root / pobysoPythonSage / src / sageSLZ / sageRunSLZ.sage @ 225
Historique | Voir | Annoter | Télécharger (154,71 ko)
1 |
r""" |
---|---|
2 |
Main SLZ algorithm body in several versions. |
3 |
|
4 |
AUTHORS: |
5 |
- S.T. (2015-10-10): initial version |
6 |
|
7 |
Examples: |
8 |
TODO |
9 |
""" |
10 |
print "sageRationalOperations loading..." |
11 |
|
12 |
def srs_compute_lattice_volume(inputFunction, |
13 |
inputLowerBound, |
14 |
inputUpperBound, |
15 |
alpha, |
16 |
degree, |
17 |
precision, |
18 |
emin, |
19 |
emax, |
20 |
targetHardnessToRound, |
21 |
debug = False): |
22 |
""" |
23 |
Changes from V2: |
24 |
Root search is changed: |
25 |
- we compute the resultants in i and in t; |
26 |
- we compute the roots set of each of these resultants; |
27 |
- we combine all the possible pairs between the two sets; |
28 |
- we check these pairs in polynomials for correctness. |
29 |
Changes from V1: |
30 |
1- check for roots as soon as a resultant is computed; |
31 |
2- once a non null resultant is found, check for roots; |
32 |
3- constant resultant == no root. |
33 |
""" |
34 |
|
35 |
if debug: |
36 |
print "Function :", inputFunction |
37 |
print "Lower bound :", inputLowerBound |
38 |
print "Upper bounds :", inputUpperBound |
39 |
print "Alpha :", alpha |
40 |
print "Degree :", degree |
41 |
print "Precision :", precision |
42 |
print "Emin :", emin |
43 |
print "Emax :", emax |
44 |
print "Target hardness-to-round:", targetHardnessToRound |
45 |
|
46 |
## Important constants. |
47 |
### Stretch the interval if no error happens. |
48 |
noErrorIntervalStretch = 1 + 2^(-5) |
49 |
### If no vector validates the Coppersmith condition, shrink the interval |
50 |
# by the following factor. |
51 |
noCoppersmithIntervalShrink = 1/2 |
52 |
### If only (or at least) one vector validates the Coppersmith condition, |
53 |
# shrink the interval by the following factor. |
54 |
oneCoppersmithIntervalShrink = 3/4 |
55 |
#### If only null resultants are found, shrink the interval by the |
56 |
# following factor. |
57 |
onlyNullResultantsShrink = 3/4 |
58 |
## Structures. |
59 |
RRR = RealField(precision) |
60 |
RRIF = RealIntervalField(precision) |
61 |
## Converting input bound into the "right" field. |
62 |
lowerBound = RRR(inputLowerBound) |
63 |
upperBound = RRR(inputUpperBound) |
64 |
## Before going any further, check domain and image binade conditions. |
65 |
print inputFunction(1).n() |
66 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
67 |
if output is None: |
68 |
print "Invalid domain/image binades. Domain:",\ |
69 |
lowerBound, upperBound, "Images:", \ |
70 |
inputFunction(lowerBound), inputFunction(upperBound) |
71 |
raise Exception("Invalid domain/image binades.") |
72 |
lb = output[0] ; ub = output[1] |
73 |
if lb != lowerBound or ub != upperBound: |
74 |
print "lb:", lb, " - ub:", ub |
75 |
print "Invalid domain/image binades. Domain:",\ |
76 |
lowerBound, upperBound, "Images:", \ |
77 |
inputFunction(lowerBound), inputFunction(upperBound) |
78 |
raise Exception("Invalid domain/image binades.") |
79 |
# |
80 |
## Progam initialization |
81 |
### Approximation polynomial accuracy and hardness to round. |
82 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
83 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
84 |
### Significand to integer conversion ratio. |
85 |
toIntegerFactor = 2^(precision-1) |
86 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
87 |
### Variables and rings for polynomials and root searching. |
88 |
i=var('i') |
89 |
t=var('t') |
90 |
inputFunctionVariable = inputFunction.variables()[0] |
91 |
function = inputFunction.subs({inputFunctionVariable:i}) |
92 |
# Polynomial Rings over the integers, for root finding. |
93 |
Zi = ZZ[i] |
94 |
Zt = ZZ[t] |
95 |
Zit = ZZ[i,t] |
96 |
## Number of iterations limit. |
97 |
maxIter = 100000 |
98 |
# |
99 |
## Compute the scaled function and the degree, in their Sollya version |
100 |
# once for all. |
101 |
(scaledf, sdlb, sdub, silb, siub) = \ |
102 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
103 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
104 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
105 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
106 |
# |
107 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
108 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
109 |
(unscalingFunction, scalingFunction) = \ |
110 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
111 |
#print scalingFunction, unscalingFunction |
112 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
113 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
114 |
if internalSollyaPrec < 192: |
115 |
internalSollyaPrec = 192 |
116 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
117 |
print "Sollya internal precision:", internalSollyaPrec |
118 |
## Some variables. |
119 |
### General variables |
120 |
lb = sdlb |
121 |
ub = sdub |
122 |
nbw = 0 |
123 |
intervalUlp = ub.ulp() |
124 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
125 |
ic = 0 |
126 |
icAsInt = 0 # Set from ic. |
127 |
solutionsSet = set() |
128 |
tsErrorWidth = [] |
129 |
csErrorVectors = [] |
130 |
csVectorsResultants = [] |
131 |
floatP = 0 # Taylor polynomial. |
132 |
floatPcv = 0 # Ditto with variable change. |
133 |
intvl = "" # Taylor interval |
134 |
terr = 0 # Taylor error. |
135 |
iterCount = 0 |
136 |
htrnSet = set() |
137 |
### Timers and counters. |
138 |
wallTimeStart = 0 |
139 |
cpuTimeStart = 0 |
140 |
taylCondFailedCount = 0 |
141 |
coppCondFailedCount = 0 |
142 |
resultCondFailedCount = 0 |
143 |
coppCondFailed = False |
144 |
resultCondFailed = False |
145 |
globalResultsList = [] |
146 |
basisConstructionsCount = 0 |
147 |
basisConstructionsFullTime = 0 |
148 |
basisConstructionTime = 0 |
149 |
reductionsCount = 0 |
150 |
reductionsFullTime = 0 |
151 |
reductionTime = 0 |
152 |
resultantsComputationsCount = 0 |
153 |
resultantsComputationsFullTime = 0 |
154 |
resultantsComputationTime = 0 |
155 |
rootsComputationsCount = 0 |
156 |
rootsComputationsFullTime = 0 |
157 |
rootsComputationTime = 0 |
158 |
|
159 |
## Global times are started here. |
160 |
wallTimeStart = walltime() |
161 |
cpuTimeStart = cputime() |
162 |
## Main loop. |
163 |
while True: |
164 |
if lb >= sdub: |
165 |
print "Lower bound reached upper bound." |
166 |
break |
167 |
if iterCount == maxIter: |
168 |
print "Reached maxIter. Aborting" |
169 |
break |
170 |
iterCount += 1 |
171 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
172 |
"log2(numbers)." |
173 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
174 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
175 |
degreeSo, |
176 |
lb, |
177 |
ub, |
178 |
polyApproxAccur) |
179 |
### Convert back the data into Sage space. |
180 |
(floatP, floatPcv, intvl, ic, terr) = \ |
181 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
182 |
prceSo[1], prceSo[2], |
183 |
prceSo[3])) |
184 |
intvl = RRIF(intvl) |
185 |
## Clean-up Sollya stuff. |
186 |
for elem in prceSo: |
187 |
sollya_lib_clear_obj(elem) |
188 |
#print floatP, floatPcv, intvl, ic, terr |
189 |
#print floatP |
190 |
#print intvl.endpoints()[0].n(), \ |
191 |
# ic.n(), |
192 |
#intvl.endpoints()[1].n() |
193 |
### Check returned data. |
194 |
#### Is approximation error OK? |
195 |
if terr > polyApproxAccur: |
196 |
exceptionErrorMess = \ |
197 |
"Approximation failed - computed error:" + \ |
198 |
str(terr) + " - target error: " |
199 |
exceptionErrorMess += \ |
200 |
str(polyApproxAccur) + ". Aborting!" |
201 |
raise Exception(exceptionErrorMess) |
202 |
#### Is lower bound OK? |
203 |
if lb != intvl.endpoints()[0]: |
204 |
exceptionErrorMess = "Wrong lower bound:" + \ |
205 |
str(lb) + ". Aborting!" |
206 |
raise Exception(exceptionErrorMess) |
207 |
#### Set upper bound. |
208 |
if ub > intvl.endpoints()[1]: |
209 |
ub = intvl.endpoints()[1] |
210 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
211 |
"log2(numbers)." |
212 |
taylCondFailedCount += 1 |
213 |
#### Is interval not degenerate? |
214 |
if lb >= ub: |
215 |
exceptionErrorMess = "Degenerate interval: " + \ |
216 |
"lowerBound(" + str(lb) +\ |
217 |
")>= upperBound(" + str(ub) + \ |
218 |
"). Aborting!" |
219 |
raise Exception(exceptionErrorMess) |
220 |
#### Is interval center ok? |
221 |
if ic <= lb or ic >= ub: |
222 |
exceptionErrorMess = "Invalid interval center for " + \ |
223 |
str(lb) + ',' + str(ic) + ',' + \ |
224 |
str(ub) + ". Aborting!" |
225 |
raise Exception(exceptionErrorMess) |
226 |
##### Current interval width and reset future interval width. |
227 |
bw = ub - lb |
228 |
nbw = 0 |
229 |
icAsInt = int(ic * toIntegerFactor) |
230 |
#### The following ratio is always >= 1. In case we may want to |
231 |
# enlarge the interval |
232 |
curTaylErrRat = polyApproxAccur / terr |
233 |
### Make the integral transformations. |
234 |
#### Bounds and interval center. |
235 |
intIc = int(ic * toIntegerFactor) |
236 |
intLb = int(lb * toIntegerFactor) - intIc |
237 |
intUb = int(ub * toIntegerFactor) - intIc |
238 |
# |
239 |
#### Polynomials |
240 |
basisConstructionTime = cputime() |
241 |
##### To a polynomial with rational coefficients with rational arguments |
242 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
243 |
##### To a polynomial with rational coefficients with integer arguments |
244 |
ratIntP = \ |
245 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
246 |
##### Ultimately a multivariate polynomial with integer coefficients |
247 |
# with integer arguments. |
248 |
coppersmithTuple = \ |
249 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
250 |
precision, |
251 |
targetHardnessToRound, |
252 |
i, t) |
253 |
#### Recover Coppersmith information. |
254 |
intIntP = coppersmithTuple[0] |
255 |
N = coppersmithTuple[1] |
256 |
nAtAlpha = N^alpha |
257 |
tBound = coppersmithTuple[2] |
258 |
leastCommonMultiple = coppersmithTuple[3] |
259 |
iBound = max(abs(intLb),abs(intUb)) |
260 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
261 |
basisConstructionsCount += 1 |
262 |
reductionTime = cputime() |
263 |
#### Compute the reduced polynomials. |
264 |
ccReducedPolynomialsList = \ |
265 |
slz_compute_coppersmith_reduced_polynomials_with_lattice_volume(intIntP, |
266 |
alpha, |
267 |
N, |
268 |
iBound, |
269 |
tBound) |
270 |
if ccReducedPolynomialsList is None: |
271 |
raise Exception("Reduction failed.") |
272 |
reductionsFullTime += cputime(reductionTime) |
273 |
reductionsCount += 1 |
274 |
if len(ccReducedPolynomialsList) < 2: |
275 |
print "Nothing to form resultants with." |
276 |
|
277 |
coppCondFailedCount += 1 |
278 |
coppCondFailed = True |
279 |
##### Apply a different shrink factor according to |
280 |
# the number of compliant polynomials. |
281 |
if len(ccReducedPolynomialsList) == 0: |
282 |
ub = lb + bw * noCoppersmithIntervalShrink |
283 |
else: # At least one compliant polynomial. |
284 |
ub = lb + bw * oneCoppersmithIntervalShrink |
285 |
if ub > sdub: |
286 |
ub = sdub |
287 |
if lb == ub: |
288 |
raise Exception("Cant shrink interval \ |
289 |
anymore to get Coppersmith condition.") |
290 |
nbw = 0 |
291 |
continue |
292 |
#### We have at least two polynomials. |
293 |
# Let us try to compute resultants. |
294 |
# For each resultant computed, go for the solutions. |
295 |
##### Build the pairs list. |
296 |
polyPairsList = [] |
297 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
298 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
299 |
len(ccReducedPolynomialsList)): |
300 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
301 |
ccReducedPolynomialsList[polyInnerIndex])) |
302 |
#### Actual root search. |
303 |
rootsSet = set() |
304 |
hasNonNullResultant = False |
305 |
for polyPair in polyPairsList: |
306 |
if hasNonNullResultant: |
307 |
break |
308 |
resultantsComputationTime = cputime() |
309 |
currentResultantI = \ |
310 |
slz_resultant(polyPair[0], |
311 |
polyPair[1], |
312 |
t) |
313 |
resultantsComputationsCount += 1 |
314 |
if currentResultantI is None: |
315 |
resultantsComputationsFullTime += \ |
316 |
cputime(resultantsComputationTime) |
317 |
print "Nul resultant" |
318 |
continue # Next polyPair. |
319 |
currentResultantT = \ |
320 |
slz_resultant(polyPair[0], |
321 |
polyPair[1], |
322 |
i) |
323 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
324 |
resultantsComputationsCount += 1 |
325 |
if currentResultantT is None: |
326 |
print "Nul resultant" |
327 |
continue # Next polyPair. |
328 |
else: |
329 |
hasNonNullResultant = True |
330 |
#### We have a non null resultants pair. From now on, whatever the |
331 |
# root search yields, no extra root search is necessary. |
332 |
#### A constant resultant leads to no root. Root search is done. |
333 |
if currentResultantI.degree() < 1: |
334 |
print "Resultant is constant:", currentResultantI |
335 |
break # Next polyPair and should break. |
336 |
if currentResultantT.degree() < 1: |
337 |
print "Resultant is constant:", currentResultantT |
338 |
break # Next polyPair and should break. |
339 |
#### Actual roots computation. |
340 |
rootsComputationTime = cputime() |
341 |
##### Compute i roots |
342 |
iRootsList = Zi(currentResultantI).roots() |
343 |
rootsComputationsCount += 1 |
344 |
if len(iRootsList) == 0: |
345 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
346 |
print "No roots in \"i\"." |
347 |
break # No roots in i. |
348 |
tRootsList = Zt(currentResultantT).roots() |
349 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
350 |
rootsComputationsCount += 1 |
351 |
if len(tRootsList) == 0: |
352 |
print "No roots in \"t\"." |
353 |
break # No roots in i. |
354 |
##### For each iRoot, get a tRoot and check against the polynomials. |
355 |
for iRoot in iRootsList: |
356 |
####### Roots returned by roots() are (value, multiplicity) |
357 |
# tuples. |
358 |
#print "iRoot:", iRoot |
359 |
for tRoot in tRootsList: |
360 |
###### Use the tRoot against each polynomial, alternatively. |
361 |
if polyPair[0](iRoot[0],tRoot[0]) != 0: |
362 |
continue |
363 |
if polyPair[1](iRoot[0],tRoot[0]) != 0: |
364 |
continue |
365 |
rootsSet.add((iRoot[0], tRoot[0])) |
366 |
# End of roots computation. |
367 |
# End loop for polyPair in polyParsList. Will break at next iteration. |
368 |
# since a non null resultant was found. |
369 |
#### Prepare for results for the current interval.. |
370 |
intervalResultsList = [] |
371 |
intervalResultsList.append((lb, ub)) |
372 |
#### Check roots. |
373 |
rootsResultsList = [] |
374 |
for root in rootsSet: |
375 |
specificRootResultsList = [] |
376 |
failingBounds = [] |
377 |
intIntPdivN = intIntP(root[0], root[1]) / N |
378 |
if int(intIntPdivN) != intIntPdivN: |
379 |
continue # Next root |
380 |
# Root qualifies for modular equation, test it for hardness to round. |
381 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
382 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
383 |
#print scalingFunction |
384 |
scaledHardToRoundCaseAsFloat = \ |
385 |
scalingFunction(hardToRoundCaseAsFloat) |
386 |
print "Candidate HTRNc at x =", \ |
387 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
388 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
389 |
function, |
390 |
2^-(targetHardnessToRound), |
391 |
RRR): |
392 |
print hardToRoundCaseAsFloat, "is HTRN case." |
393 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
394 |
print "Found in interval." |
395 |
else: |
396 |
print "Found out of interval." |
397 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
398 |
# Check the root is in the bounds |
399 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
400 |
print "Root", root, "is out of bounds for modular equation." |
401 |
if abs(root[0]) > iBound: |
402 |
print "root[0]:", root[0] |
403 |
print "i bound:", iBound |
404 |
failingBounds.append('i') |
405 |
failingBounds.append(root[0]) |
406 |
failingBounds.append(iBound) |
407 |
if abs(root[1]) > tBound: |
408 |
print "root[1]:", root[1] |
409 |
print "t bound:", tBound |
410 |
failingBounds.append('t') |
411 |
failingBounds.append(root[1]) |
412 |
failingBounds.append(tBound) |
413 |
if len(failingBounds) > 0: |
414 |
specificRootResultsList.append(failingBounds) |
415 |
else: # From slz_is_htrn... |
416 |
print "is not an HTRN case." |
417 |
if len(specificRootResultsList) > 0: |
418 |
rootsResultsList.append(specificRootResultsList) |
419 |
if len(rootsResultsList) > 0: |
