso_get_function_arity_so_sa(expressionSo))
|
639 |
|
640 |
def pobyso_get_function_arity_so_sa(expressionSo): |
641 |
arity = c_int(0)
|
642 |
sollya_lib_get_function_arity(byref(arity),expressionSo) |
643 |
return int(arity.value) |
644 |
|
645 |
def pobyso_get_head_function(expressionSo): |
646 |
"""
|
647 |
Legacy function. See pobyso_get_head_function_so_sa.
|
648 |
"""
|
649 |
return(pobyso_get_head_function_so_sa(expressionSo))
|
650 |
|
651 |
def pobyso_get_head_function_so_sa(expressionSo): |
652 |
functionType = c_int(0)
|
653 |
sollya_lib_get_head_function(byref(functionType), expressionSo) |
654 |
return int(functionType.value) |
655 |
|
656 |
def pobyso_get_interval_from_range_so_sa(soRange, realIntervalFieldSa = None ): |
657 |
"""
|
658 |
Return the Sage interval corresponding to the Sollya range argument.
|
659 |
If no reaIntervalField is passed as an argument, the interval bounds are not
|
660 |
rounded: they are elements of RealIntervalField of the "right" precision
|
661 |
to hold all the digits.
|
662 |
"""
|
663 |
prec = c_int(0)
|
664 |
if realIntervalFieldSa is None: |
665 |
retval = sollya_lib_get_prec_of_range(byref(prec), soRange, None)
|
666 |
if retval == 0: |
667 |
return None |
668 |
realIntervalFieldSa = RealIntervalField(prec.value) |
669 |
intervalSa = realIntervalFieldSa(0,0) |
670 |
retval = \ |
671 |
sollya_lib_get_interval_from_range(get_interval_value(intervalSa),\ |
672 |
soRange) |
673 |
if retval == 0: |
674 |
return None |
675 |
return intervalSa
|
676 |
# End pobyso_get_interval_from_range_so_sa
|
677 |
|
678 |
def pobyso_get_list_elements(soObj): |
679 |
""" Legacy function. See pobyso_get_list_elements_so_so. """
|
680 |
return pobyso_get_list_elements_so_so(soObj)
|
681 |
|
682 |
def pobyso_get_list_elements_so_so(objectListSo): |
683 |
"""
|
684 |
Get the Sollya list elements as a Sage/Python array of Sollya objects.
|
685 |
|
686 |
INPUT:
|
687 |
- objectListSo: a Sollya list of Sollya objects.
|
688 |
|
689 |
OUTPUT:
|
690 |
- a Sage/Python tuple made of:
|
691 |
- a Sage/Python list of Sollya objects,
|
692 |
- a Sage/Python int holding the number of elements,
|
693 |
- a Sage/Python int stating (!= 0) that the list is end-elliptic.
|
694 |
NOTE::
|
695 |
We recover the addresses of the Sollya object from the list of pointers
|
696 |
returned by sollya_lib_get_list_elements. The list itself is freed.
|
697 |
TODO::
|
698 |
Figure out what to do with numElements since the number of elements
|
699 |
can easily be recovered from the list itself.
|
700 |
Ditto for isEndElliptic.
|
701 |
"""
|
702 |
listAddress = POINTER(c_longlong)() |
703 |
numElements = c_int(0)
|
704 |
isEndElliptic = c_int(0)
|
705 |
listAsSageList = [] |
706 |
result = sollya_lib_get_list_elements(byref(listAddress),\ |
707 |
byref(numElements),\ |
708 |
byref(isEndElliptic),\ |
709 |
objectListSo) |
710 |
if result == 0 : |
711 |
return None |
712 |
for i in xrange(0, numElements.value, 1): |
713 |
#listAsSageList.append(sollya_lib_copy_obj(listAddress[i]))
|
714 |
listAsSageList.append(listAddress[i]) |
715 |
# Clear each of the elements returned by Sollya.
|
716 |
#sollya_lib_clear_obj(listAddress[i])
|
717 |
# Free the list itself.
|
718 |
sollya_lib_free(listAddress) |
719 |
return (listAsSageList, numElements.value, isEndElliptic.value)
|
720 |
|
721 |
def pobyso_get_max_prec_of_exp(soExp): |
722 |
""" Legacy function. See pobyso_get_max_prec_of_exp_so_sa. """
|
723 |
return pobyso_get_max_prec_of_exp_so_sa(soExp)
|
724 |
|
725 |
def pobyso_get_max_prec_of_exp_so_sa(expSo): |
726 |
"""
|
727 |
Get the maximum precision used for the numbers in a Sollya expression.
|
728 |
|
729 |
Arguments:
|
730 |
soExp -- a Sollya expression pointer
|
731 |
Return value:
|
732 |
A Python integer
|
733 |
TODO:
|
734 |
- error management;
|
735 |
- correctly deal with numerical type such as DOUBLEEXTENDED.
|
736 |
"""
|
737 |
if expSo is None: |
738 |
print inspect.stack()[0][3], ": expSo is None." |
739 |
return 0 |
740 |
maxPrecision = 0
|
741 |
minConstPrec = 0
|
742 |
currentConstPrec = 0
|
743 |
#pobyso_autoprint(expSo)
|
744 |
operator = pobyso_get_head_function_so_sa(expSo) |
745 |
if (operator != SOLLYA_BASE_FUNC_CONSTANT) and \ |
746 |
(operator != SOLLYA_BASE_FUNC_FREE_VARIABLE): |
747 |
(arity, subexpressions) = pobyso_get_subfunctions_so_sa(expSo) |
748 |
for i in xrange(arity): |
749 |
maxPrecisionCandidate = \ |
750 |
pobyso_get_max_prec_of_exp_so_sa(subexpressions[i]) |
751 |
if maxPrecisionCandidate > maxPrecision:
|
752 |
maxPrecision = maxPrecisionCandidate |
753 |
return maxPrecision
|
754 |
elif operator == SOLLYA_BASE_FUNC_CONSTANT:
|
755 |
#minConstPrec = pobyso_get_min_prec_of_constant_so_sa(expSo)
|
756 |
#currentConstPrec = pobyso_get_min_prec_of_constant_so_sa(soExp)
|
757 |
#print minConstPrec, " - ", currentConstPrec
|
758 |
return pobyso_get_min_prec_of_constant_so_sa(expSo)
|
759 |
|
760 |
elif operator == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
761 |
return 0 |
762 |
else:
|
763 |
print "pobyso_get_max_prec_of_exp_so_sa: unexepected operator." |
764 |
return 0 |
765 |
|
766 |
def pobyso_get_min_prec_of_constant_so_sa(constExpSo): |
767 |
"""
|
768 |
Get the minimum precision necessary to represent the value of a Sollya
|
769 |
constant.
|
770 |
MPFR_MIN_PREC and powers of 2 are taken into account.
|
771 |
We assume that constExpSo is a pointer to a Sollay constant expression.
|
772 |
"""
|
773 |
constExpAsRnSa = pobyso_get_constant_as_rn_so_sa(constExpSo) |
774 |
return(min_mpfr_size(get_rn_value(constExpAsRnSa)))
|
775 |
|
776 |
def pobyso_get_poly_so_sa(polySo, realFieldSa=None): |
777 |
"""
|
778 |
Convert a Sollya polynomial into a Sage polynomial.
|
779 |
Legacy function. Use pobyso_float_poly_so_sa() instead.
|
780 |
"""
|
781 |
return pobyso_float_poly_so_sa(polySo,realFieldSa)
|
782 |
# End pobyso_get_poly_so_sa
|
783 |
|
784 |
def pobyso_get_prec(): |
785 |
""" Legacy function. See pobyso_get_prec_so_sa(). """
|
786 |
return pobyso_get_prec_so_sa()
|
787 |
|
788 |
def pobyso_get_prec_so(): |
789 |
"""
|
790 |
Get the current default precision in Sollya.
|
791 |
The return value is a Sollya object.
|
792 |
Usefull when modifying the precision back and forth by avoiding
|
793 |
extra conversions.
|
794 |
"""
|
795 |
return sollya_lib_get_prec(None) |
796 |
|
797 |
def pobyso_get_prec_so_sa(): |
798 |
"""
|
799 |
Get the current default precision in Sollya.
|
800 |
The return value is Sage/Python int.
|
801 |
"""
|
802 |
precSo = sollya_lib_get_prec() |
803 |
precSa = pobyso_constant_from_int_so_sa(precSo) |
804 |
sollya_lib_clear_obj(precSo) |
805 |
return precSa
|
806 |
# End pobyso_get_prec_so_sa.
|
807 |
|
808 |
def pobyso_get_prec_so_so_sa(): |
809 |
"""
|
810 |
Return the current precision both as a Sollya object and a
|
811 |
Sage integer as hybrid tuple.
|
812 |
To avoid multiple calls for precision manipulations.
|
813 |
"""
|
814 |
precSo = sollya_lib_get_prec() |
815 |
precSa = pobyso_constant_from_int_so_sa(precSo) |
816 |
return (precSo, int(precSa)) |
817 |
|
818 |
def pobyso_get_prec_of_constant(ctExpSo): |
819 |
""" Legacy function. See pobyso_get_prec_of_constant_so_sa. """
|
820 |
return pobyso_get_prec_of_constant_so_sa(ctExpSo)
|
821 |
|
822 |
def pobyso_get_prec_of_constant_so_sa(ctExpSo): |
823 |
"""
|
824 |
Tries to find a precision to represent ctExpSo without rounding.