420 |
intervalResultsList.append(rootsResultsList) |
421 |
### Check if a non null resultant was found. If not shrink the interval. |
422 |
if not hasNonNullResultant: |
423 |
print "Only null resultants for this reduction, shrinking interval." |
424 |
resultCondFailed = True |
425 |
resultCondFailedCount += 1 |
426 |
### Shrink interval for next iteration. |
427 |
ub = lb + bw * onlyNullResultantsShrink |
428 |
if ub > sdub: |
429 |
ub = sdub |
430 |
nbw = 0 |
431 |
continue |
432 |
#### An intervalResultsList has at least the bounds. |
433 |
globalResultsList.append(intervalResultsList) |
434 |
#### Compute an incremented width for next upper bound, only |
435 |
# if not Coppersmith condition nor resultant condition |
436 |
# failed at the previous run. |
437 |
if not coppCondFailed and not resultCondFailed: |
438 |
nbw = noErrorIntervalStretch * bw |
439 |
else: |
440 |
nbw = bw |
441 |
##### Reset the failure flags. They will be raised |
442 |
# again if needed. |
443 |
coppCondFailed = False |
444 |
resultCondFailed = False |
445 |
#### For next iteration (at end of loop) |
446 |
#print "nbw:", nbw |
447 |
lb = ub |
448 |
ub += nbw |
449 |
if ub > sdub: |
450 |
ub = sdub |
451 |
|
452 |
# End while True |
453 |
## Main loop just ended. |
454 |
globalWallTime = walltime(wallTimeStart) |
455 |
globalCpuTime = cputime(cpuTimeStart) |
456 |
## Output results |
457 |
print ; print "Intervals and HTRNs" ; print |
458 |
for intervalResultsList in globalResultsList: |
459 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
460 |
"," + str(intervalResultsList[0][1]) + "]" |
461 |
print intervalResultString, |
462 |
if len(intervalResultsList) > 1: |
463 |
rootsResultsList = intervalResultsList[1] |
464 |
specificRootResultIndex = 0 |
465 |
for specificRootResultsList in rootsResultsList: |
466 |
if specificRootResultIndex == 0: |
467 |
print "\t", specificRootResultsList[0], |
468 |
else: |
469 |
print " " * len(intervalResultString), "\t", \ |
470 |
specificRootResultsList[0], |
471 |
if len(specificRootResultsList) > 1: |
472 |
print specificRootResultsList[1] |
473 |
specificRootResultIndex += 1 |
474 |
print ; print |
475 |
#print globalResultsList |
476 |
# |
477 |
print "Timers and counters" |
478 |
|
479 |
print "Number of iterations:", iterCount |
480 |
print "Taylor condition failures:", taylCondFailedCount |
481 |
print "Coppersmith condition failures:", coppCondFailedCount |
482 |
print "Resultant condition failures:", resultCondFailedCount |
483 |
print "Iterations count: ", iterCount |
484 |
print "Number of intervals:", len(globalResultsList) |
485 |
print "Number of basis constructions:", basisConstructionsCount |
486 |
print "Total CPU time spent in basis constructions:", \ |
487 |
basisConstructionsFullTime |
488 |
if basisConstructionsCount != 0: |
489 |
print "Average basis construction CPU time:", \ |
490 |
basisConstructionsFullTime/basisConstructionsCount |
491 |
print "Number of reductions:", reductionsCount |
492 |
print "Total CPU time spent in reductions:", reductionsFullTime |
493 |
if reductionsCount != 0: |
494 |
print "Average reduction CPU time:", \ |
495 |
reductionsFullTime/reductionsCount |
496 |
print "Number of resultants computation rounds:", \ |
497 |
resultantsComputationsCount |
498 |
print "Total CPU time spent in resultants computation rounds:", \ |
499 |
resultantsComputationsFullTime |
500 |
if resultantsComputationsCount != 0: |
501 |
print "Average resultants computation round CPU time:", \ |
502 |
resultantsComputationsFullTime/resultantsComputationsCount |
503 |
print "Number of root finding rounds:", rootsComputationsCount |
504 |
print "Total CPU time spent in roots finding rounds:", \ |
505 |
rootsComputationsFullTime |
506 |
if rootsComputationsCount != 0: |
507 |
print "Average roots finding round CPU time:", \ |
508 |
rootsComputationsFullTime/rootsComputationsCount |
509 |
print "Global Wall time:", globalWallTime |
510 |
print "Global CPU time:", globalCpuTime |
511 |
## Output counters |
512 |
# End srs_compute_lattice_volume |
513 |
|
514 |
""" |
515 |
SLZ runtime function. |
516 |
""" |
517 |
|
518 |
def srs_run_SLZ_v01(inputFunction, |
519 |
inputLowerBound, |
520 |
inputUpperBound, |
521 |
alpha, |
522 |
degree, |
523 |
precision, |
524 |
emin, |
525 |
emax, |
526 |
targetHardnessToRound, |
527 |
debug = False): |
528 |
|
529 |
if debug: |
530 |
print "Function :", inputFunction |
531 |
print "Lower bound :", inputLowerBound |
532 |
print "Upper bounds :", inputUpperBound |
533 |
print "Alpha :", alpha |
534 |
print "Degree :", degree |
535 |
print "Precision :", precision |
536 |
print "Emin :", emin |
537 |
print "Emax :", emax |
538 |
print "Target hardness-to-round:", targetHardnessToRound |
539 |
|
540 |
## Important constants. |
541 |
### Stretch the interval if no error happens. |
542 |
noErrorIntervalStretch = 1 + 2^(-5) |
543 |
### If no vector validates the Coppersmith condition, shrink the interval |
544 |
# by the following factor. |
545 |
noCoppersmithIntervalShrink = 1/2 |
546 |
### If only (or at least) one vector validates the Coppersmith condition, |
547 |
# shrink the interval by the following factor. |
548 |
oneCoppersmithIntervalShrink = 3/4 |
549 |
#### If only null resultants are found, shrink the interval by the |
550 |
# following factor. |
551 |
onlyNullResultantsShrink = 3/4 |
552 |
## Structures. |
553 |
RRR = RealField(precision) |
554 |
RRIF = RealIntervalField(precision) |
555 |
## Converting input bound into the "right" field. |
556 |
lowerBound = RRR(inputLowerBound) |
557 |
upperBound = RRR(inputUpperBound) |
558 |
## Before going any further, check domain and image binade conditions. |
559 |
print inputFunction(1).n() |
560 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
561 |
if output is None: |
562 |
print "Invalid domain/image binades. Domain:",\ |
563 |
lowerBound, upperBound, "Images:", \ |
564 |
inputFunction(lowerBound), inputFunction(upperBound) |
565 |
raise Exception("Invalid domain/image binades.") |
566 |
lb = output[0] ; ub = output[1] |
567 |
if lb is None or lb != lowerBound or ub != upperBound: |
568 |
print "lb:", lb, " - ub:", ub |
569 |
print "Invalid domain/image binades. Domain:",\ |
570 |
lowerBound, upperBound, "Images:", \ |
571 |
inputFunction(lowerBound), inputFunction(upperBound) |
572 |
raise Exception("Invalid domain/image binades.") |
573 |
# |
574 |
## Progam initialization |
575 |
### Approximation polynomial accuracy and hardness to round. |
576 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
577 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
578 |
### Significand to integer conversion ratio. |
579 |
toIntegerFactor = 2^(precision-1) |
580 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
581 |
### Variables and rings for polynomials and root searching. |
582 |
i=var('i') |
583 |
t=var('t') |
584 |
inputFunctionVariable = inputFunction.variables()[0] |
585 |
function = inputFunction.subs({inputFunctionVariable:i}) |
586 |
# Polynomial Rings over the integers, for root finding. |
587 |
Zi = ZZ[i] |
588 |
Zt = ZZ[t] |
589 |
Zit = ZZ[i,t] |
590 |
## Number of iterations limit. |
591 |
maxIter = 100000 |
592 |
# |
593 |
## Compute the scaled function and the degree, in their Sollya version |
594 |
# once for all. |
595 |
(scaledf, sdlb, sdub, silb, siub) = \ |
596 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
597 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
598 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
599 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
600 |
# |
601 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
602 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
603 |
(unscalingFunction, scalingFunction) = \ |
604 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
605 |
#print scalingFunction, unscalingFunction |
606 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
607 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
608 |
if internalSollyaPrec < 192: |
609 |
internalSollyaPrec = 192 |
610 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
611 |
print "Sollya internal precision:", internalSollyaPrec |
612 |
## Some variables. |
613 |
### General variables |
614 |
lb = sdlb |
615 |
ub = sdub |
616 |
nbw = 0 |
617 |
intervalUlp = ub.ulp() |
618 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
619 |
ic = 0 |
620 |
icAsInt = 0 # Set from ic. |
621 |
solutionsSet = set() |
622 |
tsErrorWidth = [] |
623 |
csErrorVectors = [] |
624 |
csVectorsResultants = [] |
625 |
floatP = 0 # Taylor polynomial. |
626 |
floatPcv = 0 # Ditto with variable change. |
627 |
intvl = "" # Taylor interval |
628 |
terr = 0 # Taylor error. |
629 |
iterCount = 0 |
630 |
htrnSet = set() |
631 |
### Timers and counters. |
632 |
wallTimeStart = 0 |
633 |
cpuTimeStart = 0 |
634 |
taylCondFailedCount = 0 |
635 |
coppCondFailedCount = 0 |
636 |
resultCondFailedCount = 0 |
637 |
coppCondFailed = False |
638 |
resultCondFailed = False |
639 |
globalResultsList = [] |
640 |
basisConstructionsCount = 0 |
641 |
basisConstructionsFullTime = 0 |
642 |
basisConstructionTime = 0 |
643 |
reductionsCount = 0 |
644 |
reductionsFullTime = 0 |
645 |
reductionTime = 0 |
646 |
resultantsComputationsCount = 0 |
647 |
resultantsComputationsFullTime = 0 |
648 |
resultantsComputationTime = 0 |
649 |
rootsComputationsCount = 0 |
650 |
rootsComputationsFullTime = 0 |
651 |
rootsComputationTime = 0 |
652 |
|
653 |
## Global times are started here. |
654 |
wallTimeStart = walltime() |
655 |
cpuTimeStart = cputime() |
656 |
## Main loop. |
657 |
while True: |
658 |
if lb >= sdub: |
659 |
print "Lower bound reached upper bound." |
660 |
break |
661 |
if iterCount == maxIter: |
662 |
print "Reached maxIter. Aborting" |
663 |
break |
664 |
iterCount += 1 |
665 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
666 |
"log2(numbers)." |
667 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
668 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
669 |
degreeSo, |
670 |
lb, |
671 |
ub, |
672 |
polyApproxAccur) |
673 |
### Convert back the data into Sage space. |
674 |
(floatP, floatPcv, intvl, ic, terr) = \ |
675 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
676 |
prceSo[1], prceSo[2], |
677 |
prceSo[3])) |
678 |
intvl = RRIF(intvl) |
679 |
## Clean-up Sollya stuff. |
680 |
for elem in prceSo: |
681 |
sollya_lib_clear_obj(elem) |
682 |
#print floatP, floatPcv, intvl, ic, terr |
683 |
#print floatP |
684 |
#print intvl.endpoints()[0].n(), \ |
685 |
# ic.n(), |
686 |
#intvl.endpoints()[1].n() |
687 |
### Check returned data. |
688 |
#### Is approximation error OK? |
689 |
if terr > polyApproxAccur: |
690 |
exceptionErrorMess = \ |
691 |
"Approximation failed - computed error:" + \ |
692 |
str(terr) + " - target error: " |
693 |
exceptionErrorMess += \ |
694 |
str(polyApproxAccur) + ". Aborting!" |
695 |
raise Exception(exceptionErrorMess) |
696 |
#### Is lower bound OK? |
697 |
if lb != intvl.endpoints()[0]: |
698 |
exceptionErrorMess = "Wrong lower bound:" + \ |
699 |
str(lb) + ". Aborting!" |
700 |
raise Exception(exceptionErrorMess) |
701 |
#### Set upper bound. |
702 |
if ub > intvl.endpoints()[1]: |
703 |
ub = intvl.endpoints()[1] |
704 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
705 |
"log2(numbers)." |
706 |
taylCondFailedCount += 1 |
707 |
#### Is interval not degenerate? |
708 |
if lb >= ub: |
709 |
exceptionErrorMess = "Degenerate interval: " + \ |
710 |
"lowerBound(" + str(lb) +\ |
711 |
")>= upperBound(" + str(ub) + \ |
712 |
"). Aborting!" |
713 |
raise Exception(exceptionErrorMess) |
714 |
#### Is interval center ok? |
715 |
if ic <= lb or ic >= ub: |
716 |
exceptionErrorMess = "Invalid interval center for " + \ |
717 |
str(lb) + ',' + str(ic) + ',' + \ |
718 |
str(ub) + ". Aborting!" |
719 |
raise Exception(exceptionErrorMess) |
720 |
##### Current interval width and reset future interval width. |
721 |
bw = ub - lb |
722 |
nbw = 0 |
723 |
icAsInt = int(ic * toIntegerFactor) |
724 |
#### The following ratio is always >= 1. In case we may want to |
725 |
# enlarge the interval |
726 |
curTaylErrRat = polyApproxAccur / terr |
727 |
## Make the integral transformations. |
728 |
### First for interval center and bounds. |
729 |
intIc = int(ic * toIntegerFactor) |
730 |
intLb = int(lb * toIntegerFactor) - intIc |
731 |
intUb = int(ub * toIntegerFactor) - intIc |
732 |
# |
733 |
#### For polynomials |
734 |
basisConstructionTime = cputime() |
735 |
##### To a polynomial with rational coefficients with rational arguments |
736 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
737 |
##### To a polynomial with rational coefficients with integer arguments |
738 |
ratIntP = \ |
739 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
740 |
##### Ultimately a polynomial with integer coefficients with integer |
741 |
# arguments. |
742 |
coppersmithTuple = \ |
743 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
744 |
precision, |
745 |
targetHardnessToRound, |
746 |
i, t) |
747 |
#### Recover Coppersmith information. |
748 |
intIntP = coppersmithTuple[0] |
749 |
N = coppersmithTuple[1] |
750 |
nAtAlpha = N^alpha |
751 |
tBound = coppersmithTuple[2] |
752 |
leastCommonMultiple = coppersmithTuple[3] |
753 |
iBound = max(abs(intLb),abs(intUb)) |
754 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
755 |
basisConstructionsCount += 1 |
756 |
reductionTime = cputime() |
757 |
# Compute the reduced polynomials. |
758 |
ccReducedPolynomialsList = \ |
759 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
760 |
alpha, |
761 |
N, |
762 |
iBound, |
763 |
tBound) |
764 |
if ccReducedPolynomialsList is None: |
765 |
raise Exception("Reduction failed.") |
766 |
reductionsFullTime += cputime(reductionTime) |
767 |
reductionsCount += 1 |
768 |
if len(ccReducedPolynomialsList) < 2: |
769 |
print "Nothing to form resultants with." |
770 |
|
771 |
coppCondFailedCount += 1 |
772 |
coppCondFailed = True |
773 |
##### Apply a different shrink factor according to |
774 |
# the number of compliant polynomials. |
775 |
if len(ccReducedPolynomialsList) == 0: |
776 |
ub = lb + bw * noCoppersmithIntervalShrink |
777 |
else: # At least one compliant polynomial. |
778 |
ub = lb + bw * oneCoppersmithIntervalShrink |
779 |
if ub > sdub: |
780 |
ub = sdub |
781 |
if lb == ub: |
782 |
raise Exception("Cant shrink interval \ |
783 |
anymore to get Coppersmith condition.") |
784 |
nbw = 0 |
785 |
continue |
786 |
#### We have at least two polynomials. |
787 |
# Let us try to compute resultants. |
788 |
resultantsComputationTime = cputime() |
789 |
resultantsInTTuplesList = [] |
790 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
791 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
792 |
len(ccReducedPolynomialsList)): |
793 |
resultantTuple = \ |
794 |
slz_resultant_tuple(ccReducedPolynomialsList[polyOuterIndex], |
795 |
ccReducedPolynomialsList[polyInnerIndex], |
796 |
t) |
797 |
if len(resultantTuple) > 2: |
798 |
#print resultantTuple[2] |
799 |
resultantsInTTuplesList.append(resultantTuple) |
800 |
else: |
801 |
print "No non nul resultant" |
802 |
print len(resultantsInTTuplesList), "resultant(s) in t tuple(s) created." |
803 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
804 |
resultantsComputationsCount += 1 |
805 |
if len(resultantsInTTuplesList) == 0: |
806 |
print "Only null resultants, shrinking interval." |
807 |
resultCondFailed = True |
808 |
resultCondFailedCount += 1 |
809 |
### Shrink interval for next iteration. |
810 |
ub = lb + bw * onlyNullResultantsShrink |
811 |
if ub > sdub: |
812 |
ub = sdub |
813 |
nbw = 0 |
814 |
continue |
815 |
#### Compute roots. |
816 |
rootsComputationTime = cputime() |
817 |
reducedPolynomialsRootsSet = set() |
818 |
##### Solve in the second variable since resultants are in the first |
819 |
# variable. |
820 |
for resultantInTTuple in resultantsInTTuplesList: |
821 |
currentResultant = resultantInTTuple[2] |
822 |
##### If the resultant degree is not at least 1, there are no roots. |
823 |
if currentResultant.degree() < 1: |
824 |
print "Resultant is constant:", currentResultant |
825 |
continue # Next resultantInTTuple |
826 |
##### Compute i roots |
827 |
iRootsList = Zi(currentResultant).roots() |
828 |
##### For each iRoot, compute the corresponding tRoots and check |
829 |
# them in the input polynomial. |
830 |
for iRoot in iRootsList: |
831 |
####### Roots returned by roots() are (value, multiplicity) |
832 |
# tuples. |
833 |
#print "iRoot:", iRoot |
834 |
###### Use the tRoot against each polynomial, alternatively. |
835 |
for indexInTuple in range(0,2): |
836 |
currentPolynomial = resultantInTTuple[indexInTuple] |
837 |
####### If the polynomial is univariate, just drop it. |
838 |
if len(currentPolynomial.variables()) < 2: |
839 |
print " Current polynomial is not in two variables." |
840 |
continue # Next indexInTuple |
841 |
tRootsList = \ |
842 |
Zt(currentPolynomial.subs({currentPolynomial.variables()[0]:iRoot[0]})).roots() |
843 |
####### The tRootsList can be empty, hence the test. |
844 |
if len(tRootsList) == 0: |
845 |
print " No t root." |
846 |
continue # Next indexInTuple |
847 |
for tRoot in tRootsList: |
848 |
reducedPolynomialsRootsSet.add((iRoot[0], tRoot[0])) |
849 |
# End of roots computation |
850 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
851 |
rootsComputationsCount += 1 |
852 |
##### Prepare for results. |
853 |
intervalResultsList = [] |
854 |
intervalResultsList.append((lb, ub)) |
855 |
#### Check roots. |
856 |
rootsResultsList = [] |
857 |
for root in reducedPolynomialsRootsSet: |
858 |
specificRootResultsList = [] |
859 |
failingBounds = [] |
860 |
intIntPdivN = intIntP(root[0], root[1]) / N |
861 |
if int(intIntPdivN) != intIntPdivN: |
862 |
continue # Next root |
863 |
# Root qualifies for modular equation, test it for hardness to round. |
864 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
865 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
866 |
#print scalingFunction |
867 |
scaledHardToRoundCaseAsFloat = \ |
868 |
scalingFunction(hardToRoundCaseAsFloat) |
869 |
print "Candidate HTRNc at x =", \ |
870 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
871 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
872 |
function, |
873 |
2^-(targetHardnessToRound), |
874 |
RRR): |
875 |
print hardToRoundCaseAsFloat, "is HTRN case." |
876 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
877 |
print "Found in interval." |
878 |
else: |
879 |
print "Found out of interval." |
880 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
881 |
# Check the root is in the bounds |
882 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
883 |
print "Root", root, "is out of bounds." |
884 |
if abs(root[0]) > iBound: |
885 |
print "root[0]:", root[0] |
886 |
print "i bound:", iBound |
887 |
failingBounds.append('i') |
888 |
failingBounds.append(root[0]) |
889 |
failingBounds.append(iBound) |
890 |
if abs(root[1]) > tBound: |
891 |
print "root[1]:", root[1] |
892 |
print "t bound:", tBound |
893 |
failingBounds.append('t') |
894 |
failingBounds.append(root[1]) |
895 |
failingBounds.append(tBound) |
896 |
if len(failingBounds) > 0: |
897 |
specificRootResultsList.append(failingBounds) |
898 |
else: # From slz_is_htrn... |
899 |
print "is not an HTRN case." |
900 |
if len(specificRootResultsList) > 0: |
901 |
rootsResultsList.append(specificRootResultsList) |
902 |
if len(rootsResultsList) > 0: |
903 |
intervalResultsList.append(rootsResultsList) |
904 |
#### An intervalResultsList has at least the bounds. |
905 |
globalResultsList.append(intervalResultsList) |
906 |
#### Compute an incremented width for next upper bound, only |
907 |
# if not Coppersmith condition nor resultant condition |
908 |
# failed at the previous run. |
909 |
if not coppCondFailed and not resultCondFailed: |
910 |
nbw = noErrorIntervalStretch * bw |
911 |
else: |
912 |
nbw = bw |
913 |
##### Reset the failure flags. They will be raised |
914 |
# again if needed. |
915 |
coppCondFailed = False |
916 |
resultCondFailed = False |
917 |
#### For next iteration (at end of loop) |
918 |
#print "nbw:", nbw |
919 |
lb = ub |
920 |
ub += nbw |
921 |
if ub > sdub: |
922 |
ub = sdub |
923 |
|
924 |
# End while True |
925 |
## Main loop just ended. |
926 |
globalWallTime = walltime(wallTimeStart) |
927 |
globalCpuTime = cputime(cpuTimeStart) |
928 |
## Output results |
929 |
print ; print "Intervals and HTRNs" ; print |
930 |
for intervalResultsList in globalResultsList: |
931 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
932 |
"," + str(intervalResultsList[0][1]) + "]" |
933 |
print intervalResultString, |
934 |
if len(intervalResultsList) > 1: |
935 |
rootsResultsList = intervalResultsList[1] |
936 |
specificRootResultIndex = 0 |
937 |
for specificRootResultsList in rootsResultsList: |
938 |
if specificRootResultIndex == 0: |
939 |
print "\t", specificRootResultsList[0], |
940 |
else: |
941 |
print " " * len(intervalResultString), "\t", \ |
942 |
specificRootResultsList[0], |
943 |
if len(specificRootResultsList) > 1: |
944 |
print specificRootResultsList[1] |
945 |
specificRootResultIndex += 1 |
946 |
print ; print |
947 |
#print globalResultsList |
948 |
# |
949 |
print "Timers and counters" |
950 |
|
951 |
print "Number of iterations:", iterCount |
952 |
print "Taylor condition failures:", taylCondFailedCount |
953 |
print "Coppersmith condition failures:", coppCondFailedCount |
954 |
print "Resultant condition failures:", resultCondFailedCount |
955 |
print "Iterations count: ", iterCount |
956 |
print "Number of intervals:", len(globalResultsList) |
957 |
print "Number of basis constructions:", basisConstructionsCount |
958 |
print "Total CPU time spent in basis constructions:", \ |
959 |
basisConstructionsFullTime |
960 |
if basisConstructionsCount != 0: |
961 |
print "Average basis construction CPU time:", \ |
962 |
basisConstructionsFullTime/basisConstructionsCount |
963 |
print "Number of reductions:", reductionsCount |
964 |
print "Total CPU time spent in reductions:", reductionsFullTime |
965 |
if reductionsCount != 0: |
966 |
print "Average reduction CPU time:", \ |
967 |
reductionsFullTime/reductionsCount |
968 |
print "Number of resultants computation rounds:", \ |
969 |
resultantsComputationsCount |
970 |
print "Total CPU time spent in resultants computation rounds:", \ |
971 |
resultantsComputationsFullTime |
972 |
if resultantsComputationsCount != 0: |
973 |
print "Average resultants computation round CPU time:", \ |
974 |
resultantsComputationsFullTime/resultantsComputationsCount |
975 |
print "Number of root finding rounds:", rootsComputationsCount |
976 |
print "Total CPU time spent in roots finding rounds:", \ |
977 |
rootsComputationsFullTime |
978 |
if rootsComputationsCount != 0: |
979 |
print "Average roots finding round CPU time:", \ |
980 |
rootsComputationsFullTime/rootsComputationsCount |
981 |
print "Global Wall time:", globalWallTime |
982 |
print "Global CPU time:", globalCpuTime |
983 |
## Output counters |
984 |
# End srs_runSLZ-v01 |
985 |
|
986 |
def srs_run_SLZ_v02(inputFunction, |
987 |
inputLowerBound, |
988 |
inputUpperBound, |
989 |
alpha, |
990 |
degree, |
991 |
precision, |
992 |
emin, |
993 |
emax, |
994 |
targetHardnessToRound, |
995 |
debug = False): |
996 |
""" |
997 |
Changes from V1: |
998 |
1- check for roots as soon as a resultant is computed; |
999 |
2- once a non null resultant is found, check for roots; |
1000 |
3- constant resultant == no root. |
1001 |
""" |
1002 |
|
1003 |
if debug: |
1004 |
print "Function :", inputFunction |
1005 |
print "Lower bound :", inputLowerBound |
1006 |
print "Upper bounds :", inputUpperBound |
1007 |
print "Alpha :", alpha |
1008 |
print "Degree :", degree |
1009 |
print "Precision :", precision |
1010 |
print "Emin :", emin |
1011 |
print "Emax :", emax |
1012 |
print "Target hardness-to-round:", targetHardnessToRound |
1013 |
|
1014 |
## Important constants. |
1015 |
### Stretch the interval if no error happens. |
1016 |
noErrorIntervalStretch = 1 + 2^(-5) |
1017 |
### If no vector validates the Coppersmith condition, shrink the interval |
1018 |
# by the following factor. |
1019 |
noCoppersmithIntervalShrink = 1/2 |
1020 |
### If only (or at least) one vector validates the Coppersmith condition, |
1021 |
# shrink the interval by the following factor. |
1022 |
oneCoppersmithIntervalShrink = 3/4 |
1023 |
#### If only null resultants are found, shrink the interval by the |
1024 |
# following factor. |
1025 |
onlyNullResultantsShrink = 3/4 |
1026 |
## Structures. |
1027 |
RRR = RealField(precision) |
1028 |
RRIF = RealIntervalField(precision) |
1029 |
## Converting input bound into the "right" field. |
1030 |
lowerBound = RRR(inputLowerBound) |
1031 |
upperBound = RRR(inputUpperBound) |
1032 |
## Before going any further, check domain and image binade conditions. |
1033 |
print inputFunction(1).n() |
1034 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
1035 |
if output is None: |
1036 |
print "Invalid domain/image binades. Domain:",\ |
1037 |
lowerBound, upperBound, "Images:", \ |
1038 |
inputFunction(lowerBound), inputFunction(upperBound) |
1039 |
raise Exception("Invalid domain/image binades.") |
1040 |
lb = output[0] ; ub = output[1] |
1041 |
if lb != lowerBound or ub != upperBound: |
1042 |
print "lb:", lb, " - ub:", ub |
1043 |
print "Invalid domain/image binades. Domain:",\ |
1044 |
lowerBound, upperBound, "Images:", \ |
1045 |
inputFunction(lowerBound), inputFunction(upperBound) |
1046 |
raise Exception("Invalid domain/image binades.") |
1047 |
# |
1048 |
## Progam initialization |
1049 |
### Approximation polynomial accuracy and hardness to round. |
1050 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
1051 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
1052 |
### Significand to integer conversion ratio. |
1053 |
toIntegerFactor = 2^(precision-1) |
1054 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
1055 |
### Variables and rings for polynomials and root searching. |
1056 |
i=var('i') |
1057 |
t=var('t') |
1058 |
inputFunctionVariable = inputFunction.variables()[0] |
1059 |
function = inputFunction.subs({inputFunctionVariable:i}) |
1060 |
# Polynomial Rings over the integers, for root finding. |
1061 |
Zi = ZZ[i] |
1062 |
Zt = ZZ[t] |
1063 |
Zit = ZZ[i,t] |
1064 |
## Number of iterations limit. |
1065 |
maxIter = 100000 |
1066 |
# |
1067 |
## Compute the scaled function and the degree, in their Sollya version |
1068 |
# once for all. |
1069 |
(scaledf, sdlb, sdub, silb, siub) = \ |
1070 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
1071 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
1072 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
1073 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
1074 |
# |
1075 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
1076 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
1077 |
(unscalingFunction, scalingFunction) = \ |
1078 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
1079 |
#print scalingFunction, unscalingFunction |
1080 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
1081 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
1082 |
if internalSollyaPrec < 192: |
1083 |
internalSollyaPrec = 192 |
1084 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
1085 |
print "Sollya internal precision:", internalSollyaPrec |
1086 |
## Some variables. |
1087 |
### General variables |
1088 |
lb = sdlb |
1089 |
ub = sdub |
1090 |
nbw = 0 |
1091 |
intervalUlp = ub.ulp() |
1092 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
1093 |
ic = 0 |
1094 |
icAsInt = 0 # Set from ic. |
1095 |
solutionsSet = set() |
1096 |
tsErrorWidth = [] |
1097 |
csErrorVectors = [] |
1098 |
csVectorsResultants = [] |
1099 |
floatP = 0 # Taylor polynomial. |
1100 |
floatPcv = 0 # Ditto with variable change. |
1101 |
intvl = "" # Taylor interval |
1102 |
terr = 0 # Taylor error. |
1103 |
iterCount = 0 |
1104 |
htrnSet = set() |
1105 |
### Timers and counters. |
1106 |
wallTimeStart = 0 |
1107 |
cpuTimeStart = 0 |
1108 |
taylCondFailedCount = 0 |
1109 |
coppCondFailedCount = 0 |
1110 |
resultCondFailedCount = 0 |
1111 |
coppCondFailed = False |
1112 |
resultCondFailed = False |
1113 |
globalResultsList = [] |
1114 |
basisConstructionsCount = 0 |
1115 |
basisConstructionsFullTime = 0 |
1116 |
basisConstructionTime = 0 |
1117 |
reductionsCount = 0 |
1118 |
reductionsFullTime = 0 |
1119 |
reductionTime = 0 |
1120 |
resultantsComputationsCount = 0 |
1121 |
resultantsComputationsFullTime = 0 |
1122 |
resultantsComputationTime = 0 |
1123 |
rootsComputationsCount = 0 |
1124 |
rootsComputationsFullTime = 0 |
1125 |
rootsComputationTime = 0 |
1126 |
|
1127 |
## Global times are started here. |
1128 |
wallTimeStart = walltime() |
1129 |
cpuTimeStart = cputime() |
1130 |
## Main loop. |
1131 |
while True: |
1132 |
if lb >= sdub: |
1133 |
print "Lower bound reached upper bound." |
1134 |
break |
1135 |
if iterCount == maxIter: |
1136 |
print "Reached maxIter. Aborting" |
1137 |
break |
1138 |
iterCount += 1 |
1139 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1140 |
"log2(numbers)." |
1141 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
1142 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
1143 |
degreeSo, |
1144 |
lb, |
1145 |
ub, |
1146 |
polyApproxAccur) |
1147 |
### Convert back the data into Sage space. |
1148 |
(floatP, floatPcv, intvl, ic, terr) = \ |
1149 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
1150 |
prceSo[1], prceSo[2], |
1151 |
prceSo[3])) |
1152 |
intvl = RRIF(intvl) |
1153 |
## Clean-up Sollya stuff. |
1154 |
for elem in prceSo: |
1155 |
sollya_lib_clear_obj(elem) |
1156 |
#print floatP, floatPcv, intvl, ic, terr |
1157 |
#print floatP |
1158 |
#print intvl.endpoints()[0].n(), \ |
1159 |
# ic.n(), |
1160 |
#intvl.endpoints()[1].n() |
1161 |
### Check returned data. |
1162 |
#### Is approximation error OK? |
1163 |
if terr > polyApproxAccur: |
1164 |
exceptionErrorMess = \ |
1165 |
"Approximation failed - computed error:" + \ |
1166 |
str(terr) + " - target error: " |
1167 |
exceptionErrorMess += \ |
1168 |
str(polyApproxAccur) + ". Aborting!" |
1169 |
raise Exception(exceptionErrorMess) |
1170 |
#### Is lower bound OK? |
1171 |
if lb != intvl.endpoints()[0]: |
1172 |
exceptionErrorMess = "Wrong lower bound:" + \ |
1173 |
str(lb) + ". Aborting!" |
1174 |
raise Exception(exceptionErrorMess) |
1175 |
#### Set upper bound. |
1176 |
if ub > intvl.endpoints()[1]: |
1177 |
ub = intvl.endpoints()[1] |
1178 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1179 |
"log2(numbers)." |
1180 |
taylCondFailedCount += 1 |
1181 |
#### Is interval not degenerate? |
1182 |
if lb >= ub: |
1183 |
exceptionErrorMess = "Degenerate interval: " + \ |
1184 |
"lowerBound(" + str(lb) +\ |
1185 |
")>= upperBound(" + str(ub) + \ |
1186 |
"). Aborting!" |
1187 |
raise Exception(exceptionErrorMess) |
1188 |
#### Is interval center ok? |
1189 |
if ic <= lb or ic >= ub: |
1190 |
exceptionErrorMess = "Invalid interval center for " + \ |
1191 |
str(lb) + ',' + str(ic) + ',' + \ |
1192 |
str(ub) + ". Aborting!" |
1193 |
raise Exception(exceptionErrorMess) |
1194 |
##### Current interval width and reset future interval width. |
1195 |
bw = ub - lb |
1196 |
nbw = 0 |
1197 |
icAsInt = int(ic * toIntegerFactor) |
1198 |
#### The following ratio is always >= 1. In case we may want to |
1199 |
# enlarge the interval |
1200 |
curTaylErrRat = polyApproxAccur / terr |
1201 |
### Make the integral transformations. |
1202 |
#### Bounds and interval center. |
1203 |
intIc = int(ic * toIntegerFactor) |
1204 |
intLb = int(lb * toIntegerFactor) - intIc |
1205 |
intUb = int(ub * toIntegerFactor) - intIc |
1206 |
# |
1207 |
#### Polynomials |
1208 |
basisConstructionTime = cputime() |
1209 |
##### To a polynomial with rational coefficients with rational arguments |
1210 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
1211 |
##### To a polynomial with rational coefficients with integer arguments |
1212 |
ratIntP = \ |
1213 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
1214 |
##### Ultimately a multivariate polynomial with integer coefficients |
1215 |
# with integer arguments. |
1216 |
coppersmithTuple = \ |
1217 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
1218 |
precision, |
1219 |
targetHardnessToRound, |
1220 |
i, t) |
1221 |
#### Recover Coppersmith information. |
1222 |
intIntP = coppersmithTuple[0] |
1223 |
N = coppersmithTuple[1] |
1224 |
nAtAlpha = N^alpha |
1225 |
tBound = coppersmithTuple[2] |
1226 |
leastCommonMultiple = coppersmithTuple[3] |
1227 |
iBound = max(abs(intLb),abs(intUb)) |
1228 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