|
825 |
If not possible, returns None.
|
826 |
"""
|
827 |
#print "Entering pobyso_get_prec_of_constant_so_sa..."
|
828 |
prec = c_int(0)
|
829 |
retc = sollya_lib_get_prec_of_constant(byref(prec), ctExpSo, None)
|
830 |
if retc == 0: |
831 |
#print "pobyso_get_prec_of_constant_so_sa failed."
|
832 |
return None |
833 |
#print "...exiting pobyso_get_prec_of_constant_so_sa."
|
834 |
return int(prec.value) |
835 |
|
836 |
def pobyso_get_prec_of_range_so_sa(rangeSo): |
837 |
"""
|
838 |
Returns the number of bits elements of a range are coded with.
|
839 |
"""
|
840 |
prec = c_int(0)
|
841 |
retc = sollya_lib_get_prec_of_range(byref(prec), rangeSo, None)
|
842 |
if retc == 0: |
843 |
return(None) |
844 |
return int(prec.value) |
845 |
# End pobyso_get_prec_of_range_so_sa()
|
846 |
|
847 |
def pobyso_get_sage_exp_from_sollya_exp(sollyaExpSo, realField = RR): |
848 |
""" Legacy function. See pobyso_get_sage_exp_from_sollya_exp_so_sa. """
|
849 |
return pobyso_get_sage_exp_from_sollya_exp_so_sa(sollyaExpSo,
|
850 |
realField = RR) |
851 |
|
852 |
def pobyso_get_sage_exp_from_sollya_exp_so_sa(sollyaExpSo, realFieldSa = RR): |
853 |
"""
|
854 |
Get a Sage expression from a Sollya expression.
|
855 |
Currently only tested with polynomials with floating-point coefficients.
|
856 |
Notice that, in the returned polynomial, the exponents are RealNumbers.
|
857 |
"""
|
858 |
#pobyso_autoprint(sollyaExp)
|
859 |
operatorSa = pobyso_get_head_function_so_sa(sollyaExpSo) |
860 |
sollyaLibFreeVariableName = sollya_lib_get_free_variable_name() |
861 |
## Get rid of the "_"'s in "_x_", if any.
|
862 |
sollyaLibFreeVariableName = re.sub('_', '', sollyaLibFreeVariableName) |
863 |
# Constants and the free variable are special cases.
|
864 |
# All other operator are dealt with in the same way.
|
865 |
if (operatorSa != SOLLYA_BASE_FUNC_CONSTANT) and \ |
866 |
(operatorSa != SOLLYA_BASE_FUNC_FREE_VARIABLE): |
867 |
(aritySa, subexpressionsSa) = pobyso_get_subfunctions_so_sa(sollyaExpSo) |
868 |
if aritySa == 1: |
869 |
sageExpSa = eval(pobyso_function_type_as_string_so_sa(operatorSa) + \
|
870 |
"(" + pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressionsSa[0], \ |
871 |
realFieldSa) + ")")
|
872 |
elif aritySa == 2: |
873 |
# We do not get through the preprocessor.
|
874 |
# The "^" operator is then a special case.
|
875 |
if operatorSa == SOLLYA_BASE_FUNC_POW:
|
876 |
operatorAsStringSa = "**"
|
877 |
else:
|
878 |
operatorAsStringSa = \ |
879 |
pobyso_function_type_as_string_so_sa(operatorSa) |
880 |
sageExpSa = \ |
881 |
eval("pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressionsSa[0], realFieldSa)"\ |
882 |
+ " " + operatorAsStringSa + " " + \ |
883 |
"pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressionsSa[1], realFieldSa)")
|
884 |
# We do not know yet how to deal with arity >= 3
|
885 |
# (is there any in Sollya anyway?).
|
886 |
else:
|
887 |
sageExpSa = eval('None') |
888 |
return sageExpSa
|
889 |
elif operatorSa == SOLLYA_BASE_FUNC_CONSTANT:
|
890 |
#print "This is a constant"
|
891 |
return pobyso_get_constant_as_rn_with_rf_so_sa(sollyaExpSo, realFieldSa)
|
892 |
elif operatorSa == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
893 |
#print "This is the free variable"
|
894 |
return eval(sollyaLibFreeVariableName) |
895 |
else:
|
896 |
print "Unexpected" |
897 |
return eval('None') |
898 |
# End pobyso_get_sage_exp_from_sollya_exp_so_sa
|
899 |
|
900 |
|
901 |
def pobyso_get_subfunctions(expressionSo): |
902 |
""" Legacy function. See pobyso_get_subfunctions_so_sa. """
|
903 |
return pobyso_get_subfunctions_so_sa(expressionSo)
|
904 |
# End pobyso_get_subfunctions.
|
905 |
|
906 |
def pobyso_get_subfunctions_so_sa(expressionSo): |
907 |
"""
|
908 |
Get the subfunctions of an expression.
|
909 |
Return the number of subfunctions and the list of subfunctions addresses.
|
910 |
S.T.: Could not figure out another way than that ugly list of declarations
|
911 |
to recover the addresses of the subfunctions.
|
912 |
We limit ourselves to arity 8 functions.
|
913 |
"""
|
914 |
subf0 = c_int(0)
|
915 |
subf1 = c_int(0)
|
916 |
subf2 = c_int(0)
|
917 |
subf3 = c_int(0)
|
918 |
subf4 = c_int(0)
|
919 |
subf5 = c_int(0)
|
920 |
subf6 = c_int(0)
|
921 |
subf7 = c_int(0)
|
922 |
subf8 = c_int(0)
|
923 |
arity = c_int(0)
|
924 |
nullPtr = POINTER(c_int)() |
925 |
sollya_lib_get_subfunctions(expressionSo, byref(arity), \ |
926 |
byref(subf0), byref(subf1), byref(subf2), byref(subf3), \ |
927 |
byref(subf4), byref(subf5),\ |
928 |
byref(subf6), byref(subf7), byref(subf8), nullPtr, None)
|
929 |
# byref(cast(subfunctions[0], POINTER(c_int))), \
|
930 |
# byref(cast(subfunctions[0], POINTER(c_int))), \
|
931 |
# byref(cast(subfunctions[2], POINTER(c_int))), \
|
932 |
# byref(cast(subfunctions[3], POINTER(c_int))), \
|
933 |
# byref(cast(subfunctions[4], POINTER(c_int))), \
|
934 |
# byref(cast(subfunctions[5], POINTER(c_int))), \
|
935 |
# byref(cast(subfunctions[6], POINTER(c_int))), \
|
936 |
# byref(cast(subfunctions[7], POINTER(c_int))), \
|
937 |
# byref(cast(subfunctions[8], POINTER(c_int))), nullPtr)
|
938 |
subfunctions = [subf0, subf1, subf2, subf3, subf4, subf5, subf6, subf7, \ |
939 |
subf8] |
940 |
subs = [] |
941 |
if arity.value > pobyso_max_arity:
|
942 |
return(0,[]) |
943 |
for i in xrange(arity.value): |
944 |
subs.append(int(subfunctions[i].value))
|
945 |
#print subs[i]
|
946 |
return (int(arity.value), subs) |
947 |
# End pobyso_get_subfunctions_so_sa
|
948 |
|
949 |
def pobyso_guess_degree_sa_sa(functionSa, intervalSa, approxErrorSa, |
950 |
weightSa=None, degreeBoundSa=None): |
951 |
"""
|
952 |
Sa_sa variant of the solly_guessdegree function.
|
953 |
Return 0 if something goes wrong.
|
954 |
"""
|
955 |
functionAsStringSa = functionSa._assume_str().replace('_SAGE_VAR_', '') |
956 |
functionSo = pobyso_parse_string_sa_so(functionAsStringSa) |
957 |
if pobyso_is_error_so_sa(functionSo):
|
958 |
sollya_lib_clear_obj(functionSo) |
959 |
return 0 |
960 |
rangeSo = pobyso_interval_to_range_sa_so(intervalSa) |
961 |
# The approximation error is expected to be a floating point number.
|
962 |
if pobyso_is_floating_point_number_sa_sa(approxErrorSa):
|
963 |
approxErrorSo = pobyso_constant_sa_so(approxErrorSa) |
964 |
else:
|
965 |
approxErrorSo = pobyso_constant_sa_so(RR(approxErrorSa)) |
966 |
if not weightSa is None: |
967 |
weightAsStringSa = weightSa._assume_str().replace('_SAGE_VAR_', '') |
968 |
weightSo = pobyso_parse_string_sa_so(weightAsStringSa) |
969 |
if pobyso_is_error_so_sa(weightSo):
|
970 |
sollya_lib_clear_obj(functionSo) |
971 |
sollya_lib_clear_obj(rangeSo) |
972 |
sollya_lib_clear_obj(approxErrorSo) |
973 |
sollya_lib_clear_obj(weightSo) |
974 |
return 0 |
975 |
else:
|
976 |
weightSo = None
|
977 |
if not degreeBoundSa is None: |
978 |
degreeBoundSo = pobyso_constant_from_int_sa_so(degreeBoundSa) |
979 |
else:
|
980 |
degreeBoundSo = None
|
981 |
guessedDegreeSa = pobyso_guess_degree_so_sa(functionSo, |
982 |
rangeSo, |
983 |
approxErrorSo, |
984 |
weightSo, |
985 |
degreeBoundSo) |
986 |
sollya_lib_clear_obj(functionSo) |
987 |
sollya_lib_clear_obj(rangeSo) |
988 |
sollya_lib_clear_obj(approxErrorSo) |
989 |
if not weightSo is None: |
990 |
sollya_lib_clear_obj(weightSo) |
991 |
if not degreeBoundSo is None: |
992 |
sollya_lib_clear_obj(degreeBoundSo) |
993 |
return guessedDegreeSa
|
994 |
# End poyso_guess_degree_sa_sa
|
995 |
|
996 |
def pobyso_guess_degree_so_sa(functionSo, rangeSo, errorSo, weightSo=None, \ |
997 |
degreeBoundSo=None):
|
998 |
"""
|
999 |
Thin wrapper around the guessdegree function.
|
1000 |
Nevertheless, some precision control stuff has been appended.
|
1001 |
"""
|
1002 |
# Deal with Sollya internal precision issues: if it is too small,
|
1003 |
# compared with the error, increases it to about twice -log2(error).
|
1004 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(errorSo) |
1005 |
log2ErrorSa = errorSa.log2() |
1006 |
if log2ErrorSa < 0: |
1007 |
neededPrecisionSa = int(2 * int(-log2ErrorSa) / 64) * 64 |
1008 |
else:
|
1009 |
neededPrecisionSa = int(2 * int(log2ErrorSa) / 64) * 64 |
1010 |
#print "Needed precision:", neededPrecisionSa
|
1011 |
sollyaPrecisionHasChanged = False
|
1012 |
(initialPrecSo, initialPrecSa) = pobyso_get_prec_so_so_sa() |
1013 |
if neededPrecisionSa > initialPrecSa:
|
1014 |
if neededPrecisionSa <= 2: |
1015 |
print inspect.stack()[0][3], ": precision change <= 2 requested." |
1016 |
pobyso_set_prec_sa_so(neededPrecisionSa) |
1017 |
sollyaPrecisionHasChanged = True
|
1018 |
#print "Guessing degree..."
|
1019 |
# weightSo and degreeBoundsSo are optional arguments.
|
1020 |
# As declared, sollya_lib_guessdegree must take 5 arguments.
|
1021 |
if weightSo is None: |
1022 |
degreeRangeSo = sollya_lib_guessdegree(functionSo, rangeSo, errorSo, |
1023 |
0, 0, None) |
1024 |
elif degreeBoundSo is None: |
1025 |
degreeRangeSo = sollya_lib_guessdegree(functionSo, rangeSo, \ |
1026 |
errorSo, weightSo, 0, None) |
1027 |
else:
|
1028 |
degreeRangeSo = sollya_lib_guessdegree(functionSo, rangeSo, errorSo, \ |
1029 |
weightSo, degreeBoundSo, None)
|
1030 |
#print "...degree guess done."
|
1031 |
# Restore internal precision, if applicable.
|
1032 |
if sollyaPrecisionHasChanged:
|
1033 |
pobyso_set_prec_so_so(initialPrecSo) |
1034 |
sollya_lib_clear_obj(initialPrecSo) |
1035 |
degreeIntervalSa = pobyso_range_to_interval_so_sa(degreeRangeSo) |
1036 |
sollya_lib_clear_obj(degreeRangeSo) |
1037 |
# When ok, both bounds match.
|
1038 |
# When the degree bound is too low, the upper bound is the degree
|
1039 |
# for which the error can be honored.
|
1040 |
# When it really goes wrong, the upper bound is infinity.
|
1041 |
if degreeIntervalSa.lower() == degreeIntervalSa.upper():
|
1042 |
return int(degreeIntervalSa.lower()) |
1043 |
else:
|
1044 |
if degreeIntervalSa.upper().is_infinity():
|
1045 |
return None |
1046 |
else:
|
1047 |
return int(degreeIntervalSa.upper()) |
1048 |
# End pobyso_guess_degree_so_sa
|
1049 |
|
1050 |
def pobyso_inf_so_so(intervalSo): |
1051 |
"""
|
1052 |
Very thin wrapper around sollya_lib_inf().
|
1053 |
"""
|
1054 |
return sollya_lib_inf(intervalSo)
|
1055 |
# End pobyso_inf_so_so.
|
1056 |
|
1057 |
def pobyso_infnorm_so_so(func, interval, file = None, intervalList = None): |
1058 |
print "Do not use this function. User pobyso_supnorm_so_so instead." |
1059 |
return None |
1060 |
|
1061 |
def pobyso_interval_to_range_sa_so(intervalSa, precisionSa=None): |
1062 |
if precisionSa is None: |
1063 |
precisionSa = intervalSa.parent().precision() |
1064 |
intervalSo = pobyso_bounds_to_range_sa_so(intervalSa.lower(),\ |
1065 |
intervalSa.upper(),\ |
1066 |
precisionSa) |
1067 |
return intervalSo
|
1068 |
# End pobyso_interval_to_range_sa_so
|
1069 |
|
1070 |
def pobyso_is_error_so_sa(objSo): |
1071 |
"""
|
1072 |
Thin wrapper around the sollya_lib_obj_is_error() function.
|
1073 |
"""
|
1074 |
if sollya_lib_obj_is_error(objSo) != 0: |
1075 |
return True |
1076 |
else:
|
1077 |
return False |
1078 |
# End pobyso_is_error-so_sa
|
1079 |
|
1080 |
def pobyso_is_floating_point_number_sa_sa(numberSa): |
1081 |
"""
|
1082 |
Check whether a Sage number is floating point.
|
1083 |
Exception stuff added because numbers other than
|
1084 |
floating-point ones do not have the is_real() attribute.
|
1085 |
"""
|
1086 |
try:
|
1087 |
return numberSa.is_real()
|
1088 |
except AttributeError: |
1089 |
return False |
1090 |
# End pobyso_is_floating_piont_number_sa_sa
|
1091 |
|
1092 |
def pobyso_is_range_so_sa(rangeCandidateSo): |
1093 |
"""
|
1094 |
Thin wrapper over sollya_lib_is_range.
|
1095 |
"""
|
1096 |
return sollya_lib_obj_is_range(rangeCandidateSo) != 0 |
1097 |
|
1098 |
# End pobyso_is_range_so_sa
|
1099 |
|
1100 |
|
1101 |
def pobyso_lib_init(): |
1102 |
sollya_lib_init(None)
|
1103 |
|
1104 |
def pobyso_lib_close(): |
1105 |
sollya_lib_close(None)
|
1106 |
|
1107 |
def pobyso_name_free_variable(freeVariableNameSa): |
1108 |
""" Legacy function. See pobyso_name_free_variable_sa_so. """
|
1109 |
pobyso_name_free_variable_sa_so(freeVariableNameSa) |
1110 |
|
1111 |
def pobyso_name_free_variable_sa_so(freeVariableNameSa): |
1112 |
"""
|
1113 |
Set the free variable name in Sollya from a Sage string.
|
1114 |
"""
|
1115 |
sollya_lib_name_free_variable(freeVariableNameSa) |
1116 |
|
1117 |
def pobyso_parse_string(string): |
1118 |
""" Legacy function. See pobyso_parse_string_sa_so. """
|
1119 |
return pobyso_parse_string_sa_so(string)
|
1120 |
|
1121 |
def pobyso_parse_string_sa_so(string): |
1122 |
"""
|
1123 |
Get the Sollya expression computed from a Sage string or
|
1124 |
a Sollya error object if parsing failed.
|
1125 |
"""
|
1126 |
return sollya_lib_parse_string(string)
|
1127 |
|
1128 |
def pobyso_precision_so_sa(ctExpSo): |
1129 |
"""
|
1130 |
Computes the necessary precision to represent a number.
|
1131 |
If x is not zero, it can be uniquely written as x = m · 2e
|
1132 |
where m is an odd integer and e is an integer.
|
1133 |
precision(x) returns the number of bits necessary to write m
|
1134 |
in binary (i.e. ceil(log2(m))).