1229 |
basisConstructionsCount += 1 |
1230 |
reductionTime = cputime() |
1231 |
#### Compute the reduced polynomials. |
1232 |
ccReducedPolynomialsList = \ |
1233 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
1234 |
alpha, |
1235 |
N, |
1236 |
iBound, |
1237 |
tBound) |
1238 |
if ccReducedPolynomialsList is None: |
1239 |
raise Exception("Reduction failed.") |
1240 |
reductionsFullTime += cputime(reductionTime) |
1241 |
reductionsCount += 1 |
1242 |
if len(ccReducedPolynomialsList) < 2: |
1243 |
print "Nothing to form resultants with." |
1244 |
|
1245 |
coppCondFailedCount += 1 |
1246 |
coppCondFailed = True |
1247 |
##### Apply a different shrink factor according to |
1248 |
# the number of compliant polynomials. |
1249 |
if len(ccReducedPolynomialsList) == 0: |
1250 |
ub = lb + bw * noCoppersmithIntervalShrink |
1251 |
else: # At least one compliant polynomial. |
1252 |
ub = lb + bw * oneCoppersmithIntervalShrink |
1253 |
if ub > sdub: |
1254 |
ub = sdub |
1255 |
if lb == ub: |
1256 |
raise Exception("Cant shrink interval \ |
1257 |
anymore to get Coppersmith condition.") |
1258 |
nbw = 0 |
1259 |
continue |
1260 |
#### We have at least two polynomials. |
1261 |
# Let us try to compute resultants. |
1262 |
# For each resultant computed, go for the solutions. |
1263 |
##### Build the pairs list. |
1264 |
polyPairsList = [] |
1265 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
1266 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
1267 |
len(ccReducedPolynomialsList)): |
1268 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
1269 |
ccReducedPolynomialsList[polyInnerIndex])) |
1270 |
#### Actual root search. |
1271 |
rootsSet = set() |
1272 |
hasNonNullResultant = False |
1273 |
for polyPair in polyPairsList: |
1274 |
if hasNonNullResultant: |
1275 |
break |
1276 |
resultantsComputationTime = cputime() |
1277 |
currentResultant = \ |
1278 |
slz_resultant(polyPair[0], |
1279 |
polyPair[1], |
1280 |
t) |
1281 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
1282 |
resultantsComputationsCount += 1 |
1283 |
if currentResultant is None: |
1284 |
print "Nul resultant" |
1285 |
continue # Next polyPair. |
1286 |
else: |
1287 |
hasNonNullResultant = True |
1288 |
#### We have a non null resultant. From now on, whatever the |
1289 |
# root search yields, no extra root search is necessary. |
1290 |
#### A constant resultant leads to no root. Root search is done. |
1291 |
if currentResultant.degree() < 1: |
1292 |
print "Resultant is constant:", currentResultant |
1293 |
continue # Next polyPair and should break. |
1294 |
#### Actual roots computation. |
1295 |
rootsComputationTime = cputime() |
1296 |
##### Compute i roots |
1297 |
iRootsList = Zi(currentResultant).roots() |
1298 |
##### For each iRoot, compute the corresponding tRoots and |
1299 |
# and build populate the .rootsSet. |
1300 |
for iRoot in iRootsList: |
1301 |
####### Roots returned by roots() are (value, multiplicity) |
1302 |
# tuples. |
1303 |
#print "iRoot:", iRoot |
1304 |
###### Use the tRoot against each polynomial, alternatively. |
1305 |
for indexInPair in range(0,2): |
1306 |
currentPolynomial = polyPair[indexInPair] |
1307 |
####### If the polynomial is univariate, just drop it. |
1308 |
if len(currentPolynomial.variables()) < 2: |
1309 |
print " Current polynomial is not in two variables." |
1310 |
continue # Next indexInPair |
1311 |
tRootsList = \ |
1312 |
Zt(currentPolynomial.subs({currentPolynomial.variables()[0]:iRoot[0]})).roots() |
1313 |
####### The tRootsList can be empty, hence the test. |
1314 |
if len(tRootsList) == 0: |
1315 |
print " No t root." |
1316 |
continue # Next indexInPair |
1317 |
for tRoot in tRootsList: |
1318 |
rootsSet.add((iRoot[0], tRoot[0])) |
1319 |
# End of roots computation. |
1320 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
1321 |
rootsComputationsCount += 1 |
1322 |
# End loop for polyPair in polyParsList. Will break at next iteration. |
1323 |
# since a non null resultant was found. |
1324 |
#### Prepare for results for the current interval.. |
1325 |
intervalResultsList = [] |
1326 |
intervalResultsList.append((lb, ub)) |
1327 |
#### Check roots. |
1328 |
rootsResultsList = [] |
1329 |
for root in rootsSet: |
1330 |
specificRootResultsList = [] |
1331 |
failingBounds = [] |
1332 |
intIntPdivN = intIntP(root[0], root[1]) / N |
1333 |
if int(intIntPdivN) != intIntPdivN: |
1334 |
continue # Next root |
1335 |
# Root qualifies for modular equation, test it for hardness to round. |
1336 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
1337 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
1338 |
#print scalingFunction |
1339 |
scaledHardToRoundCaseAsFloat = \ |
1340 |
scalingFunction(hardToRoundCaseAsFloat) |
1341 |
print "Candidate HTRNc at x =", \ |
1342 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
1343 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
1344 |
function, |
1345 |
2^-(targetHardnessToRound), |
1346 |
RRR): |
1347 |
print hardToRoundCaseAsFloat, "is HTRN case." |
1348 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
1349 |
print "Found in interval." |
1350 |
else: |
1351 |
print "Found out of interval." |
1352 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
1353 |
# Check the root is in the bounds |
1354 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
1355 |
print "Root", root, "is out of bounds for modular equation." |
1356 |
if abs(root[0]) > iBound: |
1357 |
print "root[0]:", root[0] |
1358 |
print "i bound:", iBound |
1359 |
failingBounds.append('i') |
1360 |
failingBounds.append(root[0]) |
1361 |
failingBounds.append(iBound) |
1362 |
if abs(root[1]) > tBound: |
1363 |
print "root[1]:", root[1] |
1364 |
print "t bound:", tBound |
1365 |
failingBounds.append('t') |
1366 |
failingBounds.append(root[1]) |
1367 |
failingBounds.append(tBound) |
1368 |
if len(failingBounds) > 0: |
1369 |
specificRootResultsList.append(failingBounds) |
1370 |
else: # From slz_is_htrn... |
1371 |
print "is not an HTRN case." |
1372 |
if len(specificRootResultsList) > 0: |
1373 |
rootsResultsList.append(specificRootResultsList) |
1374 |
if len(rootsResultsList) > 0: |
1375 |
intervalResultsList.append(rootsResultsList) |
1376 |
### Check if a non null resultant was found. If not shrink the interval. |
1377 |
if not hasNonNullResultant: |
1378 |
print "Only null resultants for this reduction, shrinking interval." |
1379 |
resultCondFailed = True |
1380 |
resultCondFailedCount += 1 |
1381 |
### Shrink interval for next iteration. |
1382 |
ub = lb + bw * onlyNullResultantsShrink |
1383 |
if ub > sdub: |
1384 |
ub = sdub |
1385 |
nbw = 0 |
1386 |
continue |
1387 |
#### An intervalResultsList has at least the bounds. |
1388 |
globalResultsList.append(intervalResultsList) |
1389 |
#### Compute an incremented width for next upper bound, only |
1390 |
# if not Coppersmith condition nor resultant condition |
1391 |
# failed at the previous run. |
1392 |
if not coppCondFailed and not resultCondFailed: |
1393 |
nbw = noErrorIntervalStretch * bw |
1394 |
else: |
1395 |
nbw = bw |
1396 |
##### Reset the failure flags. They will be raised |
1397 |
# again if needed. |
1398 |
coppCondFailed = False |
1399 |
resultCondFailed = False |
1400 |
#### For next iteration (at end of loop) |
1401 |
#print "nbw:", nbw |
1402 |
lb = ub |
1403 |
ub += nbw |
1404 |
if ub > sdub: |
1405 |
ub = sdub |
1406 |
|
1407 |
# End while True |
1408 |
## Main loop just ended. |
1409 |
globalWallTime = walltime(wallTimeStart) |
1410 |
globalCpuTime = cputime(cpuTimeStart) |
1411 |
## Output results |
1412 |
print ; print "Intervals and HTRNs" ; print |
1413 |
for intervalResultsList in globalResultsList: |
1414 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
1415 |
"," + str(intervalResultsList[0][1]) + "]" |
1416 |
print intervalResultString, |
1417 |
if len(intervalResultsList) > 1: |
1418 |
rootsResultsList = intervalResultsList[1] |
1419 |
specificRootResultIndex = 0 |
1420 |
for specificRootResultsList in rootsResultsList: |
1421 |
if specificRootResultIndex == 0: |
1422 |
print "\t", specificRootResultsList[0], |
1423 |
else: |
1424 |
print " " * len(intervalResultString), "\t", \ |
1425 |
specificRootResultsList[0], |
1426 |
if len(specificRootResultsList) > 1: |
1427 |
print specificRootResultsList[1] |
1428 |
specificRootResultIndex += 1 |
1429 |
print ; print |
1430 |
#print globalResultsList |
1431 |
# |
1432 |
print "Timers and counters" |
1433 |
|
1434 |
print "Number of iterations:", iterCount |
1435 |
print "Taylor condition failures:", taylCondFailedCount |
1436 |
print "Coppersmith condition failures:", coppCondFailedCount |
1437 |
print "Resultant condition failures:", resultCondFailedCount |
1438 |
print "Iterations count: ", iterCount |
1439 |
print "Number of intervals:", len(globalResultsList) |
1440 |
print "Number of basis constructions:", basisConstructionsCount |
1441 |
print "Total CPU time spent in basis constructions:", \ |
1442 |
basisConstructionsFullTime |
1443 |
if basisConstructionsCount != 0: |
1444 |
print "Average basis construction CPU time:", \ |
1445 |
basisConstructionsFullTime/basisConstructionsCount |
1446 |
print "Number of reductions:", reductionsCount |
1447 |
print "Total CPU time spent in reductions:", reductionsFullTime |
1448 |
if reductionsCount != 0: |
1449 |
print "Average reduction CPU time:", \ |
1450 |
reductionsFullTime/reductionsCount |
1451 |
print "Number of resultants computation rounds:", \ |
1452 |
resultantsComputationsCount |
1453 |
print "Total CPU time spent in resultants computation rounds:", \ |
1454 |
resultantsComputationsFullTime |
1455 |
if resultantsComputationsCount != 0: |
1456 |
print "Average resultants computation round CPU time:", \ |
1457 |
resultantsComputationsFullTime/resultantsComputationsCount |
1458 |
print "Number of root finding rounds:", rootsComputationsCount |
1459 |
print "Total CPU time spent in roots finding rounds:", \ |
1460 |
rootsComputationsFullTime |
1461 |
if rootsComputationsCount != 0: |
1462 |
print "Average roots finding round CPU time:", \ |
1463 |
rootsComputationsFullTime/rootsComputationsCount |
1464 |
print "Global Wall time:", globalWallTime |
1465 |
print "Global CPU time:", globalCpuTime |
1466 |
## Output counters |
1467 |
# End srs_runSLZ-v02 |
1468 |
|
1469 |
def srs_run_SLZ_v03(inputFunction, |
1470 |
inputLowerBound, |
1471 |
inputUpperBound, |
1472 |
alpha, |
1473 |
degree, |
1474 |
precision, |
1475 |
emin, |
1476 |
emax, |
1477 |
targetHardnessToRound, |
1478 |
debug = False): |
1479 |
""" |
1480 |
Changes from V2: |
1481 |
Root search is changed: |
1482 |
- we compute the resultants in i and in t; |
1483 |
- we compute the roots set of each of these resultants; |
1484 |
- we combine all the possible pairs between the two sets; |
1485 |
- we check these pairs in polynomials for correctness. |
1486 |
Changes from V1: |
1487 |
1- check for roots as soon as a resultant is computed; |
1488 |
2- once a non null resultant is found, check for roots; |
1489 |
3- constant resultant == no root. |
1490 |
""" |
1491 |
|
1492 |
if debug: |
1493 |
print "Function :", inputFunction |
1494 |
print "Lower bound :", inputLowerBound |
1495 |
print "Upper bounds :", inputUpperBound |
1496 |
print "Alpha :", alpha |
1497 |
print "Degree :", degree |
1498 |
print "Precision :", precision |
1499 |
print "Emin :", emin |
1500 |
print "Emax :", emax |
1501 |
print "Target hardness-to-round:", targetHardnessToRound |
1502 |
|
1503 |
## Important constants. |
1504 |
### Stretch the interval if no error happens. |
1505 |
noErrorIntervalStretch = 1 + 2^(-5) |
1506 |
### If no vector validates the Coppersmith condition, shrink the interval |
1507 |
# by the following factor. |
1508 |
noCoppersmithIntervalShrink = 1/2 |
1509 |
### If only (or at least) one vector validates the Coppersmith condition, |
1510 |
# shrink the interval by the following factor. |
1511 |
oneCoppersmithIntervalShrink = 3/4 |
1512 |
#### If only null resultants are found, shrink the interval by the |
1513 |
# following factor. |
1514 |
onlyNullResultantsShrink = 3/4 |
1515 |
## Structures. |
1516 |
RRR = RealField(precision) |
1517 |
RRIF = RealIntervalField(precision) |
1518 |
## Converting input bound into the "right" field. |
1519 |
lowerBound = RRR(inputLowerBound) |
1520 |
upperBound = RRR(inputUpperBound) |
1521 |
## Before going any further, check domain and image binade conditions. |
1522 |
print inputFunction(1).n() |
1523 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
1524 |
if output is None: |
1525 |
print "Invalid domain/image binades. Domain:",\ |
1526 |
lowerBound, upperBound, "Images:", \ |
1527 |
inputFunction(lowerBound), inputFunction(upperBound) |
1528 |
raise Exception("Invalid domain/image binades.") |
1529 |
lb = output[0] ; ub = output[1] |
1530 |
if lb != lowerBound or ub != upperBound: |
1531 |
print "lb:", lb, " - ub:", ub |
1532 |
print "Invalid domain/image binades. Domain:",\ |
1533 |
lowerBound, upperBound, "Images:", \ |
1534 |
inputFunction(lowerBound), inputFunction(upperBound) |
1535 |
raise Exception("Invalid domain/image binades.") |
1536 |
# |
1537 |
## Progam initialization |
1538 |
### Approximation polynomial accuracy and hardness to round. |
1539 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
1540 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
1541 |
### Significand to integer conversion ratio. |
1542 |
toIntegerFactor = 2^(precision-1) |
1543 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
1544 |
### Variables and rings for polynomials and root searching. |
1545 |
i=var('i') |
1546 |
t=var('t') |
1547 |
inputFunctionVariable = inputFunction.variables()[0] |
1548 |
function = inputFunction.subs({inputFunctionVariable:i}) |
1549 |
# Polynomial Rings over the integers, for root finding. |
1550 |
Zi = ZZ[i] |
1551 |
Zt = ZZ[t] |
1552 |
Zit = ZZ[i,t] |
1553 |
## Number of iterations limit. |
1554 |
maxIter = 100000 |
1555 |
# |
1556 |
## Compute the scaled function and the degree, in their Sollya version |
1557 |
# once for all. |
1558 |
(scaledf, sdlb, sdub, silb, siub) = \ |
1559 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
1560 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
1561 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
1562 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
1563 |
# |
1564 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
1565 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
1566 |
(unscalingFunction, scalingFunction) = \ |
1567 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
1568 |
#print scalingFunction, unscalingFunction |
1569 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
1570 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
1571 |
if internalSollyaPrec < 192: |
1572 |
internalSollyaPrec = 192 |
1573 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
1574 |
print "Sollya internal precision:", internalSollyaPrec |
1575 |
## Some variables. |
1576 |
### General variables |
1577 |
lb = sdlb |
1578 |
ub = sdub |
1579 |
nbw = 0 |
1580 |
intervalUlp = ub.ulp() |
1581 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
1582 |
ic = 0 |
1583 |
icAsInt = 0 # Set from ic. |
1584 |
solutionsSet = set() |
1585 |
tsErrorWidth = [] |
1586 |
csErrorVectors = [] |
1587 |
csVectorsResultants = [] |
1588 |
floatP = 0 # Taylor polynomial. |
1589 |
floatPcv = 0 # Ditto with variable change. |
1590 |
intvl = "" # Taylor interval |
1591 |
terr = 0 # Taylor error. |
1592 |
iterCount = 0 |
1593 |
htrnSet = set() |
1594 |
### Timers and counters. |
1595 |
wallTimeStart = 0 |
1596 |
cpuTimeStart = 0 |
1597 |
taylCondFailedCount = 0 |
1598 |
coppCondFailedCount = 0 |
1599 |
resultCondFailedCount = 0 |
1600 |
coppCondFailed = False |
1601 |
resultCondFailed = False |
1602 |
globalResultsList = [] |
1603 |
basisConstructionsCount = 0 |
1604 |
basisConstructionsFullTime = 0 |
1605 |
basisConstructionTime = 0 |
1606 |
reductionsCount = 0 |
1607 |
reductionsFullTime = 0 |
1608 |
reductionTime = 0 |
1609 |
resultantsComputationsCount = 0 |
1610 |
resultantsComputationsFullTime = 0 |
1611 |
resultantsComputationTime = 0 |
1612 |
rootsComputationsCount = 0 |
1613 |
rootsComputationsFullTime = 0 |
1614 |
rootsComputationTime = 0 |
1615 |
|
1616 |
## Global times are started here. |
1617 |
wallTimeStart = walltime() |
1618 |
cpuTimeStart = cputime() |
1619 |
## Main loop. |
1620 |
while True: |
1621 |
if lb >= sdub: |
1622 |
print "Lower bound reached upper bound." |
1623 |
break |
1624 |
if iterCount == maxIter: |
1625 |
print "Reached maxIter. Aborting" |
1626 |
break |
1627 |
iterCount += 1 |
1628 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1629 |
"log2(numbers)." |
1630 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
1631 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
1632 |
degreeSo, |
1633 |
lb, |
1634 |
ub, |
1635 |
polyApproxAccur) |
1636 |
### Convert back the data into Sage space. |
1637 |
(floatP, floatPcv, intvl, ic, terr) = \ |
1638 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
1639 |
prceSo[1], prceSo[2], |
1640 |
prceSo[3])) |
1641 |
intvl = RRIF(intvl) |
1642 |
## Clean-up Sollya stuff. |
1643 |
for elem in prceSo: |
1644 |
sollya_lib_clear_obj(elem) |
1645 |
#print floatP, floatPcv, intvl, ic, terr |
1646 |
#print floatP |
1647 |
#print intvl.endpoints()[0].n(), \ |
1648 |
# ic.n(), |
1649 |
#intvl.endpoints()[1].n() |
1650 |
### Check returned data. |
1651 |
#### Is approximation error OK? |
1652 |
if terr > polyApproxAccur: |
1653 |
exceptionErrorMess = \ |
1654 |
"Approximation failed - computed error:" + \ |
1655 |
str(terr) + " - target error: " |
1656 |
exceptionErrorMess += \ |
1657 |
str(polyApproxAccur) + ". Aborting!" |
1658 |
raise Exception(exceptionErrorMess) |
1659 |
#### Is lower bound OK? |
1660 |
if lb != intvl.endpoints()[0]: |
1661 |
exceptionErrorMess = "Wrong lower bound:" + \ |
1662 |
str(lb) + ". Aborting!" |
1663 |
raise Exception(exceptionErrorMess) |
1664 |
#### Set upper bound. |
1665 |
if ub > intvl.endpoints()[1]: |
1666 |
ub = intvl.endpoints()[1] |
1667 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1668 |
"log2(numbers)." |
1669 |
taylCondFailedCount += 1 |
1670 |
#### Is interval not degenerate? |
1671 |
if lb >= ub: |
1672 |
exceptionErrorMess = "Degenerate interval: " + \ |
1673 |
"lowerBound(" + str(lb) +\ |
1674 |
")>= upperBound(" + str(ub) + \ |
1675 |
"). Aborting!" |
1676 |
raise Exception(exceptionErrorMess) |
1677 |
#### Is interval center ok? |
1678 |
if ic <= lb or ic >= ub: |
1679 |
exceptionErrorMess = "Invalid interval center for " + \ |
1680 |
str(lb) + ',' + str(ic) + ',' + \ |
1681 |
str(ub) + ". Aborting!" |
1682 |
raise Exception(exceptionErrorMess) |
1683 |
##### Current interval width and reset future interval width. |
1684 |
bw = ub - lb |
1685 |
nbw = 0 |
1686 |
icAsInt = int(ic * toIntegerFactor) |
1687 |
#### The following ratio is always >= 1. In case we may want to |
1688 |
# enlarge the interval |
1689 |
curTaylErrRat = polyApproxAccur / terr |
1690 |
### Make the integral transformations. |
1691 |
#### Bounds and interval center. |
1692 |
intIc = int(ic * toIntegerFactor) |
1693 |
intLb = int(lb * toIntegerFactor) - intIc |
1694 |
intUb = int(ub * toIntegerFactor) - intIc |
1695 |
# |
1696 |
#### Polynomials |
1697 |
basisConstructionTime = cputime() |
1698 |
##### To a polynomial with rational coefficients with rational arguments |
1699 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
1700 |
##### To a polynomial with rational coefficients with integer arguments |
1701 |
ratIntP = \ |
1702 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
1703 |
##### Ultimately a multivariate polynomial with integer coefficients |
1704 |
# with integer arguments. |
1705 |
coppersmithTuple = \ |
1706 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
1707 |
precision, |
1708 |
targetHardnessToRound, |
1709 |
i, t) |
1710 |
#### Recover Coppersmith information. |
1711 |
intIntP = coppersmithTuple[0] |
1712 |
N = coppersmithTuple[1] |
1713 |
nAtAlpha = N^alpha |
1714 |
tBound = coppersmithTuple[2] |
1715 |
leastCommonMultiple = coppersmithTuple[3] |
1716 |
iBound = max(abs(intLb),abs(intUb)) |
1717 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
1718 |
basisConstructionsCount += 1 |
1719 |
reductionTime = cputime() |
1720 |
#### Compute the reduced polynomials. |
1721 |
ccReducedPolynomialsList = \ |
1722 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
1723 |
alpha, |
1724 |
N, |
1725 |
iBound, |
1726 |
tBound) |
1727 |
if ccReducedPolynomialsList is None: |
1728 |
raise Exception("Reduction failed.") |
1729 |
reductionsFullTime += cputime(reductionTime) |
1730 |
reductionsCount += 1 |
1731 |
if len(ccReducedPolynomialsList) < 2: |
1732 |
print "Nothing to form resultants with." |
1733 |
|
1734 |
coppCondFailedCount += 1 |
1735 |
coppCondFailed = True |
1736 |
##### Apply a different shrink factor according to |
1737 |
# the number of compliant polynomials. |
1738 |
if len(ccReducedPolynomialsList) == 0: |
1739 |
ub = lb + bw * noCoppersmithIntervalShrink |
1740 |
else: # At least one compliant polynomial. |
1741 |
ub = lb + bw * oneCoppersmithIntervalShrink |
1742 |
if ub > sdub: |
1743 |
ub = sdub |
1744 |
if lb == ub: |
1745 |
raise Exception("Cant shrink interval \ |
1746 |
anymore to get Coppersmith condition.") |
1747 |
nbw = 0 |
1748 |
continue |
1749 |
#### We have at least two polynomials. |
1750 |
# Let us try to compute resultants. |
1751 |
# For each resultant computed, go for the solutions. |
1752 |
##### Build the pairs list. |
1753 |
polyPairsList = [] |
1754 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
1755 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
1756 |
len(ccReducedPolynomialsList)): |
1757 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
1758 |
ccReducedPolynomialsList[polyInnerIndex])) |
1759 |
#### Actual root search. |
1760 |
rootsSet = set() |
1761 |
hasNonNullResultant = False |
1762 |
for polyPair in polyPairsList: |
1763 |
if hasNonNullResultant: |
1764 |
break |
1765 |
resultantsComputationTime = cputime() |
1766 |
currentResultantI = \ |
1767 |
slz_resultant(polyPair[0], |
1768 |
polyPair[1], |
1769 |
t) |
1770 |
resultantsComputationsCount += 1 |
1771 |
if currentResultantI is None: |
1772 |
resultantsComputationsFullTime += \ |
1773 |
cputime(resultantsComputationTime) |
1774 |
print "Nul resultant" |
1775 |
continue # Next polyPair. |
1776 |
currentResultantT = \ |
1777 |
slz_resultant(polyPair[0], |
1778 |
polyPair[1], |
1779 |
i) |
1780 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
1781 |
resultantsComputationsCount += 1 |
1782 |
if currentResultantT is None: |
1783 |
print "Nul resultant" |
1784 |
continue # Next polyPair. |
1785 |
else: |
1786 |
hasNonNullResultant = True |
1787 |
#### We have a non null resultants pair. From now on, whatever the |
1788 |
# root search yields, no extra root search is necessary. |
1789 |
#### A constant resultant leads to no root. Root search is done. |
1790 |
if currentResultantI.degree() < 1: |
1791 |
print "Resultant is constant:", currentResultantI |
1792 |
break # Next polyPair and should break. |
1793 |
if currentResultantT.degree() < 1: |
1794 |
print "Resultant is constant:", currentResultantT |
1795 |
break # Next polyPair and should break. |
1796 |
#### Actual roots computation. |
1797 |
rootsComputationTime = cputime() |
1798 |
##### Compute i roots |
1799 |
iRootsList = Zi(currentResultantI).roots() |
1800 |
rootsComputationsCount += 1 |
1801 |
if len(iRootsList) == 0: |
1802 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
1803 |
print "No roots in \"i\"." |
1804 |
break # No roots in i. |
1805 |
tRootsList = Zt(currentResultantT).roots() |
1806 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
1807 |
rootsComputationsCount += 1 |
1808 |
if len(tRootsList) == 0: |
1809 |
print "No roots in \"t\"." |
1810 |
break # No roots in i. |
1811 |
##### For each iRoot, get a tRoot and check against the polynomials. |
1812 |
for iRoot in iRootsList: |
1813 |
####### Roots returned by roots() are (value, multiplicity) |
1814 |
# tuples. |
1815 |
#print "iRoot:", iRoot |
1816 |
for tRoot in tRootsList: |
1817 |
###### Use the tRoot against each polynomial, alternatively. |
1818 |
if polyPair[0](iRoot[0],tRoot[0]) != 0: |
1819 |
continue |
1820 |
if polyPair[1](iRoot[0],tRoot[0]) != 0: |
1821 |
continue |
1822 |
rootsSet.add((iRoot[0], tRoot[0])) |
1823 |
# End of roots computation. |
1824 |
# End loop for polyPair in polyParsList. Will break at next iteration. |
1825 |
# since a non null resultant was found. |
1826 |
#### Prepare for results for the current interval.. |
1827 |
intervalResultsList = [] |
1828 |
intervalResultsList.append((lb, ub)) |
1829 |
#### Check roots. |
1830 |
rootsResultsList = [] |
1831 |
for root in rootsSet: |
1832 |
specificRootResultsList = [] |
1833 |
failingBounds = [] |
1834 |
intIntPdivN = intIntP(root[0], root[1]) / N |
1835 |
if int(intIntPdivN) != intIntPdivN: |
1836 |
continue # Next root |
1837 |
# Root qualifies for modular equation, test it for hardness to round. |
1838 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
1839 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
1840 |
#print scalingFunction |
1841 |
scaledHardToRoundCaseAsFloat = \ |
1842 |
scalingFunction(hardToRoundCaseAsFloat) |
1843 |
print "Candidate HTRNc at x =", \ |
1844 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
1845 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
1846 |
function, |
1847 |
2^-(targetHardnessToRound), |
1848 |
RRR): |
1849 |
print hardToRoundCaseAsFloat, "is HTRN case." |
1850 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
1851 |
print "Found in interval." |
1852 |
else: |
1853 |
print "Found out of interval." |
1854 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
1855 |
# Check the root is in the bounds |
1856 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
1857 |
print "Root", root, "is out of bounds for modular equation." |
1858 |
if abs(root[0]) > iBound: |
1859 |
print "root[0]:", root[0] |
1860 |
print "i bound:", iBound |
1861 |
failingBounds.append('i') |
1862 |
failingBounds.append(root[0]) |
1863 |
failingBounds.append(iBound) |
1864 |
if abs(root[1]) > tBound: |
1865 |
print "root[1]:", root[1] |
1866 |
print "t bound:", tBound |
1867 |
failingBounds.append('t') |
1868 |
failingBounds.append(root[1]) |
1869 |
failingBounds.append(tBound) |
1870 |
if len(failingBounds) > 0: |
1871 |
specificRootResultsList.append(failingBounds) |
1872 |
else: # From slz_is_htrn... |
1873 |
print "is not an HTRN case." |
1874 |
if len(specificRootResultsList) > 0: |
1875 |
rootsResultsList.append(specificRootResultsList) |
1876 |
if len(rootsResultsList) > 0: |
1877 |
intervalResultsList.append(rootsResultsList) |
1878 |
### Check if a non null resultant was found. If not shrink the interval. |
1879 |
if not hasNonNullResultant: |
1880 |
print "Only null resultants for this reduction, shrinking interval." |
1881 |
resultCondFailed = True |
1882 |
resultCondFailedCount += 1 |
1883 |
### Shrink interval for next iteration. |
1884 |
ub = lb + bw * onlyNullResultantsShrink |
1885 |
if ub > sdub: |
1886 |
ub = sdub |
1887 |
nbw = 0 |
1888 |
continue |
1889 |
#### An intervalResultsList has at least the bounds. |
1890 |
globalResultsList.append(intervalResultsList) |
1891 |
#### Compute an incremented width for next upper bound, only |
1892 |
# if not Coppersmith condition nor resultant condition |
1893 |
# failed at the previous run. |
1894 |
if not coppCondFailed and not resultCondFailed: |
1895 |
nbw = noErrorIntervalStretch * bw |
1896 |
else: |
1897 |
nbw = bw |
1898 |
##### Reset the failure flags. They will be raised |
1899 |
# again if needed. |
1900 |
coppCondFailed = False |
1901 |
resultCondFailed = False |
1902 |
#### For next iteration (at end of loop) |
1903 |
#print "nbw:", nbw |
1904 |
lb = ub |
1905 |
ub += nbw |
1906 |
if ub > sdub: |
1907 |
ub = sdub |
1908 |
|
1909 |
# End while True |
1910 |
## Main loop just ended. |
1911 |
globalWallTime = walltime(wallTimeStart) |
1912 |
globalCpuTime = cputime(cpuTimeStart) |
1913 |
## Output results |
1914 |
print ; print "Intervals and HTRNs" ; print |
1915 |
for intervalResultsList in globalResultsList: |
1916 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
1917 |
"," + str(intervalResultsList[0][1]) + "]" |
1918 |
print intervalResultString, |
1919 |
if len(intervalResultsList) > 1: |
1920 |
rootsResultsList = intervalResultsList[1] |
1921 |
specificRootResultIndex = 0 |
1922 |
for specificRootResultsList in rootsResultsList: |
1923 |
if specificRootResultIndex == 0: |
1924 |
print "\t", specificRootResultsList[0], |
1925 |
else: |
1926 |
print " " * len(intervalResultString), "\t", \ |
1927 |
specificRootResultsList[0], |
1928 |
if len(specificRootResultsList) > 1: |
1929 |
print specificRootResultsList[1] |
1930 |
specificRootResultIndex += 1 |
1931 |
print ; print |
1932 |
#print globalResultsList |
1933 |
# |
1934 |
print "Timers and counters" |
1935 |
|
1936 |
print "Number of iterations:", iterCount |
1937 |
print "Taylor condition failures:", taylCondFailedCount |
1938 |
print "Coppersmith condition failures:", coppCondFailedCount |
1939 |
print "Resultant condition failures:", resultCondFailedCount |
1940 |
print "Iterations count: ", iterCount |
1941 |
print "Number of intervals:", len(globalResultsList) |
1942 |
print "Number of basis constructions:", basisConstructionsCount |
1943 |
print "Total CPU time spent in basis constructions:", \ |
1944 |
basisConstructionsFullTime |
1945 |
if basisConstructionsCount != 0: |
1946 |
print "Average basis construction CPU time:", \ |
1947 |
basisConstructionsFullTime/basisConstructionsCount |
1948 |
print "Number of reductions:", reductionsCount |
1949 |
print "Total CPU time spent in reductions:", reductionsFullTime |
1950 |
if reductionsCount != 0: |
1951 |
print "Average reduction CPU time:", \ |
1952 |
reductionsFullTime/reductionsCount |
1953 |
print "Number of resultants computation rounds:", \ |
1954 |
resultantsComputationsCount |
1955 |
print "Total CPU time spent in resultants computation rounds:", \ |
1956 |
resultantsComputationsFullTime |
1957 |
if resultantsComputationsCount != 0: |
1958 |
print "Average resultants computation round CPU time:", \ |
1959 |
resultantsComputationsFullTime/resultantsComputationsCount |
1960 |
print "Number of root finding rounds:", rootsComputationsCount |
1961 |
print "Total CPU time spent in roots finding rounds:", \ |
1962 |
rootsComputationsFullTime |
1963 |
if rootsComputationsCount != 0: |
1964 |
print "Average roots finding round CPU time:", \ |
1965 |
rootsComputationsFullTime/rootsComputationsCount |
1966 |
print "Global Wall time:", globalWallTime |
1967 |
print "Global CPU time:", globalCpuTime |
1968 |
## Output counters |
1969 |
# End srs_runSLZ-v03 |
1970 |
|
1971 |
def srs_run_SLZ_v04(inputFunction, |
1972 |
inputLowerBound, |
1973 |
inputUpperBound, |
1974 |
alpha, |
1975 |
degree, |
1976 |
precision, |
1977 |
emin, |
1978 |
emax, |
1979 |
targetHardnessToRound, |
1980 |
debug = False): |
1981 |
""" |
1982 |
Changes from V3: |
1983 |
Root search is changed again: |
1984 |
- only resultants in i are computed; |
1985 |
- roots in i are searched for; |
1986 |
- if any, they are tested for hardness-to-round. |
1987 |
Changes from V2: |
1988 |
Root search is changed: |
1989 |
- we compute the resultants in i and in t; |
1990 |
- we compute the roots set of each of these resultants; |
1991 |
- we combine all the possible pairs between the two sets; |
1992 |
- we check these pairs in polynomials for correctness. |
1993 |
Changes from V1: |
1994 |
1- check for roots as soon as a resultant is computed; |
1995 |
2- once a non null resultant is found, check for roots; |
1996 |
3- constant resultant == no root. |
1997 |
""" |
1998 |
|
1999 |
if debug: |
2000 |
print "Function :", inputFunction |
2001 |
print "Lower bound :", inputLowerBound |
2002 |
print "Upper bounds :", inputUpperBound |
2003 |
print "Alpha :", alpha |
2004 |
print "Degree :", degree |
2005 |
print "Precision :", precision |
2006 |
print "Emin :", emin |
2007 |
print "Emax :", emax |
2008 |
print "Target hardness-to-round:", targetHardnessToRound |
2009 |
|
2010 |
## Important constants. |
2011 |
### Stretch the interval if no error happens. |
2012 |
noErrorIntervalStretch = 1 + 2^(-5) |
2013 |
### If no vector validates the Coppersmith condition, shrink the interval |
2014 |
# by the following factor. |
2015 |
noCoppersmithIntervalShrink = 1/2 |
2016 |
### If only (or at least) one vector validates the Coppersmith condition, |
2017 |