|
1135 |
"""
|
1136 |
#TODO: take care of the special case: 0, @NaN@, @Inf@
|
1137 |
precisionSo = sollya_lib_precision(ctExpSo) |
1138 |
precisionSa = pobyso_constant_from_int_so_sa(precisionSo) |
1139 |
sollya_lib_clear_obj(precisionSo) |
1140 |
return precisionSa
|
1141 |
# End pobyso_precision_so_sa
|
1142 |
|
1143 |
def pobyso_polynomial_coefficients_progressive_round_so_so(polySo, |
1144 |
funcSo, |
1145 |
icSo, |
1146 |
intervalSo, |
1147 |
itpSo, |
1148 |
ftpSo, |
1149 |
maxPrecSo, |
1150 |
maxErrSo, |
1151 |
debug=False):
|
1152 |
if debug:
|
1153 |
print "Input arguments:" |
1154 |
pobyso_autoprint(polySo) |
1155 |
pobyso_autoprint(funcSo) |
1156 |
pobyso_autoprint(icSo) |
1157 |
pobyso_autoprint(intervalSo) |
1158 |
pobyso_autoprint(itpSo) |
1159 |
pobyso_autoprint(ftpSo) |
1160 |
pobyso_autoprint(maxPrecSo) |
1161 |
pobyso_autoprint(maxErrSo) |
1162 |
print "________________" |
1163 |
|
1164 |
## Higher order function see:
|
1165 |
# http://effbot.org/pyfaq/how-do-you-make-a-higher-order-function-in-python.htm
|
1166 |
def precision_decay_ratio_function(degreeSa): |
1167 |
def outer(x): |
1168 |
def inner(x): |
1169 |
we = 3/8 |
1170 |
wq = 2/8 |
1171 |
a = 2.2
|
1172 |
b = 2
|
1173 |
return we*(exp(x/a)-1) + wq*((b*x)**2) + (1-we-wq)*x |
1174 |
return inner(x)/inner(degreeSa)
|
1175 |
return outer
|
1176 |
|
1177 |
#
|
1178 |
degreeSa = pobyso_polynomial_degree_so_sa(polySo) |
1179 |
ratio = precision_decay_ratio_function(degreeSa) |
1180 |
itpSa = pobyso_constant_from_int_so_sa(itpSo) |
1181 |
ftpSa = pobyso_constant_from_int_so_sa(ftpSo) |
1182 |
maxPrecSa = pobyso_constant_from_int_so_sa(maxPrecSo) |
1183 |
maxErrSa = pobyso_get_constant_as_rn_so_sa(maxErrSo) |
1184 |
if debug:
|
1185 |
print "degreeSa:", degreeSa |
1186 |
print "ratio:", ratio |
1187 |
print "itpsSa:", itpSa |
1188 |
print "ftpSa:", ftpSa |
1189 |
print "maxPrecSa:", maxPrecSa |
1190 |
print "maxErrSa:", maxErrSa |
1191 |
lastResPolySo = None
|
1192 |
lastInfNormSo = None
|
1193 |
#print "About to enter the while loop..."
|
1194 |
while True: |
1195 |
resPolySo = pobyso_constant_0_sa_so() |
1196 |
pDeltaSa = ftpSa - itpSa |
1197 |
for indexSa in reversed(xrange(0,degreeSa+1)): |
1198 |
#print "Index:", indexSa
|
1199 |
indexSo = pobyso_constant_from_int_sa_so(indexSa) |
1200 |
#pobyso_autoprint(indexSo)
|
1201 |
#print ratio(indexSa)
|
1202 |
ctpSa = floor(ftpSa - (pDeltaSa * ratio(indexSa))) |
1203 |
ctpSo = pobyso_constant_from_int_sa_so(ctpSa) |
1204 |
if debug:
|
1205 |
print "Index:", indexSa, " - Target precision:", |
1206 |
pobyso_autoprint(ctpSo) |
1207 |
cmonSo = \ |
1208 |
sollya_lib_build_function_mul(sollya_lib_coeff(polySo, indexSo), |
1209 |
sollya_lib_build_function_pow( \ |
1210 |
sollya_lib_build_function_free_variable(), \ |
1211 |
indexSo)) |
1212 |
#pobyso_autoprint(cmonSo)
|
1213 |
cmonrSo = pobyso_round_coefficients_single_so_so(cmonSo, ctpSo) |
1214 |
sollya_lib_clear_obj(cmonSo) |
1215 |
#pobyso_autoprint(cmonrSo)
|
1216 |
resPolySo = sollya_lib_build_function_add(resPolySo, |
1217 |
cmonrSo) |
1218 |
#pobyso_autoprint(resPolySo)
|
1219 |
# End for index
|
1220 |
freeVarSo = sollya_lib_build_function_free_variable() |
1221 |
changeVarSo = sollya_lib_sub(freeVarSo, icSo) |
1222 |
resPolyCvSo = sollya_lib_evaluate(resPolySo, changeVarSo) |
1223 |
errFuncSo = sollya_lib_build_function_sub(sollya_lib_copy_obj(funcSo), |
1224 |
resPolyCvSo) |
1225 |
infNormSo = sollya_lib_dirtyinfnorm(errFuncSo, intervalSo) |
1226 |
cerrSa = pobyso_get_constant_as_rn_so_sa(infNormSo) |
1227 |
if debug:
|
1228 |
print "Infnorm (Sollya):", |
1229 |
pobyso_autoprint(infNormSo) |
1230 |
sollya_lib_clear_obj(errFuncSo) |
1231 |
#print "Infnorm (Sage):", cerrSa
|
1232 |
if (cerrSa > maxErrSa):
|
1233 |
if debug:
|
1234 |
print "Error is too large." |
1235 |
if lastResPolySo is None: |
1236 |
if debug:
|
1237 |
print "Enlarging prec." |
1238 |
ntpSa = floor(ftpSa + ftpSa/50)
|
1239 |
## Can't enlarge (numerical)
|
1240 |
if ntpSa == ftpSa:
|
1241 |
sollya_lib_clear_obj(resPolySo) |
1242 |
return None |
1243 |
## Can't enlarge (not enough precision left)
|
1244 |
if ntpSa > maxPrecSa:
|
1245 |
sollya_lib_clear_obj(resPolySo) |
1246 |
return None |
1247 |
ftpSa = ntpSa |
1248 |
continue
|
1249 |
## One enlargement took place.
|
1250 |
else:
|
1251 |
if debug:
|
1252 |
print "Exit with the last before last polynomial." |
1253 |
print "Precision of highest degree monomial:", itpSa |
1254 |
print "Precision of constant term :", ftpSa |
1255 |
sollya_lib_clear_obj(resPolySo) |
1256 |
sollya_lib_clear_obj(infNormSo) |
1257 |
return (lastResPolySo, lastInfNormSo)
|
1258 |
# cerrSa <= maxErrSa: scrap more bits, possibly.
|
1259 |
else:
|
1260 |
if debug:
|
1261 |
print "Error is too small" |
1262 |
if cerrSa <= (maxErrSa/2): |
1263 |
if debug:
|
1264 |
print "Shrinking prec." |
1265 |
ntpSa = floor(ftpSa - ftpSa/50)
|
1266 |
## Can't shrink (numerical)
|
1267 |
if ntpSa == ftpSa:
|
1268 |
if not lastResPolySo is None: |
1269 |
sollya_lib_clear_obj(lastResPolySo) |
1270 |
if not lastInfNormSo is None: |
1271 |
sollya_lib_clear_obj(lastInfNormSo) |
1272 |
if debug:
|
1273 |
print "Exit because can't shrink anymore (numerically)." |
1274 |
print "Precision of highest degree monomial:", itpSa |
1275 |
print "Precision of constant term :", ftpSa |
1276 |
return (resPolySo, infNormSo)
|
1277 |
## Can't shrink (not enough precision left)
|
1278 |
if ntpSa <= itpSa:
|
1279 |
if not lastResPolySo is None: |
1280 |
sollya_lib_clear_obj(lastResPolySo) |
1281 |
if not lastInfNormSo is None: |
1282 |
sollya_lib_clear_obj(lastInfNormSo) |
1283 |
print "Exit because can't shrink anymore (no bits left)." |
1284 |
print "Precision of highest degree monomial:", itpSa |
1285 |
print "Precision of constant term :", ftpSa |
1286 |
return (resPolySo, infNormSo)
|
1287 |
ftpSa = ntpSa |
1288 |
if not lastResPolySo is None: |
1289 |
sollya_lib_clear_obj(lastResPolySo) |
1290 |
if not lastInfNormSo is None: |
1291 |
sollya_lib_clear_obj(lastInfNormSo) |
1292 |
lastResPolySo = resPolySo |
1293 |
lastInfNormSo = infNormSo |
1294 |
continue
|
1295 |
else: # Error is not that small, just return |
1296 |
if not lastResPolySo is None: |
1297 |
sollya_lib_clear_obj(lastResPolySo) |
1298 |
if not lastInfNormSo is None: |
1299 |
sollya_lib_clear_obj(lastInfNormSo) |
1300 |
if debug:
|
1301 |
print "Exit normally." |
1302 |
print "Precision of highest degree monomial:", itpSa |
1303 |
print "Precision of constant term :", ftpSa |
1304 |
return (resPolySo, infNormSo)
|
1305 |
# End wile True
|
1306 |
return None |
1307 |
# End pobyso_polynomial_coefficients_progressive_truncate_so_so.
|
1308 |
|
1309 |
def pobyso_polynomial_degree_so_sa(polySo): |
1310 |
"""
|
1311 |
Return the degree of a Sollya polynomial as a Sage int.
|
1312 |
"""
|
1313 |
degreeSo = sollya_lib_degree(polySo) |
1314 |
return pobyso_constant_from_int_so_sa(degreeSo)
|
1315 |
# End pobyso_polynomial_degree_so_sa
|
1316 |
|
1317 |
def pobyso_polynomial_degree_so_so(polySo): |
1318 |
"""
|
1319 |
Thin wrapper around lib_sollya_degree().
|
1320 |
"""
|
1321 |
return sollya_lib_degree(polySo)
|
1322 |
# End pobyso_polynomial_degree_so_so
|
1323 |
|
1324 |
def pobyso_range(rnLowerBound, rnUpperBound): |
1325 |
""" Legacy function. See pobyso_range_sa_so. """
|
1326 |
return pobyso_range_sa_so(rnLowerBound, rnUpperBound)
|
1327 |
|
1328 |
def pobyso_range_from_bounds_sa_so(rnLowerBound, rnUpperBound, precSa = None): |
1329 |
"""
|
1330 |
Create a Sollya range from 2 Sage real numbers as bounds
|
1331 |
"""
|
1332 |
# TODO check precision stuff.
|
1333 |
sollyaPrecChanged = False
|
1334 |
(initialSollyaPrecSo, initialSollyaPrecSa) = \ |
1335 |
pobyso_get_prec_so_so_sa() |
1336 |
if precSa is None: |
1337 |
precSa = max(rnLowerBound.parent().prec(), rnUpperBound.parent().prec())
|
1338 |
if precSa > initialSollyaPrecSa:
|
1339 |
if precSa <= 2: |
1340 |
print inspect.stack()[0][3], ": precision change <= 2 requested." |
1341 |
pobyso_set_prec_sa_so(precSa) |
1342 |
sollyaPrecChanged = True
|
1343 |
rangeSo = sollya_lib_range_from_bounds(get_rn_value(rnLowerBound), |
1344 |
get_rn_value(rnUpperBound)) |
1345 |
if sollyaPrecChanged:
|
1346 |
pobyso_set_prec_so_so(initialSollyaPrecSo) |
1347 |
pobyso_lib_clear_obj(initialSollyaPrecSo) |
1348 |
return rangeSo
|
1349 |
# End pobyso_range_from_bounds_sa_so
|
1350 |
|
1351 |
def pobyso_range_max_abs_so_so(rangeSo): |
1352 |
"""
|
1353 |
Return, as Sollya constant, the maximum absolute value of a Sollay range.
|
1354 |
"""
|
1355 |
lowerBoundSo = sollya_lib_inf(rangeSo) |
1356 |
upperBoundSo = sollya_lib_sup(rangeSo) |
1357 |
#
|
1358 |
lowerBoundSo = sollya_lib_build_function_abs(lowerBoundSo) |
1359 |
upperBoundSo = sollya_lib_build_function_abs(upperBoundSo) |
1360 |
#pobyso_autoprint(lowerBoundSo)
|
1361 |
#pobyso_autoprint(upperBoundSo)
|
1362 |
#
|
1363 |
maxAbsSo = sollya_lib_max(lowerBoundSo, upperBoundSo, None)
|
1364 |
#sollya_lib_clear_obj(lowerBoundSo)
|
1365 |
#sollya_lib_clear_obj(upperBoundSo)
|
1366 |
return maxAbsSo
|
1367 |
# End pobyso_range_max_abs_so_so
|
1368 |
|
1369 |
def pobyso_range_to_interval_so_sa(rangeSo, realIntervalFieldSa = None): |
1370 |
"""
|
1371 |
Get a Sage interval from a Sollya range.
|
1372 |
If no realIntervalField is given as a parameter, the Sage interval
|
1373 |
precision is that of the Sollya range.
|
1374 |
Otherwise, the precision is that of the realIntervalField. In this case
|
1375 |
rounding may happen.
|
1376 |
"""
|
1377 |
if realIntervalFieldSa is None: |
1378 |
precSa = pobyso_get_prec_of_range_so_sa(rangeSo) |
1379 |
realIntervalFieldSa = RealIntervalField(precSa) |
1380 |
intervalSa = \ |
1381 |
pobyso_get_interval_from_range_so_sa(rangeSo, realIntervalFieldSa) |
1382 |
return intervalSa
|
1383 |
# End pobyso_range_to_interval_so_sa
|
1384 |
|
1385 |
def pobyso_rat_poly_sa_so(polySa, precSa = None): |
1386 |
"""
|
1387 |
Create a Sollya polynomial from a Sage rational polynomial.
|
1388 |
"""
|
1389 |
## TODO: filter arguments.
|
1390 |
## Precision. If no precision is given, use the current precision
|
1391 |
# of Sollya.
|
1392 |
if precSa is None: |
1393 |
precSa = pobyso_get_prec_so_sa() |
1394 |
#print "Precision:", precSa
|
1395 |
RRR = RealField(precSa) |
1396 |
## Create a Sage polynomial in the "right" precision.
|
1397 |
P_RRR = RRR[polySa.variables()[0]]
|
1398 |
polyFloatSa = P_RRR(polySa) |
1399 |
## Make sure no precision is provided: pobyso_float_poly_sa_so will
|
1400 |
# recover it all by itself and not make an extra conversion.
|
1401 |
return pobyso_float_poly_sa_so(polyFloatSa)
|
1402 |
|
1403 |
# End pobyso_rat_poly_sa_so
|
1404 |
|
1405 |
def pobyso_remez_canonical_sa_sa(func, \ |
1406 |
degree, \ |
1407 |
lowerBound, \ |
1408 |
upperBound, \ |
1409 |
weight = None, \
|
1410 |
quality = None):
|
1411 |
"""
|
1412 |
All arguments are Sage/Python.
|
1413 |
The functions (func and weight) must be passed as expressions or strings.
|
1414 |
Otherwise the function fails.
|
1415 |
The return value is a Sage polynomial.
|
1416 |
"""
|
1417 |
var('zorglub') # Dummy variable name for type check only. Type of |
1418 |
# zorglub is "symbolic expression".
|
1419 |
polySo = pobyso_remez_canonical_sa_so(func, \ |
1420 |
degree, \ |
1421 |
lowerBound, \ |
1422 |
upperBound, \ |
1423 |
weight, \ |
1424 |
quality) |
1425 |
# String test
|
1426 |
if parent(func) == parent("string"): |
1427 |
functionSa = eval(func)
|
1428 |
# Expression test.
|
1429 |
elif type(func) == type(zorglub): |
1430 |
functionSa = func |
1431 |
else:
|
1432 |
return None |
1433 |
#
|
1434 |
maxPrecision = 0
|
1435 |
if polySo is None: |
1436 |
return(None) |
1437 |
maxPrecision = pobyso_get_max_prec_of_exp_so_sa(polySo) |
1438 |
RRRRSa = RealField(maxPrecision) |
1439 |
polynomialRingSa = RRRRSa[functionSa.variables()[0]]
|
1440 |
expSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, RRRRSa) |
1441 |
polySa = polynomial(expSa, polynomialRingSa) |
1442 |
sollya_lib_clear_obj(polySo) |
1443 |
return(polySa)
|
1444 |
# End pobyso_remez_canonical_sa_sa
|
1445 |
|
1446 |
def pobyso_remez_canonical(func, \ |
1447 |
degree, \ |
1448 |
lowerBound, \ |
1449 |
upperBound, \ |
1450 |
weight = "1", \
|
1451 |
quality = None):
|
1452 |
""" Legacy function. See pobyso_remez_canonical_sa_so. """
|
1453 |
return(pobyso_remez_canonical_sa_so(func, \
|
1454 |
degree, \ |
1455 |
lowerBound, \ |
1456 |
upperBound, \ |
1457 |
weight, \ |
1458 |
quality)) |
1459 |
# End pobyso_remez_canonical.
|
1460 |
|
1461 |
def pobyso_remez_canonical_sa_so(func, \ |
1462 |
degree, \ |
1463 |
lowerBound, \ |
1464 |
upperBound, \ |
1465 |
weight = None, \
|
1466 |
quality = None):
|
1467 |
"""
|
1468 |
All arguments are Sage/Python.
|
1469 |
The functions (func and weight) must be passed as expressions or strings.
|
1470 |
Otherwise the function fails.
|
1471 |
The return value is a pointer to a Sollya function.
|
1472 |
"""
|
1473 |
var('zorglub') # Dummy variable name for type check only. Type of |
1474 |
# zorglub is "symbolic expression".
|
1475 |
currentVariableNameSa = None
|
1476 |
# The func argument can be of different types (string,
|
1477 |
# symbolic expression...)
|
1478 |
if parent(func) == parent("string"): |
1479 |
localFuncSa = eval(func)
|
1480 |
if len(localFuncSa.variables()) > 0: |
1481 |
currentVariableNameSa = localFuncSa.variables()[0]
|
1482 |
sollya_lib_name_free_variable(str(currentVariableNameSa))
|
1483 |
functionSo = \ |
1484 |
sollya_lib_parse_string(localFuncSa._assume_str().replace('_SAGE_VAR_', '')) |
1485 |
# Expression test.
|
1486 |
elif type(func) == type(zorglub): |
1487 |
# Until we are able to translate Sage expressions into Sollya
|
1488 |
# expressions : parse the string version.
|
1489 |
if len(func.variables()) > 0: |
1490 |
currentVariableNameSa = func.variables()[0]
|
1491 |
sollya_lib_name_free_variable(str(currentVariableNameSa))
|
1492 |
functionSo = \ |
1493 |
sollya_lib_parse_string(func._assume_str().replace('_SAGE_VAR_', '')) |
1494 |
else:
|
1495 |
return(None) |
1496 |
if weight is None: # No weight given -> 1. |
1497 |
weightSo = pobyso_constant_1_sa_so() |
1498 |
elif parent(weight) == parent("string"): # Weight given as string: parse it. |
1499 |
weightSo = sollya_lib_parse_string(func) |
1500 |
elif type(weight) == type(zorglub): # Weight given as symbolice expression. |
1501 |
functionSo = \ |
1502 |
sollya_lib_parse_string_sa_so(weight._assume_str().replace('_SAGE_VAR_', '')) |
1503 |
else:
|
1504 |
return(None) |
1505 |
degreeSo = pobyso_constant_from_int(degree) |
1506 |
rangeSo = pobyso_bounds_to_range_sa_so(lowerBound, upperBound) |
1507 |
if not quality is None: |
1508 |
qualitySo= pobyso_constant_sa_so(quality) |
1509 |
else:
|
1510 |
qualitySo = None
|
1511 |
|
1512 |
remezPolySo = sollya_lib_remez(functionSo, \ |
1513 |
degreeSo, \ |
1514 |
rangeSo, \ |
1515 |
weightSo, \ |
1516 |
qualitySo, \ |
1517 |
None)
|
1518 |
sollya_lib_clear_obj(functionSo) |
1519 |
sollya_lib_clear_obj(degreeSo) |
1520 |
sollya_lib_clear_obj(rangeSo) |
1521 |
sollya_lib_clear_obj(weightSo) |
1522 |
if not qualitySo is None: |
1523 |
sollya_lib_clear_obj(qualitySo) |
1524 |
return(remezPolySo)
|
1525 |
# End pobyso_remez_canonical_sa_so
|
1526 |
|
1527 |
def pobyso_remez_canonical_so_so(funcSo, \ |
1528 |
degreeSo, \ |
1529 |
rangeSo, \ |
1530 |
weightSo = pobyso_constant_1_sa_so(),\ |
1531 |
qualitySo = None):
|
1532 |
"""
|
1533 |
All arguments are pointers to Sollya objects.