# shrink the interval by the following factor. |
2018 |
oneCoppersmithIntervalShrink = 3/4 |
2019 |
#### If only null resultants are found, shrink the interval by the |
2020 |
# following factor. |
2021 |
onlyNullResultantsShrink = 3/4 |
2022 |
## Structures. |
2023 |
RRR = RealField(precision) |
2024 |
RRIF = RealIntervalField(precision) |
2025 |
## Converting input bound into the "right" field. |
2026 |
lowerBound = RRR(inputLowerBound) |
2027 |
upperBound = RRR(inputUpperBound) |
2028 |
## Before going any further, check domain and image binade conditions. |
2029 |
print inputFunction(1).n() |
2030 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
2031 |
if output is None: |
2032 |
print "Invalid domain/image binades. Domain:",\ |
2033 |
lowerBound, upperBound, "Images:", \ |
2034 |
inputFunction(lowerBound), inputFunction(upperBound) |
2035 |
raise Exception("Invalid domain/image binades.") |
2036 |
lb = output[0] ; ub = output[1] |
2037 |
if lb != lowerBound or ub != upperBound: |
2038 |
print "lb:", lb, " - ub:", ub |
2039 |
print "Invalid domain/image binades. Domain:",\ |
2040 |
lowerBound, upperBound, "Images:", \ |
2041 |
inputFunction(lowerBound), inputFunction(upperBound) |
2042 |
raise Exception("Invalid domain/image binades.") |
2043 |
# |
2044 |
## Progam initialization |
2045 |
### Approximation polynomial accuracy and hardness to round. |
2046 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
2047 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
2048 |
### Significand to integer conversion ratio. |
2049 |
toIntegerFactor = 2^(precision-1) |
2050 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
2051 |
### Variables and rings for polynomials and root searching. |
2052 |
i=var('i') |
2053 |
t=var('t') |
2054 |
inputFunctionVariable = inputFunction.variables()[0] |
2055 |
function = inputFunction.subs({inputFunctionVariable:i}) |
2056 |
# Polynomial Rings over the integers, for root finding. |
2057 |
Zi = ZZ[i] |
2058 |
Zt = ZZ[t] |
2059 |
Zit = ZZ[i,t] |
2060 |
## Number of iterations limit. |
2061 |
maxIter = 100000 |
2062 |
# |
2063 |
## Compute the scaled function and the degree, in their Sollya version |
2064 |
# once for all. |
2065 |
(scaledf, sdlb, sdub, silb, siub) = \ |
2066 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
2067 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
2068 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
2069 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
2070 |
# |
2071 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
2072 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
2073 |
(unscalingFunction, scalingFunction) = \ |
2074 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
2075 |
#print scalingFunction, unscalingFunction |
2076 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
2077 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
2078 |
if internalSollyaPrec < 192: |
2079 |
internalSollyaPrec = 192 |
2080 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
2081 |
print "Sollya internal precision:", internalSollyaPrec |
2082 |
## Some variables. |
2083 |
### General variables |
2084 |
lb = sdlb |
2085 |
ub = sdub |
2086 |
nbw = 0 |
2087 |
intervalUlp = ub.ulp() |
2088 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
2089 |
ic = 0 |
2090 |
icAsInt = 0 # Set from ic. |
2091 |
solutionsSet = set() |
2092 |
tsErrorWidth = [] |
2093 |
csErrorVectors = [] |
2094 |
csVectorsResultants = [] |
2095 |
floatP = 0 # Taylor polynomial. |
2096 |
floatPcv = 0 # Ditto with variable change. |
2097 |
intvl = "" # Taylor interval |
2098 |
terr = 0 # Taylor error. |
2099 |
iterCount = 0 |
2100 |
htrnSet = set() |
2101 |
### Timers and counters. |
2102 |
wallTimeStart = 0 |
2103 |
cpuTimeStart = 0 |
2104 |
taylCondFailedCount = 0 |
2105 |
coppCondFailedCount = 0 |
2106 |
resultCondFailedCount = 0 |
2107 |
coppCondFailed = False |
2108 |
resultCondFailed = False |
2109 |
globalResultsList = [] |
2110 |
basisConstructionsCount = 0 |
2111 |
basisConstructionsFullTime = 0 |
2112 |
basisConstructionTime = 0 |
2113 |
reductionsCount = 0 |
2114 |
reductionsFullTime = 0 |
2115 |
reductionTime = 0 |
2116 |
resultantsComputationsCount = 0 |
2117 |
resultantsComputationsFullTime = 0 |
2118 |
resultantsComputationTime = 0 |
2119 |
rootsComputationsCount = 0 |
2120 |
rootsComputationsFullTime = 0 |
2121 |
rootsComputationTime = 0 |
2122 |
|
2123 |
## Global times are started here. |
2124 |
wallTimeStart = walltime() |
2125 |
cpuTimeStart = cputime() |
2126 |
## Main loop. |
2127 |
while True: |
2128 |
if lb >= sdub: |
2129 |
print "Lower bound reached upper bound." |
2130 |
break |
2131 |
if iterCount == maxIter: |
2132 |
print "Reached maxIter. Aborting" |
2133 |
break |
2134 |
iterCount += 1 |
2135 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
2136 |
"log2(numbers)." |
2137 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
2138 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
2139 |
degreeSo, |
2140 |
lb, |
2141 |
ub, |
2142 |
polyApproxAccur) |
2143 |
### Convert back the data into Sage space. |
2144 |
(floatP, floatPcv, intvl, ic, terr) = \ |
2145 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
2146 |
prceSo[1], prceSo[2], |
2147 |
prceSo[3])) |
2148 |
intvl = RRIF(intvl) |
2149 |
## Clean-up Sollya stuff. |
2150 |
for elem in prceSo: |
2151 |
sollya_lib_clear_obj(elem) |
2152 |
#print floatP, floatPcv, intvl, ic, terr |
2153 |
#print floatP |
2154 |
#print intvl.endpoints()[0].n(), \ |
2155 |
# ic.n(), |
2156 |
#intvl.endpoints()[1].n() |
2157 |
### Check returned data. |
2158 |
#### Is approximation error OK? |
2159 |
if terr > polyApproxAccur: |
2160 |
exceptionErrorMess = \ |
2161 |
"Approximation failed - computed error:" + \ |
2162 |
str(terr) + " - target error: " |
2163 |
exceptionErrorMess += \ |
2164 |
str(polyApproxAccur) + ". Aborting!" |
2165 |
raise Exception(exceptionErrorMess) |
2166 |
#### Is lower bound OK? |
2167 |
if lb != intvl.endpoints()[0]: |
2168 |
exceptionErrorMess = "Wrong lower bound:" + \ |
2169 |
str(lb) + ". Aborting!" |
2170 |
raise Exception(exceptionErrorMess) |
2171 |
#### Set upper bound. |
2172 |
if ub > intvl.endpoints()[1]: |
2173 |
ub = intvl.endpoints()[1] |
2174 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
2175 |
"log2(numbers)." |
2176 |
taylCondFailedCount += 1 |
2177 |
#### Is interval not degenerate? |
2178 |
if lb >= ub: |
2179 |
exceptionErrorMess = "Degenerate interval: " + \ |
2180 |
"lowerBound(" + str(lb) +\ |
2181 |
")>= upperBound(" + str(ub) + \ |
2182 |
"). Aborting!" |
2183 |
raise Exception(exceptionErrorMess) |
2184 |
#### Is interval center ok? |
2185 |
if ic <= lb or ic >= ub: |
2186 |
exceptionErrorMess = "Invalid interval center for " + \ |
2187 |
str(lb) + ',' + str(ic) + ',' + \ |
2188 |
str(ub) + ". Aborting!" |
2189 |
raise Exception(exceptionErrorMess) |
2190 |
##### Current interval width and reset future interval width. |
2191 |
bw = ub - lb |
2192 |
nbw = 0 |
2193 |
icAsInt = int(ic * toIntegerFactor) |
2194 |
#### The following ratio is always >= 1. In case we may want to |
2195 |
# enlarge the interval |
2196 |
curTaylErrRat = polyApproxAccur / terr |
2197 |
### Make the integral transformations. |
2198 |
#### Bounds and interval center. |
2199 |
intIc = int(ic * toIntegerFactor) |
2200 |
intLb = int(lb * toIntegerFactor) - intIc |
2201 |
intUb = int(ub * toIntegerFactor) - intIc |
2202 |
# |
2203 |
#### Polynomials |
2204 |
basisConstructionTime = cputime() |
2205 |
##### To a polynomial with rational coefficients with rational arguments |
2206 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
2207 |
##### To a polynomial with rational coefficients with integer arguments |
2208 |
ratIntP = \ |
2209 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
2210 |
##### Ultimately a multivariate polynomial with integer coefficients |
2211 |
# with integer arguments. |
2212 |
coppersmithTuple = \ |
2213 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
2214 |
precision, |
2215 |
targetHardnessToRound, |
2216 |
i, t) |
2217 |
#### Recover Coppersmith information. |
2218 |
intIntP = coppersmithTuple[0] |
2219 |
N = coppersmithTuple[1] |
2220 |
nAtAlpha = N^alpha |
2221 |
tBound = coppersmithTuple[2] |
2222 |
leastCommonMultiple = coppersmithTuple[3] |
2223 |
iBound = max(abs(intLb),abs(intUb)) |
2224 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
2225 |
basisConstructionsCount += 1 |
2226 |
reductionTime = cputime() |
2227 |
#### Compute the reduced polynomials. |
2228 |
ccReducedPolynomialsList = \ |
2229 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
2230 |
alpha, |
2231 |
N, |
2232 |
iBound, |
2233 |
tBound) |
2234 |
if ccReducedPolynomialsList is None: |
2235 |
raise Exception("Reduction failed.") |
2236 |
reductionsFullTime += cputime(reductionTime) |
2237 |
reductionsCount += 1 |
2238 |
if len(ccReducedPolynomialsList) < 2: |
2239 |
print "Nothing to form resultants with." |
2240 |
|
2241 |
coppCondFailedCount += 1 |
2242 |
coppCondFailed = True |
2243 |
##### Apply a different shrink factor according to |
2244 |
# the number of compliant polynomials. |
2245 |
if len(ccReducedPolynomialsList) == 0: |
2246 |
ub = lb + bw * noCoppersmithIntervalShrink |
2247 |
else: # At least one compliant polynomial. |
2248 |
ub = lb + bw * oneCoppersmithIntervalShrink |
2249 |
if ub > sdub: |
2250 |
ub = sdub |
2251 |
if lb == ub: |
2252 |
raise Exception("Cant shrink interval \ |
2253 |
anymore to get Coppersmith condition.") |
2254 |
nbw = 0 |
2255 |
continue |
2256 |
#### We have at least two polynomials. |
2257 |
# Let us try to compute resultants. |
2258 |
# For each resultant computed, go for the solutions. |
2259 |
##### Build the pairs list. |
2260 |
polyPairsList = [] |
2261 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
2262 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
2263 |
len(ccReducedPolynomialsList)): |
2264 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
2265 |
ccReducedPolynomialsList[polyInnerIndex])) |
2266 |
#### Actual root search. |
2267 |
iRootsSet = set() |
2268 |
hasNonNullResultant = False |
2269 |
for polyPair in polyPairsList: |
2270 |
resultantsComputationTime = cputime() |
2271 |
currentResultantI = \ |
2272 |
slz_resultant(polyPair[0], |
2273 |
polyPair[1], |
2274 |
t) |
2275 |
resultantsComputationsCount += 1 |
2276 |
resultantsComputationsFullTime += \ |
2277 |
cputime(resultantsComputationTime) |
2278 |
#### Function slz_resultant returns None both for None and O |
2279 |
# resultants. |
2280 |
if currentResultantI is None: |
2281 |
print "Nul resultant" |
2282 |
continue # Next polyPair. |
2283 |
## We deleted the currentResultantI computation. |
2284 |
#### We have a non null resultant. From now on, whatever this |
2285 |
# root search yields, no extra root search is necessary. |
2286 |
hasNonNullResultant = True |
2287 |
#### A constant resultant leads to no root. Root search is done. |
2288 |
if currentResultantI.degree() < 1: |
2289 |
print "Resultant is constant:", currentResultantI |
2290 |
break # There is no root. |
2291 |
#### Actual iroots computation. |
2292 |
rootsComputationTime = cputime() |
2293 |
iRootsList = Zi(currentResultantI).roots() |
2294 |
rootsComputationsCount += 1 |
2295 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
2296 |
if len(iRootsList) == 0: |
2297 |
print "No roots in \"i\"." |
2298 |
break # No roots in i. |
2299 |
else: |
2300 |
for iRoot in iRootsList: |
2301 |
# A root is given as a (value, multiplicity) tuple. |
2302 |
iRootsSet.add(iRoot[0]) |
2303 |
# End loop for polyPair in polyParsList. We only loop again if a |
2304 |
# None or zero resultant is found. |
2305 |
#### Prepare for results for the current interval.. |
2306 |
intervalResultsList = [] |
2307 |
intervalResultsList.append((lb, ub)) |
2308 |
#### Check roots. |
2309 |
rootsResultsList = [] |
2310 |
for iRoot in iRootsSet: |
2311 |
specificRootResultsList = [] |
2312 |
failingBounds = [] |
2313 |
# Root qualifies for modular equation, test it for hardness to round. |
2314 |
hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor) |
2315 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
2316 |
#print scalingFunction |
2317 |
scaledHardToRoundCaseAsFloat = \ |
2318 |
scalingFunction(hardToRoundCaseAsFloat) |
2319 |
print "Candidate HTRNc at x =", \ |
2320 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
2321 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
2322 |
function, |
2323 |
2^-(targetHardnessToRound), |
2324 |
RRR): |
2325 |
print hardToRoundCaseAsFloat, "is HTRN case." |
2326 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
2327 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
2328 |
print "Found in interval." |
2329 |
else: |
2330 |
print "Found out of interval." |
2331 |
# Check the i root is within the i bound. |
2332 |
if abs(iRoot) > iBound: |
2333 |
print "IRoot", iRoot, "is out of bounds for modular equation." |
2334 |
print "i bound:", iBound |
2335 |
failingBounds.append('i') |
2336 |
failingBounds.append(iRoot) |
2337 |
failingBounds.append(iBound) |
2338 |
if len(failingBounds) > 0: |
2339 |
specificRootResultsList.append(failingBounds) |
2340 |
else: # From slz_is_htrn... |
2341 |
print "is not an HTRN case." |
2342 |
if len(specificRootResultsList) > 0: |
2343 |
rootsResultsList.append(specificRootResultsList) |
2344 |
if len(rootsResultsList) > 0: |
2345 |
intervalResultsList.append(rootsResultsList) |
2346 |
### Check if a non null resultant was found. If not shrink the interval. |
2347 |
if not hasNonNullResultant: |
2348 |
print "Only null resultants for this reduction, shrinking interval." |
2349 |
resultCondFailed = True |
2350 |
resultCondFailedCount += 1 |
2351 |
### Shrink interval for next iteration. |
2352 |
ub = lb + bw * onlyNullResultantsShrink |
2353 |
if ub > sdub: |
2354 |
ub = sdub |
2355 |
nbw = 0 |
2356 |
continue |
2357 |
#### An intervalResultsList has at least the bounds. |
2358 |
globalResultsList.append(intervalResultsList) |
2359 |
#### Compute an incremented width for next upper bound, only |
2360 |
# if not Coppersmith condition nor resultant condition |
2361 |
# failed at the previous run. |
2362 |
if not coppCondFailed and not resultCondFailed: |
2363 |
nbw = noErrorIntervalStretch * bw |
2364 |
else: |
2365 |
nbw = bw |
2366 |
##### Reset the failure flags. They will be raised |
2367 |
# again if needed. |
2368 |
coppCondFailed = False |
2369 |
resultCondFailed = False |
2370 |
#### For next iteration (at end of loop) |
2371 |
#print "nbw:", nbw |
2372 |
lb = ub |
2373 |
ub += nbw |
2374 |
if ub > sdub: |
2375 |
ub = sdub |
2376 |
|
2377 |
# End while True |
2378 |
## Main loop just ended. |
2379 |
globalWallTime = walltime(wallTimeStart) |
2380 |
globalCpuTime = cputime(cpuTimeStart) |
2381 |
## Output results |
2382 |
print ; print "Intervals and HTRNs" ; print |
2383 |
for intervalResultsList in globalResultsList: |
2384 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
2385 |
"," + str(intervalResultsList[0][1]) + "]" |
2386 |
print intervalResultString, |
2387 |
if len(intervalResultsList) > 1: |
2388 |
rootsResultsList = intervalResultsList[1] |
2389 |
specificRootResultIndex = 0 |
2390 |
for specificRootResultsList in rootsResultsList: |
2391 |
if specificRootResultIndex == 0: |
2392 |
print "\t", specificRootResultsList[0], |
2393 |
else: |
2394 |
print " " * len(intervalResultString), "\t", \ |
2395 |
specificRootResultsList[0], |
2396 |
if len(specificRootResultsList) > 1: |
2397 |
print specificRootResultsList[1] |
2398 |
specificRootResultIndex += 1 |
2399 |
print ; print |
2400 |
#print globalResultsList |
2401 |
# |
2402 |
print "Timers and counters" |
2403 |
|
2404 |
print "Number of iterations:", iterCount |
2405 |
print "Taylor condition failures:", taylCondFailedCount |
2406 |
print "Coppersmith condition failures:", coppCondFailedCount |
2407 |
print "Resultant condition failures:", resultCondFailedCount |
2408 |
print "Iterations count: ", iterCount |
2409 |
print "Number of intervals:", len(globalResultsList) |
2410 |
print "Number of basis constructions:", basisConstructionsCount |
2411 |
print "Total CPU time spent in basis constructions:", \ |
2412 |
basisConstructionsFullTime |
2413 |
if basisConstructionsCount != 0: |
2414 |
print "Average basis construction CPU time:", \ |
2415 |