|
1534 |
The return value is a pointer to a Sollya function.
|
1535 |
"""
|
1536 |
if not sollya_lib_obj_is_function(funcSo): |
1537 |
return(None) |
1538 |
return(sollya_lib_remez(funcSo, degreeSo, rangeSo, weightSo, qualitySo, None)) |
1539 |
# End pobyso_remez_canonical_so_so.
|
1540 |
|
1541 |
def pobyso_round_coefficients_progressive_so_so(polySo, |
1542 |
funcSo, |
1543 |
precSo, |
1544 |
intervalSo, |
1545 |
icSo, |
1546 |
currentApproxErrorSo, |
1547 |
approxAccurSo, |
1548 |
debug=False):
|
1549 |
if debug:
|
1550 |
print "Input arguments:" |
1551 |
print "Polynomia:l", ; pobyso_autoprint(polySo) |
1552 |
print "Function:", ; pobyso_autoprint(funcSo) |
1553 |
print "Internal precision:", ; pobyso_autoprint(precSo) |
1554 |
print "Interval:", ; pobyso_autoprint(intervalSo) |
1555 |
print "Current approximation error:", ; pobyso_autoprint(currentApproxErrorSo) |
1556 |
print "Requested approxiation error:", ; pobyso_autoprint(approxAccurSo) |
1557 |
print "________________" |
1558 |
approxAccurSa = pobyso_get_constant_as_rn_so_sa(approxAccurSo) |
1559 |
currentApproxErrorSa = pobyso_get_constant_as_rn_so_sa(currentApproxErrorSo) |
1560 |
## If the current approximation error is too close to the target, there is
|
1561 |
# no possible gain.
|
1562 |
if currentApproxErrorSa >= approxAccurSa / 2: |
1563 |
return (polySo, currentApproxErrorSo)
|
1564 |
degreeSa = pobyso_polynomial_degree_so_sa(polySo) |
1565 |
intervalSa = pobyso_range_to_interval_so_sa(intervalSo) |
1566 |
|
1567 |
if debug:
|
1568 |
print "degreeSa :", degreeSa |
1569 |
print "intervalSa:", intervalSa.str(style='brackets') |
1570 |
print "currentApproxErrorSa :", currentApproxErrorSa |
1571 |
print "approxAccurSa :", approxAccurSa |
1572 |
### Start with a 0 value expression.
|
1573 |
radiusSa = intervalSa.absolute_diameter() / 2
|
1574 |
if debug:
|
1575 |
print "log2(radius):", RR(radiusSa).log2() |
1576 |
iterIndex = 0
|
1577 |
while True: |
1578 |
resPolySo = pobyso_constant_0_sa_so() |
1579 |
roundedPolyApproxAccurSa = approxAccurSa / 2
|
1580 |
currentRadiusPowerSa = 1
|
1581 |
for degree in xrange(0,degreeSa + 1): |
1582 |
#### At round 0, use the agressive formula. At round 1, run the
|
1583 |
# proved formula.
|
1584 |
if iterIndex == 0: |
1585 |
roundingPowerSa = \ |
1586 |
floor(((currentRadiusPowerSa/roundedPolyApproxAccurSa)*(degree+1)).log2())
|
1587 |
else:
|
1588 |
roundingPowerSa = \ |
1589 |
floor(((currentRadiusPowerSa/roundedPolyApproxAccurSa)*(degreeSa+1)).log2())
|
1590 |
if debug:
|
1591 |
print "roundedPolyApproxAccurSa", roundedPolyApproxAccurSa |
1592 |
print "currentRadiusPowerSa", currentRadiusPowerSa |
1593 |
print "Current rounding exponent:", roundingPowerSa |
1594 |
currentRadiusPowerSa *= radiusSa |
1595 |
index1So = pobyso_constant_from_int_sa_so(degree) |
1596 |
index2So = pobyso_constant_from_int_sa_so(degree) |
1597 |
### Create a monomial with:
|
1598 |
# - the coefficient in the initial monomial at the current degrree;
|
1599 |
# - the current exponent;
|
1600 |
# - the free variable.
|
1601 |
cmonSo = \ |
1602 |
sollya_lib_build_function_mul(sollya_lib_coeff(polySo, index1So), |
1603 |
sollya_lib_build_function_pow( \ |
1604 |
sollya_lib_build_function_free_variable(), \ |
1605 |
index2So)) |
1606 |
roundingPowerSo = pobyso_constant_from_int_sa_so(roundingPowerSa) |
1607 |
cmonrSo = pobyso_round_coefficients_single_so_so(cmonSo, roundingPowerSo) |
1608 |
sollya_lib_clear_obj(cmonSo) |
1609 |
### Add to the result polynomial.
|
1610 |
resPolySo = sollya_lib_build_function_add(resPolySo, |
1611 |
cmonrSo) |
1612 |
# End for.
|
1613 |
### Check the new polynomial.
|
1614 |
freeVarSo = sollya_lib_build_function_free_variable() |
1615 |
changeVarSo = sollya_lib_sub(freeVarSo, icSo) |
1616 |
resPolyCvSo = sollya_lib_evaluate(resPolySo, changeVarSo) |
1617 |
errFuncSo = sollya_lib_build_function_sub(sollya_lib_copy_obj(funcSo), |
1618 |
resPolyCvSo) |
1619 |
infNormSo = sollya_lib_dirtyinfnorm(errFuncSo, intervalSo) |
1620 |
### This also clears resPolyCvSo.
|
1621 |
sollya_lib_clear_obj(errFuncSo) |
1622 |
cerrSa = pobyso_get_constant_as_rn_so_sa(infNormSo) |
1623 |
if debug:
|
1624 |
print "Error of the new polynomial:", cerrSa |
1625 |
### If at round 1, return the initial polynomial error. This should
|
1626 |
# never happen since the rounding algorithm is proved. But some
|
1627 |
# circumstances may break it (e.g. internal precision of tools).
|
1628 |
if cerrSa > approxAccurSa:
|
1629 |
if iterIndex > 0: # Round 1 and beyond. |
1630 |
sollya_lib_clear_obj(resPolySo) |
1631 |
sollya_lib_clear_obj(infNormSo) |
1632 |
return (polySo, currentApproxErrorSo)
|
1633 |
else: # Round 0, got round 1 |
1634 |
sollya_lib_clear_obj(resPolySo) |
1635 |
sollya_lib_clear_obj(infNormSo) |
1636 |
iterIndex += 1
|
1637 |
continue
|
1638 |
### If get here it is because cerrSa <= approxAccurSa
|
1639 |
### Approximation error of the new polynomial is acceptable.
|
1640 |
return (resPolySo, infNormSo)
|
1641 |
# End while True
|
1642 |
# End pobyso_round_coefficients_progressive_so_so
|
1643 |
|
1644 |
def pobyso_round_coefficients_single_so_so(polySo, precSo): |
1645 |
"""
|
1646 |
Create a rounded coefficients polynomial from polynomial argument to
|
1647 |
the number of bits in size argument.
|
1648 |
All coefficients are set to the same precision.
|
1649 |
"""
|
1650 |
## TODO: check arguments.
|
1651 |
endEllipListSo = pobyso_build_end_elliptic_list_so_so(precSo) |
1652 |
polySo = sollya_lib_roundcoefficients(polySo, endEllipListSo, None)
|
1653 |
sollya_lib_clear_obj(endEllipListSo) |
1654 |
#sollya_lib_clear_obj(endEllipListSo)
|
1655 |
return polySo
|
1656 |
|
1657 |
# End pobyso_round_coefficients_single_so_so
|
1658 |
|
1659 |
def pobyso_set_canonical_off(): |
1660 |
sollya_lib_set_canonical(sollya_lib_off()) |
1661 |
|
1662 |
def pobyso_set_canonical_on(): |
1663 |
sollya_lib_set_canonical(sollya_lib_on()) |
1664 |
|
1665 |
def pobyso_set_prec(p): |
1666 |
""" Legacy function. See pobyso_set_prec_sa_so. """
|
1667 |
pobyso_set_prec_sa_so(p) |
1668 |
|
1669 |
def pobyso_set_prec_sa_so(p): |
1670 |
#a = c_int(p)
|
1671 |
#precSo = c_void_p(sollya_lib_constant_from_int(a))
|
1672 |
#precSo = sollya_lib_constant_from_int(a)
|
1673 |
precSo = pobyso_constant_from_int_sa_so(p) |
1674 |
sollya_lib_set_prec(precSo) |
1675 |
sollya_lib_clear_obj(precSo) |
1676 |
# End pobyso_set_prec_sa_so.
|
1677 |
|
1678 |
def pobyso_set_prec_so_so(newPrecSo): |
1679 |
sollya_lib_set_prec(newPrecSo) |
1680 |
# End pobyso_set_prec_so_so.
|
1681 |
|
1682 |
def pobyso_inf_so_so(intervalSo): |
1683 |
"""
|
1684 |
Very thin wrapper around sollya_lib_inf().