basisConstructionsFullTime/basisConstructionsCount |
2416 |
print "Number of reductions:", reductionsCount |
2417 |
print "Total CPU time spent in reductions:", reductionsFullTime |
2418 |
if reductionsCount != 0: |
2419 |
print "Average reduction CPU time:", \ |
2420 |
reductionsFullTime/reductionsCount |
2421 |
print "Number of resultants computation rounds:", \ |
2422 |
resultantsComputationsCount |
2423 |
print "Total CPU time spent in resultants computation rounds:", \ |
2424 |
resultantsComputationsFullTime |
2425 |
if resultantsComputationsCount != 0: |
2426 |
print "Average resultants computation round CPU time:", \ |
2427 |
resultantsComputationsFullTime/resultantsComputationsCount |
2428 |
print "Number of root finding rounds:", rootsComputationsCount |
2429 |
print "Total CPU time spent in roots finding rounds:", \ |
2430 |
rootsComputationsFullTime |
2431 |
if rootsComputationsCount != 0: |
2432 |
print "Average roots finding round CPU time:", \ |
2433 |
rootsComputationsFullTime/rootsComputationsCount |
2434 |
print "Global Wall time:", globalWallTime |
2435 |
print "Global CPU time:", globalCpuTime |
2436 |
## Output counters |
2437 |
# End srs_runSLZ-v04 |
2438 |
|
2439 |
def srs_run_SLZ_v05(inputFunction, |
2440 |
inputLowerBound, |
2441 |
inputUpperBound, |
2442 |
alpha, |
2443 |
degree, |
2444 |
precision, |
2445 |
emin, |
2446 |
emax, |
2447 |
targetHardnessToRound, |
2448 |
debug = False): |
2449 |
""" |
2450 |
Changes from V4: |
2451 |
Approximation polynomial has coefficients rounded. |
2452 |
Changes from V3: |
2453 |
Root search is changed again: |
2454 |
- only resultants in i are computed; |
2455 |
- roots in i are searched for; |
2456 |
- if any, they are tested for hardness-to-round. |
2457 |
Changes from V2: |
2458 |
Root search is changed: |
2459 |
- we compute the resultants in i and in t; |
2460 |
- we compute the roots set of each of these resultants; |
2461 |
- we combine all the possible pairs between the two sets; |
2462 |
- we check these pairs in polynomials for correctness. |
2463 |
Changes from V1: |
2464 |
1- check for roots as soon as a resultant is computed; |
2465 |
2- once a non null resultant is found, check for roots; |
2466 |
3- constant resultant == no root. |
2467 |
""" |
2468 |
|
2469 |
if debug: |
2470 |
print "Function :", inputFunction |
2471 |
print "Lower bound :", inputLowerBound |
2472 |
print "Upper bounds :", inputUpperBound |
2473 |
print "Alpha :", alpha |
2474 |
print "Degree :", degree |
2475 |
print "Precision :", precision |
2476 |
print "Emin :", emin |
2477 |
print "Emax :", emax |
2478 |
print "Target hardness-to-round:", targetHardnessToRound |
2479 |
|
2480 |
## Important constants. |
2481 |
### Stretch the interval if no error happens. |
2482 |
noErrorIntervalStretch = 1 + 2^(-5) |
2483 |
### If no vector validates the Coppersmith condition, shrink the interval |
2484 |
# by the following factor. |
2485 |
noCoppersmithIntervalShrink = 1/2 |
2486 |
### If only (or at least) one vector validates the Coppersmith condition, |
2487 |
# shrink the interval by the following factor. |
2488 |
oneCoppersmithIntervalShrink = 3/4 |
2489 |
#### If only null resultants are found, shrink the interval by the |
2490 |
# following factor. |
2491 |
onlyNullResultantsShrink = 3/4 |
2492 |
## Structures. |
2493 |
RRR = RealField(precision) |
2494 |
RRIF = RealIntervalField(precision) |
2495 |
## Converting input bound into the "right" field. |
2496 |
lowerBound = RRR(inputLowerBound) |
2497 |
upperBound = RRR(inputUpperBound) |
2498 |
## Before going any further, check domain and image binade conditions. |
2499 |
print inputFunction(1).n() |
2500 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
2501 |
if output is None: |
2502 |
print "Invalid domain/image binades. Domain:",\ |
2503 |
lowerBound, upperBound, "Images:", \ |
2504 |
inputFunction(lowerBound), inputFunction(upperBound) |
2505 |
raise Exception("Invalid domain/image binades.") |
2506 |
lb = output[0] ; ub = output[1] |
2507 |
if lb != lowerBound or ub != upperBound: |
2508 |
print "lb:", lb, " - ub:", ub |
2509 |
print "Invalid domain/image binades. Domain:",\ |
2510 |
lowerBound, upperBound, "Images:", \ |
2511 |
inputFunction(lowerBound), inputFunction(upperBound) |
2512 |
raise Exception("Invalid domain/image binades.") |
2513 |
# |
2514 |
## Progam initialization |
2515 |
### Approximation polynomial accuracy and hardness to round. |
2516 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
2517 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
2518 |
### Significand to integer conversion ratio. |
2519 |
toIntegerFactor = 2^(precision-1) |
2520 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
2521 |
### Variables and rings for polynomials and root searching. |
2522 |
i=var('i') |
2523 |
t=var('t') |
2524 |
inputFunctionVariable = inputFunction.variables()[0] |
2525 |
function = inputFunction.subs({inputFunctionVariable:i}) |
2526 |
# Polynomial Rings over the integers, for root finding. |
2527 |
Zi = ZZ[i] |
2528 |
Zt = ZZ[t] |
2529 |
Zit = ZZ[i,t] |
2530 |
## Number of iterations limit. |
2531 |
maxIter = 100000 |
2532 |
# |
2533 |
## Compute the scaled function and the degree, in their Sollya version |
2534 |
# once for all. |
2535 |
(scaledf, sdlb, sdub, silb, siub) = \ |
2536 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
2537 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
2538 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
2539 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
2540 |
# |
2541 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
2542 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
2543 |
(unscalingFunction, scalingFunction) = \ |
2544 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
2545 |
#print scalingFunction, unscalingFunction |
2546 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
2547 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
2548 |
if internalSollyaPrec < 192: |
2549 |
internalSollyaPrec = 192 |
2550 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
2551 |
print "Sollya internal precision:", internalSollyaPrec |
2552 |
## Some variables. |
2553 |
### General variables |
2554 |
lb = sdlb |
2555 |
ub = sdub |
2556 |
nbw = 0 |
2557 |
intervalUlp = ub.ulp() |
2558 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
2559 |
ic = 0 |
2560 |
icAsInt = 0 # Set from ic. |
2561 |
solutionsSet = set() |
2562 |
tsErrorWidth = [] |
2563 |
csErrorVectors = [] |
2564 |
csVectorsResultants = [] |
2565 |
floatP = 0 # Taylor polynomial. |
2566 |
floatPcv = 0 # Ditto with variable change. |
2567 |
intvl = "" # Taylor interval |
2568 |
terr = 0 # Taylor error. |
2569 |
iterCount = 0 |
2570 |
htrnSet = set() |
2571 |
### Timers and counters. |
2572 |
wallTimeStart = 0 |
2573 |
cpuTimeStart = 0 |
2574 |
taylCondFailedCount = 0 |
2575 |
coppCondFailedCount = 0 |
2576 |
resultCondFailedCount = 0 |
2577 |
coppCondFailed = False |
2578 |
resultCondFailed = False |
2579 |
globalResultsList = [] |
2580 |
basisConstructionsCount = 0 |
2581 |
basisConstructionsFullTime = 0 |
2582 |
basisConstructionTime = 0 |
2583 |
reductionsCount = 0 |
2584 |
reductionsFullTime = 0 |
2585 |
reductionTime = 0 |
2586 |
resultantsComputationsCount = 0 |
2587 |
resultantsComputationsFullTime = 0 |
2588 |
resultantsComputationTime = 0 |
2589 |
rootsComputationsCount = 0 |
2590 |
rootsComputationsFullTime = 0 |
2591 |
rootsComputationTime = 0 |
2592 |
|
2593 |
## Global times are started here. |
2594 |
wallTimeStart = walltime() |
2595 |
cpuTimeStart = cputime() |
2596 |
## Main loop. |
2597 |
while True: |
2598 |
if lb >= sdub: |
2599 |
print "Lower bound reached upper bound." |
2600 |
break |
2601 |
if iterCount == maxIter: |
2602 |
print "Reached maxIter. Aborting" |
2603 |
break |
2604 |
iterCount += 1 |
2605 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
2606 |
"log2(numbers)." |
2607 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
2608 |
prceSo = slz_compute_polynomial_and_interval_01(scaledfSo, |
2609 |
degreeSo, |
2610 |
lb, |
2611 |
ub, |
2612 |
polyApproxAccur) |
2613 |
if prceSo is None: |
2614 |
raise Exception("Could not compute an approximation polynomial.") |
2615 |
### Convert back the data into Sage space. |
2616 |
(floatP, floatPcv, intvl, ic, terr) = \ |
2617 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
2618 |
prceSo[1], prceSo[2], |
2619 |
prceSo[3])) |
2620 |
intvl = RRIF(intvl) |
2621 |
## Clean-up Sollya stuff. |
2622 |
for elem in prceSo: |
2623 |
sollya_lib_clear_obj(elem) |
2624 |
#print floatP, floatPcv, intvl, ic, terr |
2625 |
#print floatP |
2626 |
#print intvl.endpoints()[0].n(), \ |
2627 |
# ic.n(), |
2628 |
#intvl.endpoints()[1].n() |
2629 |
### Check returned data. |
2630 |
#### Is approximation error OK? |
2631 |
if terr > polyApproxAccur: |
2632 |
exceptionErrorMess = \ |
2633 |
"Approximation failed - computed error:" + \ |
2634 |
str(terr) + " - target error: " |
2635 |
exceptionErrorMess += \ |
2636 |
str(polyApproxAccur) + ". Aborting!" |
2637 |
raise Exception(exceptionErrorMess) |
2638 |
#### Is lower bound OK? |
2639 |
if lb != intvl.endpoints()[0]: |
2640 |
exceptionErrorMess = "Wrong lower bound:" + \ |
2641 |
str(lb) + ". Aborting!" |
2642 |
raise Exception(exceptionErrorMess) |
2643 |
#### Set upper bound. |
2644 |
if ub > intvl.endpoints()[1]: |
2645 |
ub = intvl.endpoints()[1] |
2646 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
2647 |
"log2(numbers)." |
2648 |
taylCondFailedCount += 1 |
2649 |
#### Is interval not degenerate? |
2650 |
if lb >= ub: |
2651 |
exceptionErrorMess = "Degenerate interval: " + \ |
2652 |
"lowerBound(" + str(lb) +\ |
2653 |
")>= upperBound(" + str(ub) + \ |
2654 |
"). Aborting!" |
2655 |
raise Exception(exceptionErrorMess) |
2656 |
#### Is interval center ok? |
2657 |
if ic <= lb or ic >= ub: |
2658 |
exceptionErrorMess = "Invalid interval center for " + \ |
2659 |
str(lb) + ',' + str(ic) + ',' + \ |
2660 |
str(ub) + ". Aborting!" |
2661 |
raise Exception(exceptionErrorMess) |
2662 |
##### Current interval width and reset future interval width. |
2663 |
bw = ub - lb |
2664 |
nbw = 0 |
2665 |
icAsInt = int(ic * toIntegerFactor) |
2666 |
#### The following ratio is always >= 1. In case we may want to |
2667 |
# enlarge the interval |
2668 |
curTaylErrRat = polyApproxAccur / terr |
2669 |
### Make the integral transformations. |
2670 |
#### Bounds and interval center. |
2671 |
intIc = int(ic * toIntegerFactor) |
2672 |
intLb = int(lb * toIntegerFactor) - intIc |
2673 |
intUb = int(ub * toIntegerFactor) - intIc |
2674 |
# |
2675 |
#### Polynomials |
2676 |
basisConstructionTime = cputime() |
2677 |
##### To a polynomial with rational coefficients with rational arguments |
2678 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
2679 |
##### To a polynomial with rational coefficients with integer arguments |
2680 |
ratIntP = \ |
2681 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
2682 |
##### Ultimately a multivariate polynomial with integer coefficients |
2683 |
# with integer arguments. |
2684 |
coppersmithTuple = \ |
2685 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
2686 |
precision, |
2687 |
targetHardnessToRound, |
2688 |
i, t) |
2689 |
#### Recover Coppersmith information. |
2690 |
intIntP = coppersmithTuple[0] |
2691 |
N = coppersmithTuple[1] |
2692 |
nAtAlpha = N^alpha |
2693 |
tBound = coppersmithTuple[2] |
2694 |
leastCommonMultiple = coppersmithTuple[3] |
2695 |
iBound = max(abs(intLb),abs(intUb)) |
2696 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
2697 |
basisConstructionsCount += 1 |
2698 |
#### Compute the matrix to reduce for debug purpose. Otherwise |
2699 |
# slz_compute_coppersmith_reduced_polynomials does the job |
2700 |
# invisibly. |
2701 |
if debug: |
2702 |
matrixToReduce = slz_compute_initial_lattice_matrix(intIntP, |
2703 |
alpha, |
2704 |
N, |
2705 |
iBound, |
2706 |
tBound) |
2707 |
maxNorm = 0 |
2708 |
latticeSize = 0 |
2709 |
matrixFile = file('/tmp/matrixToReduce.txt', 'w') |
2710 |
for row in matrixToReduce.rows(): |
2711 |
currentNorm = row.norm() |
2712 |
if currentNorm > maxNorm: |
2713 |
maxNorm = currentNorm |
2714 |
latticeSize += 1 |
2715 |
for elem in row: |
2716 |
matrixFile.write(elem.str(base=2) + ",") |
2717 |
matrixFile.write("\n") |
2718 |
#matrixFile.write(matrixToReduce.str(radix="2") + "\n") |
2719 |
matrixFile.close() |
2720 |
#### We use here binary length as defined in LLL princepts. |
2721 |
binaryLength = latticeSize * log(maxNorm) |
2722 |
print "Binary length:", binaryLength.n() |
2723 |
raise Exception("Deliberate stop here.") |
2724 |
# End if debug |
2725 |
reductionTime = cputime() |
2726 |
#### Compute the reduced polynomials. |
2727 |
ccReducedPolynomialsList = \ |
2728 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
2729 |
alpha, |
2730 |
N, |
2731 |
iBound, |
2732 |
tBound) |
2733 |
if ccReducedPolynomialsList is None: |
2734 |
raise Exception("Reduction failed.") |
2735 |
reductionsFullTime += cputime(reductionTime) |
2736 |
reductionsCount += 1 |
2737 |
if len(ccReducedPolynomialsList) < 2: |
2738 |
print "Nothing to form resultants with." |
2739 |
|
2740 |
coppCondFailedCount += 1 |
2741 |
coppCondFailed = True |
2742 |
##### Apply a different shrink factor according to |
2743 |
# the number of compliant polynomials. |
2744 |
if len(ccReducedPolynomialsList) == 0: |
2745 |
ub = lb + bw * noCoppersmithIntervalShrink |
2746 |
else: # At least one compliant polynomial. |
2747 |
ub = lb + bw * oneCoppersmithIntervalShrink |
2748 |
if ub > sdub: |
2749 |
ub = sdub |
2750 |
if lb == ub: |
2751 |
raise Exception("Cant shrink interval \ |
2752 |
anymore to get Coppersmith condition.") |
2753 |
nbw = 0 |
2754 |
continue |
2755 |
#### We have at least two polynomials. |
2756 |
# Let us try to compute resultants. |
2757 |
# For each resultant computed, go for the solutions. |
2758 |
##### Build the pairs list. |
2759 |
polyPairsList = [] |
2760 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
2761 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
2762 |
len(ccReducedPolynomialsList)): |
2763 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
2764 |
ccReducedPolynomialsList[polyInnerIndex])) |
2765 |
#### Actual root search. |
2766 |
iRootsSet = set() |
2767 |
hasNonNullResultant = False |
2768 |
for polyPair in polyPairsList: |
2769 |
resultantsComputationTime = cputime() |
2770 |
currentResultantI = \ |
2771 |
slz_resultant(polyPair[0], |
2772 |
polyPair[1], |
2773 |
t) |
2774 |
resultantsComputationsCount += 1 |
2775 |
resultantsComputationsFullTime += \ |
2776 |
cputime(resultantsComputationTime) |
2777 |
#### Function slz_resultant returns None both for None and O |
2778 |
# resultants. |
2779 |
if currentResultantI is None: |
2780 |
print "Nul resultant" |
2781 |
continue # Next polyPair. |
2782 |
## We deleted the currentResultantI computation. |
2783 |
#### We have a non null resultant. From now on, whatever this |
2784 |
# root search yields, no extra root search is necessary. |
2785 |
hasNonNullResultant = True |
2786 |
#### A constant resultant leads to no root. Root search is done. |
2787 |
if currentResultantI.degree() < 1: |
2788 |
print "Resultant is constant:", currentResultantI |
2789 |
break # There is no root. |
2790 |
#### Actual iroots computation. |
2791 |
rootsComputationTime = cputime() |
2792 |
iRootsList = Zi(currentResultantI).roots() |
2793 |
rootsComputationsCount += 1 |
2794 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
2795 |
if len(iRootsList) == 0: |
2796 |
print "No roots in \"i\"." |
2797 |
break # No roots in i. |
2798 |
else: |
2799 |
for iRoot in iRootsList: |
2800 |
# A root is given as a (value, multiplicity) tuple. |
2801 |
iRootsSet.add(iRoot[0]) |
2802 |
# End loop for polyPair in polyParsList. We only loop again if a |
2803 |
# None or zero resultant is found. |
2804 |
#### Prepare for results for the current interval.. |
2805 |
intervalResultsList = [] |
2806 |
intervalResultsList.append((lb, ub)) |
2807 |
#### Check roots. |
2808 |
rootsResultsList = [] |
2809 |
for iRoot in iRootsSet: |
2810 |
specificRootResultsList = [] |
2811 |
failingBounds = [] |
2812 |
# Root qualifies for modular equation, test it for hardness to round. |
2813 |
hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor) |
2814 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
2815 |