|
1685 |
"""
|
1686 |
return sollya_lib_inf(intervalSo)
|
1687 |
# End pobyso_inf_so_so.
|
1688 |
|
1689 |
def pobyso_supnorm_so_so(polySo, funcSo, intervalSo, errorTypeSo = None,\ |
1690 |
accuracySo = None):
|
1691 |
"""
|
1692 |
Computes the supnorm of the approximation error between the given
|
1693 |
polynomial and function.
|
1694 |
errorTypeSo defaults to "absolute".
|
1695 |
accuracySo defaults to 2^(-40).
|
1696 |
"""
|
1697 |
if errorTypeSo is None: |
1698 |
errorTypeSo = sollya_lib_absolute(None)
|
1699 |
errorTypeIsNone = True
|
1700 |
else:
|
1701 |
errorTypeIsNone = False
|
1702 |
#
|
1703 |
if accuracySo is None: |
1704 |
# Notice the **!
|
1705 |
accuracySo = pobyso_constant_sa_so(RR(2**(-40))) |
1706 |
accuracyIsNone = True
|
1707 |
else:
|
1708 |
accuracyIsNone = False
|
1709 |
pobyso_autoprint(accuracySo) |
1710 |
resultSo = \ |
1711 |
sollya_lib_supnorm(polySo, funcSo, intervalSo, errorTypeSo, \ |
1712 |
accuracySo) |
1713 |
if errorTypeIsNone:
|
1714 |
sollya_lib_clear_obj(errorTypeSo) |
1715 |
if accuracyIsNone:
|
1716 |
sollya_lib_clear_obj(accuracySo) |
1717 |
return resultSo
|
1718 |
# End pobyso_supnorm_so_so
|
1719 |
|
1720 |
def pobyso_taylor_expansion_no_change_var_so_so(functionSo, |
1721 |
degreeSo, |
1722 |
rangeSo, |
1723 |
errorTypeSo=None,
|
1724 |
sollyaPrecSo=None):
|
1725 |
"""
|
1726 |
Compute the Taylor expansion without the variable change
|
1727 |
x -> x-intervalCenter.
|
1728 |
"""
|
1729 |
# Change internal Sollya precision, if needed.
|
1730 |
(initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
1731 |
sollyaPrecChanged = False
|
1732 |
if sollyaPrecSo is None: |
1733 |
pass
|
1734 |
else:
|
1735 |
sollya_lib_set_prec(sollyaPrecSo) |
1736 |
sollyaPrecChanged = True
|
1737 |
# Error type stuff: default to absolute.
|
1738 |
if errorTypeSo is None: |
1739 |
errorTypeIsNone = True
|
1740 |
errorTypeSo = sollya_lib_absolute(None)
|
1741 |
else:
|
1742 |
errorTypeIsNone = False
|
1743 |
intervalCenterSo = sollya_lib_mid(rangeSo, None)
|
1744 |
taylorFormSo = sollya_lib_taylorform(functionSo, degreeSo, |
1745 |
intervalCenterSo, |
1746 |
rangeSo, errorTypeSo, None)
|
1747 |
# taylorFormListSaSo is a Python list of Sollya objects references that
|
1748 |
# are copies of the elements of taylorFormSo.
|
1749 |
# pobyso_get_list_elements_so_so clears taylorFormSo.
|
1750 |
(taylorFormListSaSo, numElementsSa, isEndEllipticSa) = \ |
1751 |
pobyso_get_list_elements_so_so(taylorFormSo) |
1752 |
polySo = sollya_lib_copy_obj(taylorFormListSaSo[0])
|
1753 |
#print "Num elements:", numElementsSa
|
1754 |
sollya_lib_clear_obj(taylorFormSo) |
1755 |
#polySo = taylorFormListSaSo[0]
|
1756 |
#errorRangeSo = sollya_lib_copy_obj(taylorFormListSaSo[2])
|
1757 |
errorRangeSo = taylorFormListSaSo[2]
|
1758 |
# No copy_obj needed here: a new objects are created.
|
1759 |
maxErrorSo = sollya_lib_sup(errorRangeSo) |
1760 |
minErrorSo = sollya_lib_inf(errorRangeSo) |
1761 |
absMaxErrorSo = sollya_lib_abs(maxErrorSo) |
1762 |
absMinErrorSo = sollya_lib_abs(minErrorSo) |
1763 |
sollya_lib_clear_obj(maxErrorSo) |
1764 |
sollya_lib_clear_obj(minErrorSo) |
1765 |
absMaxErrorSa = pobyso_get_constant_as_rn_so_sa(absMaxErrorSo) |
1766 |
absMinErrorSa = pobyso_get_constant_as_rn_so_sa(absMinErrorSo) |
1767 |
# If changed, reset the Sollya working precision.
|
1768 |
if sollyaPrecChanged:
|
1769 |
sollya_lib_set_prec(initialSollyaPrecSo) |
1770 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
1771 |
if errorTypeIsNone:
|
1772 |
sollya_lib_clear_obj(errorTypeSo) |
1773 |
pobyso_clear_taylorform_sa_so(taylorFormListSaSo) |
1774 |
if absMaxErrorSa > absMinErrorSa:
|
1775 |
sollya_lib_clear_obj(absMinErrorSo) |
1776 |
return (polySo, intervalCenterSo, absMaxErrorSo)
|
1777 |
else:
|
1778 |
sollya_lib_clear_obj(absMaxErrorSo) |
1779 |
return (polySo, intervalCenterSo, absMinErrorSo)
|
1780 |
# end pobyso_taylor_expansion_no_change_var_so_so
|
1781 |
|
1782 |
def pobyso_taylor_expansion_with_change_var_so_so(functionSo, degreeSo, \ |
1783 |
rangeSo, \ |
1784 |
errorTypeSo=None, \
|
1785 |
sollyaPrecSo=None):
|
1786 |
"""
|
1787 |
Compute the Taylor expansion with the variable change
|
1788 |
x -> (x-intervalCenter) included.
|
1789 |
"""
|
1790 |
# Change Sollya internal precision, if need.
|
1791 |
sollyaPrecChanged = False
|
1792 |
(initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_sos_sa() |
1793 |
if sollyaPrecSo is None: |
1794 |
pass
|
1795 |
else:
|
1796 |
sollya_lib_set_prec(sollyaPrecSo) |
1797 |
sollyaPrecChanged = True
|
1798 |
#
|
1799 |
# Error type stuff: default to absolute.
|
1800 |
if errorTypeSo is None: |
1801 |
errorTypeIsNone = True
|
1802 |
errorTypeSo = sollya_lib_absolute(None)
|
1803 |
else:
|
1804 |
errorTypeIsNone = False
|
1805 |
intervalCenterSo = sollya_lib_mid(rangeSo) |
1806 |
taylorFormSo = sollya_lib_taylorform(functionSo, degreeSo, \ |
1807 |
intervalCenterSo, \ |
1808 |
rangeSo, errorTypeSo, None)
|
1809 |
# taylorFormListSaSo is a Python list of Sollya objects references that
|
1810 |
# are copies of the elements of taylorFormSo.
|
1811 |
# pobyso_get_list_elements_so_so clears taylorFormSo.
|
1812 |
(taylorFormListSo, numElements, isEndElliptic) = \ |
1813 |
pobyso_get_list_elements_so_so(taylorFormSo) |
1814 |
polySo = taylorFormListSo[0]
|
1815 |
errorRangeSo = taylorFormListSo[2]
|
1816 |
maxErrorSo = sollya_lib_sup(errorRangeSo) |
1817 |
minErrorSo = sollya_lib_inf(errorRangeSo) |
1818 |
absMaxErrorSo = sollya_lib_abs(maxErrorSo) |
1819 |
absMinErrorSo = sollya_lib_abs(minErrorSo) |
1820 |
sollya_lib_clear_obj(maxErrorSo) |
1821 |
sollya_lib_clear_obj(minErrorSo) |
1822 |
absMaxErrorSa = pobyso_get_constant_as_rn_so_sa(absMaxErrorSo) |
1823 |
absMinErrorSa = pobyso_get_constant_as_rn_so_sa(absMinErrorSo) |
1824 |
changeVarExpSo = sollya_lib_build_function_sub(\ |
1825 |
sollya_lib_build_function_free_variable(),\ |
1826 |
sollya_lib_copy_obj(intervalCenterSo)) |
1827 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpSo) |
1828 |
sollya_lib_clear_obj(polySo) |
1829 |
sollya_lib_clear_obj(changeVarExpSo) |
1830 |
# If changed, reset the Sollya working precision.
|
1831 |
if sollyaPrecChanged:
|
1832 |
sollya_lib_set_prec(initialSollyaPrecSo) |
1833 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
1834 |
if errorTypeIsNone:
|
1835 |
sollya_lib_clear_obj(errorTypeSo) |
1836 |
sollya_lib_clear_obj(taylorFormSo) |
1837 |
# Do not clear maxErrorSo.
|
1838 |
if absMaxErrorSa > absMinErrorSa:
|
1839 |
sollya_lib_clear_obj(absMinErrorSo) |
1840 |
return((polyVarChangedSo, intervalCenterSo, absMaxErrorSo))
|
1841 |
else:
|
1842 |
sollya_lib_clear_obj(absMaxErrorSo) |
1843 |
return((polyVarChangedSo, intervalCenterSo, absMinErrorSo))
|
1844 |
# end pobyso_taylor_expansion_with_change_var_so_so
|
1845 |
|
1846 |
def pobyso_taylor(function, degree, point): |
1847 |
""" Legacy function. See pobysoTaylor_so_so. """
|
1848 |
return(pobyso_taylor_so_so(function, degree, point))
|
1849 |
|
1850 |
def pobyso_taylor_so_so(functionSo, degreeSo, pointSo): |
1851 |
return(sollya_lib_taylor(functionSo, degreeSo, pointSo))
|
1852 |
|
1853 |
def pobyso_taylorform(function, degree, point = None, |
1854 |
interval = None, errorType=None): |
1855 |
""" Legacy function. See pobyso_taylorform_sa_sa;"""
|
1856 |
|
1857 |
def pobyso_taylorform_sa_sa(functionSa, \ |
1858 |
degreeSa, \ |
1859 |
pointSa, \ |
1860 |
intervalSa=None, \
|
1861 |
errorTypeSa=None, \
|
1862 |
precisionSa=None):
|
1863 |
"""
|
1864 |
Compute the Taylor form of 'degreeSa' for 'functionSa' at 'pointSa'
|
1865 |
for 'intervalSa' with 'errorTypeSa' (a string) using 'precisionSa'.
|
1866 |
point: must be a Real or a Real interval.
|
1867 |
return the Taylor form as an array
|
1868 |
TODO: take care of the interval and of the point when it is an interval;
|
1869 |
when errorType is not None;
|
1870 |
take care of the other elements of the Taylor form (coefficients
|
1871 |
errors and delta.
|
1872 |
"""
|
1873 |
# Absolute as the default error.
|
1874 |
if errorTypeSa is None: |
1875 |
errorTypeSo = sollya_lib_absolute() |
1876 |
elif errorTypeSa == "relative": |
1877 |
errorTypeSo = sollya_lib_relative() |
1878 |
elif errortypeSa == "absolute": |
1879 |
errorTypeSo = sollya_lib_absolute() |
1880 |
else:
|
1881 |
# No clean up needed.
|
1882 |
return None |
1883 |
# Global precision stuff
|
1884 |
sollyaPrecisionChangedSa = False
|
1885 |
(initialSollyaPrecSo, initialSollyaPrecSa) = pobyso_get_prec_so_so_sa() |
1886 |
if precisionSa is None: |
1887 |
precSa = initialSollyaPrecSa |
1888 |
else:
|
1889 |
if precSa > initialSollyaPrecSa:
|
1890 |
if precSa <= 2: |
1891 |
print inspect.stack()[0][3], ":precision change <= 2 requested." |
1892 |
pobyso_set_prec_sa_so(precSa) |
1893 |
sollyaPrecisionChangedSa = True
|
1894 |
#
|
1895 |
if len(functionSa.variables()) > 0: |
1896 |
varSa = functionSa.variables()[0]
|
1897 |
pobyso_name_free_variable_sa_so(str(varSa))
|
1898 |
# In any case (point or interval) the parent of pointSa has a precision
|
1899 |
# method.
|
1900 |
pointPrecSa = pointSa.parent().precision() |
1901 |
if precSa > pointPrecSa:
|
1902 |
pointPrecSa = precSa |
1903 |
# In any case (point or interval) pointSa has a base_ring() method.
|
1904 |
pointBaseRingString = str(pointSa.base_ring())
|
1905 |
if re.search('Interval', pointBaseRingString) is None: # Point |
1906 |
pointSo = pobyso_constant_sa_so(pointSa, pointPrecSa) |
1907 |
else: # Interval. |
1908 |
pointSo = pobyso_interval_to_range_sa_so(pointSa, pointPrecSa) |
1909 |
# Sollyafy the function.
|
1910 |
functionSo = pobyso_parse_string_sa_so(functionSa._assume_str().replace('_SAGE_VAR_', '')) |
1911 |
if sollya_lib_obj_is_error(functionSo):
|
1912 |
print "pobyso_tailorform: function string can't be parsed!" |
1913 |
return None |
1914 |
# Sollyafy the degree
|
1915 |
degreeSo = sollya_lib_constant_from_int(int(degreeSa))
|
1916 |
# Sollyafy the point
|
1917 |
# Call Sollya
|
1918 |
taylorFormSo = \ |
1919 |
sollya_lib_taylorform(functionSo, degreeSo, pointSo, errorTypeSo,\ |
1920 |
None)
|
1921 |
sollya_lib_clear_obj(functionSo) |
1922 |
sollya_lib_clear_obj(degreeSo) |
1923 |
sollya_lib_clear_obj(pointSo) |
1924 |
sollya_lib_clear_obj(errorTypeSo) |
1925 |
(tfsAsList, numElements, isEndElliptic) = \ |
1926 |
pobyso_get_list_elements_so_so(taylorFormSo) |
1927 |
polySo = tfsAsList[0]
|
1928 |
maxPrecision = pobyso_get_max_prec_of_exp_so_sa(polySo) |
1929 |
polyRealField = RealField(maxPrecision) |
1930 |
expSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, polyRealField) |
1931 |
if sollyaPrecisionChangedSa:
|
1932 |
sollya_lib_set_prec(initialSollyaPrecSo) |
1933 |
sollya_lib_clear_obj(initialSollyaPrecSo) |
1934 |
polynomialRing = polyRealField[str(varSa)]
|
1935 |
polySa = polynomial(expSa, polynomialRing) |
1936 |
taylorFormSa = [polySa] |
1937 |
# Final clean-up.
|
1938 |
sollya_lib_clear_obj(taylorFormSo) |
1939 |
return(taylorFormSa)
|
1940 |
# End pobyso_taylor_form_sa_sa
|
1941 |
|
1942 |
def pobyso_taylorform_so_so(functionSo, degreeSo, pointSo, intervalSo=None, \ |
1943 |
errorTypeSo=None):
|
1944 |
createdErrorType = False
|
1945 |
if errorTypeSo is None: |
1946 |
errorTypeSo = sollya_lib_absolute() |
1947 |
createdErrorType = True
|
1948 |
else:
|
1949 |
#TODO: deal with the other case.
|
1950 |
pass
|
1951 |
if intervalSo is None: |
1952 |
resultSo = sollya_lib_taylorform(functionSo, degreeSo, pointSo, \ |
1953 |
errorTypeSo, None)
|
1954 |
else:
|
1955 |
resultSo = sollya_lib_taylorform(functionSo, degreeSo, pointSo, \ |
1956 |
intervalSo, errorTypeSo, None)
|
1957 |
if createdErrorType:
|
1958 |
sollya_lib_clear_obj(errorTypeSo) |
1959 |
return resultSo
|
1960 |
|
1961 |
|
1962 |
def pobyso_univar_polynomial_print_reverse(polySa): |
1963 |
""" Legacy function. See pobyso_univar_polynomial_print_reverse_sa_sa. """
|
1964 |
return(pobyso_univar_polynomial_print_reverse_sa_sa(polySa))
|
1965 |
|
1966 |
def pobyso_univar_polynomial_print_reverse_sa_sa(polySa): |
1967 |
"""
|
1968 |
Return the string representation of a univariate polynomial with
|
1969 |
monomials ordered in the x^0..x^n order of the monomials.
|
1970 |
Remember: Sage
|
1971 |
"""
|
1972 |
polynomialRing = polySa.base_ring() |
1973 |
# A very expensive solution:
|
1974 |
# -create a fake multivariate polynomial field with only one variable,
|
1975 |
# specifying a negative lexicographical order;
|
1976 |
mpolynomialRing = PolynomialRing(polynomialRing.base(), \ |
1977 |
polynomialRing.variable_name(), \ |
1978 |
1, order='neglex') |
1979 |
# - convert the univariate argument polynomial into a multivariate
|
1980 |
# version;
|
1981 |
p = mpolynomialRing(polySa) |
1982 |
# - return the string representation of the converted form.
|
1983 |
# There is no simple str() method defined for p's class.
|
1984 |
return(p.__str__())
|
1985 |
#
|
1986 |
print pobyso_get_prec()
|
1987 |
pobyso_set_prec(165)
|
1988 |
print pobyso_get_prec()
|
1989 |
a=100
|
1990 |
print type(a) |
1991 |
id(a)
|
1992 |
print "Max arity: ", pobyso_max_arity |
1993 |
print "Function tripleDouble (43) as a string: ", pobyso_function_type_as_string(43) |
1994 |
print "Function None (44) as a string: ", pobyso_function_type_as_string(44) |
1995 |
print "...Pobyso check done" |