#print scalingFunction |
2816 |
scaledHardToRoundCaseAsFloat = \ |
2817 |
scalingFunction(hardToRoundCaseAsFloat) |
2818 |
print "Candidate HTRNc at x =", \ |
2819 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
2820 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
2821 |
function, |
2822 |
2^-(targetHardnessToRound), |
2823 |
RRR): |
2824 |
print hardToRoundCaseAsFloat, "is HTRN case." |
2825 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
2826 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
2827 |
print "Found in interval." |
2828 |
else: |
2829 |
print "Found out of interval." |
2830 |
# Check the i root is within the i bound. |
2831 |
if abs(iRoot) > iBound: |
2832 |
print "IRoot", iRoot, "is out of bounds for modular equation." |
2833 |
print "i bound:", iBound |
2834 |
failingBounds.append('i') |
2835 |
failingBounds.append(iRoot) |
2836 |
failingBounds.append(iBound) |
2837 |
if len(failingBounds) > 0: |
2838 |
specificRootResultsList.append(failingBounds) |
2839 |
else: # From slz_is_htrn... |
2840 |
print "is not an HTRN case." |
2841 |
if len(specificRootResultsList) > 0: |
2842 |
rootsResultsList.append(specificRootResultsList) |
2843 |
if len(rootsResultsList) > 0: |
2844 |
intervalResultsList.append(rootsResultsList) |
2845 |
### Check if a non null resultant was found. If not shrink the interval. |
2846 |
if not hasNonNullResultant: |
2847 |
print "Only null resultants for this reduction, shrinking interval." |
2848 |
resultCondFailed = True |
2849 |
resultCondFailedCount += 1 |
2850 |
### Shrink interval for next iteration. |
2851 |
ub = lb + bw * onlyNullResultantsShrink |
2852 |
if ub > sdub: |
2853 |
ub = sdub |
2854 |
nbw = 0 |
2855 |
continue |
2856 |
#### An intervalResultsList has at least the bounds. |
2857 |
globalResultsList.append(intervalResultsList) |
2858 |
#### Compute an incremented width for next upper bound, only |
2859 |
# if not Coppersmith condition nor resultant condition |
2860 |
# failed at the previous run. |
2861 |
if not coppCondFailed and not resultCondFailed: |
2862 |
nbw = noErrorIntervalStretch * bw |
2863 |
else: |
2864 |
nbw = bw |
2865 |
##### Reset the failure flags. They will be raised |
2866 |
# again if needed. |
2867 |
coppCondFailed = False |
2868 |
resultCondFailed = False |
2869 |
#### For next iteration (at end of loop) |
2870 |
#print "nbw:", nbw |
2871 |
lb = ub |
2872 |
ub += nbw |
2873 |
if ub > sdub: |
2874 |
ub = sdub |
2875 |
|
2876 |
# End while True |
2877 |
## Main loop just ended. |
2878 |
globalWallTime = walltime(wallTimeStart) |
2879 |
globalCpuTime = cputime(cpuTimeStart) |
2880 |
## Output results |
2881 |
print ; print "Intervals and HTRNs" ; print |
2882 |
for intervalResultsList in globalResultsList: |
2883 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
2884 |
"," + str(intervalResultsList[0][1]) + "]" |
2885 |
print intervalResultString, |
2886 |
if len(intervalResultsList) > 1: |
2887 |
rootsResultsList = intervalResultsList[1] |
2888 |
specificRootResultIndex = 0 |
2889 |
for specificRootResultsList in rootsResultsList: |
2890 |
if specificRootResultIndex == 0: |
2891 |
print "\t", specificRootResultsList[0], |
2892 |
else: |
2893 |
print " " * len(intervalResultString), "\t", \ |
2894 |
specificRootResultsList[0], |
2895 |
if len(specificRootResultsList) > 1: |
2896 |
print specificRootResultsList[1] |
2897 |
specificRootResultIndex += 1 |
2898 |
print ; print |
2899 |
#print globalResultsList |
2900 |
# |
2901 |
print "Timers and counters" |
2902 |
|
2903 |
print "Number of iterations:", iterCount |
2904 |
print "Taylor condition failures:", taylCondFailedCount |
2905 |
print "Coppersmith condition failures:", coppCondFailedCount |
2906 |
print "Resultant condition failures:", resultCondFailedCount |
2907 |
print "Iterations count: ", iterCount |
2908 |
print "Number of intervals:", len(globalResultsList) |
2909 |
print "Number of basis constructions:", basisConstructionsCount |
2910 |
print "Total CPU time spent in basis constructions:", \ |
2911 |
basisConstructionsFullTime |
2912 |
if basisConstructionsCount != 0: |
2913 |
print "Average basis construction CPU time:", \ |
2914 |
basisConstructionsFullTime/basisConstructionsCount |
2915 |
print "Number of reductions:", reductionsCount |
2916 |
print "Total CPU time spent in reductions:", reductionsFullTime |
2917 |
if reductionsCount != 0: |
2918 |
print "Average reduction CPU time:", \ |
2919 |
reductionsFullTime/reductionsCount |
2920 |
print "Number of resultants computation rounds:", \ |
2921 |
resultantsComputationsCount |
2922 |
print "Total CPU time spent in resultants computation rounds:", \ |
2923 |
resultantsComputationsFullTime |
2924 |
if resultantsComputationsCount != 0: |
2925 |
print "Average resultants computation round CPU time:", \ |
2926 |
resultantsComputationsFullTime/resultantsComputationsCount |
2927 |
print "Number of root finding rounds:", rootsComputationsCount |
2928 |
print "Total CPU time spent in roots finding rounds:", \ |
2929 |
rootsComputationsFullTime |
2930 |
if rootsComputationsCount != 0: |
2931 |
print "Average roots finding round CPU time:", \ |
2932 |
rootsComputationsFullTime/rootsComputationsCount |
2933 |
print "Global Wall time:", globalWallTime |
2934 |
print "Global CPU time:", globalCpuTime |
2935 |
## Output counters |
2936 |
# End srs_runSLZ-v05 |
2937 |
|
2938 |
def srs_run_SLZ_v06(inputFunction, |
2939 |
inputLowerBound, |
2940 |
inputUpperBound, |
2941 |
alpha, |
2942 |
degree, |
2943 |
precision, |
2944 |
emin, |
2945 |
emax, |
2946 |
targetHardnessToRound, |
2947 |
debug = True): |
2948 |
""" |
2949 |
Changes from V5: |
2950 |
Very verbose |
2951 |
Changes from V4: |
2952 |
Approximation polynomial has coefficients rounded. |
2953 |
Changes from V3: |
2954 |
Root search is changed again: |
2955 |
- only resultants in i are computed; |
2956 |
- roots in i are searched for; |
2957 |
- if any, they are tested for hardness-to-round. |
2958 |
Changes from V2: |
2959 |
Root search is changed: |
2960 |
- we compute the resultants in i and in t; |
2961 |
- we compute the roots set of each of these resultants; |
2962 |
- we combine all the possible pairs between the two sets; |
2963 |
- we check these pairs in polynomials for correctness. |
2964 |
Changes from V1: |
2965 |
1- check for roots as soon as a resultant is computed; |
2966 |
2- once a non null resultant is found, check for roots; |
2967 |
3- constant resultant == no root. |
2968 |
""" |
2969 |
|
2970 |
if debug: |
2971 |
print "Function :", inputFunction |
2972 |
print "Lower bound :", inputLowerBound |
2973 |
print "Upper bounds :", inputUpperBound |
2974 |
print "Alpha :", alpha |
2975 |
print "Degree :", degree |
2976 |
print "Precision :", precision |
2977 |
print "Emin :", emin |
2978 |
print "Emax :", emax |
2979 |
print "Target hardness-to-round:", targetHardnessToRound |
2980 |
|
2981 |
## Important constants. |
2982 |
### Stretch the interval if no error happens. |
2983 |
noErrorIntervalStretch = 1 + 2^(-5) |
2984 |
### If no vector validates the Coppersmith condition, shrink the interval |
2985 |
# by the following factor. |
2986 |
noCoppersmithIntervalShrink = 1/2 |
2987 |
### If only (or at least) one vector validates the Coppersmith condition, |
2988 |
# shrink the interval by the following factor. |
2989 |
oneCoppersmithIntervalShrink = 3/4 |
2990 |
#### If only null resultants are found, shrink the interval by the |
2991 |
# following factor. |
2992 |
onlyNullResultantsShrink = 3/4 |
2993 |
## Structures. |
2994 |
RRR = RealField(precision) |
2995 |
RRIF = RealIntervalField(precision) |
2996 |
## Converting input bound into the "right" field. |
2997 |
lowerBound = RRR(inputLowerBound) |
2998 |
upperBound = RRR(inputUpperBound) |
2999 |
## Before going any further, check domain and image binade conditions. |
3000 |
print inputFunction(1).n() |
3001 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
3002 |
if output is None: |
3003 |
print "Invalid domain/image binades. Domain:",\ |
3004 |
lowerBound, upperBound, "Images:", \ |
3005 |
inputFunction(lowerBound), inputFunction(upperBound) |
3006 |
raise Exception("Invalid domain/image binades.") |
3007 |
lb = output[0] ; ub = output[1] |
3008 |
if lb != lowerBound or ub != upperBound: |
3009 |
print "lb:", lb, " - ub:", ub |
3010 |
print "Invalid domain/image binades. Domain:",\ |
3011 |
lowerBound, upperBound, "Images:", \ |
3012 |
inputFunction(lowerBound), inputFunction(upperBound) |
3013 |
raise Exception("Invalid domain/image binades.") |
3014 |
# |
3015 |
## Progam initialization |
3016 |
### Approximation polynomial accuracy and hardness to round. |
3017 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
3018 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
3019 |
### Significand to integer conversion ratio. |
3020 |
toIntegerFactor = 2^(precision-1) |
3021 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
3022 |
### Variables and rings for polynomials and root searching. |
3023 |
i=var('i') |
3024 |
t=var('t') |
3025 |
inputFunctionVariable = inputFunction.variables()[0] |
3026 |
function = inputFunction.subs({inputFunctionVariable:i}) |
3027 |
# Polynomial Rings over the integers, for root finding. |
3028 |
Zi = ZZ[i] |
3029 |
## Number of iterations limit. |
3030 |
maxIter = 100000 |
3031 |
# |
3032 |
## Compute the scaled function and the degree, in their Sollya version |
3033 |
# once for all. |
3034 |
(scaledf, sdlb, sdub, silb, siub) = \ |
3035 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
3036 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
3037 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
3038 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
3039 |
# |
3040 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
3041 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
3042 |
(unscalingFunction, scalingFunction) = \ |
3043 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
3044 |
#print scalingFunction, unscalingFunction |
3045 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
3046 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
3047 |
if internalSollyaPrec < 192: |
3048 |
internalSollyaPrec = 192 |
3049 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
3050 |
print "Sollya internal precision:", internalSollyaPrec |
3051 |
targetPlusOnePrecRF = RealField(RRR.prec()+1) |
3052 |
if internalSollyaPrec < 1024: |
3053 |
quasiExactRF = RealField(1014) |
3054 |
else: |
3055 |
quasiExactRF = RealField(internalSollyaPrec) |
3056 |
## Some variables. |
3057 |
### General variables |
3058 |
lb = sdlb |
3059 |
ub = sdub |
3060 |
nbw = 0 |
3061 |
intervalUlp = ub.ulp() |
3062 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
3063 |
ic = 0 |
3064 |
icAsInt = 0 # Set from ic. |
3065 |
solutionsSet = set() |
3066 |
tsErrorWidth = [] |
3067 |
csErrorVectors = [] |
3068 |
csVectorsResultants = [] |
3069 |
floatP = 0 # Taylor polynomial. |
3070 |
floatPcv = 0 # Ditto with variable change. |
3071 |
intvl = "" # Taylor interval |
3072 |
terr = 0 # Taylor error. |
3073 |
iterCount = 0 |
3074 |
htrnSet = set() |
3075 |
### Timers and counters. |
3076 |
wallTimeStart = 0 |
3077 |
cpuTimeStart = 0 |
3078 |
taylCondFailedCount = 0 |
3079 |
coppCondFailedCount = 0 |
3080 |
resultCondFailedCount = 0 |
3081 |
coppCondFailed = False |
3082 |
resultCondFailed = False |
3083 |
globalResultsList = [] |
3084 |
basisConstructionsCount = 0 |
3085 |
basisConstructionsFullTime = 0 |
3086 |
basisConstructionTime = 0 |
3087 |
reductionsCount = 0 |
3088 |
reductionsFullTime = 0 |
3089 |
reductionTime = 0 |
3090 |
resultantsComputationsCount = 0 |
3091 |
resultantsComputationsFullTime = 0 |
3092 |
resultantsComputationTime = 0 |
3093 |
rootsComputationsCount = 0 |
3094 |
rootsComputationsFullTime = 0 |
3095 |
rootsComputationTime = 0 |
3096 |
|
3097 |
## Global times are started here. |
3098 |
wallTimeStart = walltime() |
3099 |
cpuTimeStart = cputime() |
3100 |
## Main loop. |
3101 |
while True: |
3102 |
if lb >= sdub: |
3103 |
print "Lower bound reached upper bound." |
3104 |
break |
3105 |
if iterCount == maxIter: |
3106 |
print "Reached maxIter. Aborting" |
3107 |
break |
3108 |
iterCount += 1 |
3109 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
3110 |
"log2(numbers)." |
3111 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
3112 |
prceSo = slz_compute_polynomial_and_interval_01(scaledfSo, |
3113 |
degreeSo, |
3114 |
lb, |
3115 |
ub, |
3116 |
polyApproxAccur, |
3117 |
debug=True) |
3118 |
if debug: |
3119 |
print "Sollya Taylor polynomial:", pobyso_autoprint(prceSo[0]) |
3120 |
print "Sollya interval :", pobyso_autoprint(prceSo[1]) |
3121 |
print "Sollya interval center :", pobyso_autoprint(prceSo[2]) |
3122 |
print "Sollya Taylor error :", pobyso_autoprint(prceSo[3]) |
3123 |
|
3124 |
### Convert back the data into Sage space. |
3125 |
(floatP, floatPcv, intvl, ic, terr) = \ |
3126 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
3127 |
prceSo[1], prceSo[2], |
3128 |
prceSo[3])) |
3129 |
intvl = RRIF(intvl) |
3130 |
## Clean-up Sollya stuff. |
3131 |
for elem in prceSo: |
3132 |
sollya_lib_clear_obj(elem) |
3133 |
#print floatP, floatPcv, intvl, ic, terr |
3134 |
#print floatP |
3135 |
#print intvl.endpoints()[0].n(), \ |
3136 |
# ic.n(), |
3137 |
#intvl.endpoints()[1].n() |
3138 |
### Check returned data. |
3139 |
#### Is approximation error OK? |
3140 |
if terr > polyApproxAccur: |
3141 |
exceptionErrorMess = \ |
3142 |
"Approximation failed - computed error:" + \ |
3143 |
str(terr) + " - target error: " |
3144 |
exceptionErrorMess += \ |
3145 |
str(polyApproxAccur) + ". Aborting!" |
3146 |
raise Exception(exceptionErrorMess) |
3147 |
#### Is lower bound OK? |
3148 |
if lb != intvl.endpoints()[0]: |
3149 |
exceptionErrorMess = "Wrong lower bound:" + \ |
3150 |
str(lb) + ". Aborting!" |
3151 |
raise Exception(exceptionErrorMess) |
3152 |
#### Set upper bound. |
3153 |
if ub > intvl.endpoints()[1]: |
3154 |
ub = intvl.endpoints()[1] |
3155 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
3156 |
"log2(numbers)." |
3157 |
taylCondFailedCount += 1 |
3158 |
#### Is interval not degenerate? |
3159 |
if lb >= ub: |
3160 |
exceptionErrorMess = "Degenerate interval: " + \ |
3161 |
"lowerBound(" + str(lb) +\ |
3162 |
")>= upperBound(" + str(ub) + \ |
3163 |
"). Aborting!" |
3164 |
raise Exception(exceptionErrorMess) |
3165 |
#### Is interval center ok? |
3166 |
if ic <= lb or ic >= ub: |
3167 |
exceptionErrorMess = "Invalid interval center for " + \ |
3168 |
str(lb) + ',' + str(ic) + ',' + \ |
3169 |
str(ub) + ". Aborting!" |
3170 |
raise Exception(exceptionErrorMess) |
3171 |
##### Current interval width and reset future interval width. |
3172 |
bw = ub - lb |
3173 |
nbw = 0 |
3174 |
icAsInt = int(ic * toIntegerFactor) |
3175 |
#### The following ratio is always >= 1. In case we may want to |
3176 |
# enlarge the interval |
3177 |
curTaylErrRat = polyApproxAccur / terr |
3178 |
### Make the integral transformations. |
3179 |
#### Bounds and interval center. |
3180 |
intIc = int(ic * toIntegerFactor) |
3181 |
intLb = int(lb * toIntegerFactor) - intIc |
3182 |
intUb = int(ub * toIntegerFactor) - intIc |
3183 |
# |
3184 |
#### Polynomials |
3185 |
basisConstructionTime = cputime() |
3186 |
##### To a polynomial with rational coefficients with rational arguments |
3187 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
3188 |
if debug: |
3189 |
print "Polynomial: rational coefficients for rational argument:" |
3190 |
print ratRatP |
3191 |
##### To a polynomial with rational coefficients with integer arguments |
3192 |
ratIntP = \ |
3193 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
3194 |
if debug: |
3195 |
print "Polynomial: rational coefficients for integer argument:" |
3196 |
print ratIntP |
3197 |
##### Ultimately a multivariate polynomial with integer coefficients |
3198 |
# with integer arguments. |
3199 |
coppersmithTuple = \ |
3200 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
3201 |
precision, |
3202 |
targetHardnessToRound, |
3203 |
i, t) |
3204 |
#### Recover Coppersmith information. |
3205 |
intIntP = coppersmithTuple[0] |
3206 |
N = coppersmithTuple[1] |
3207 |
nAtAlpha = N^alpha |
3208 |
tBound = coppersmithTuple[2] |
3209 |
leastCommonMultiple = coppersmithTuple[3] |
3210 |
iBound = max(abs(intLb),abs(intUb)) |
3211 |
if debug: |
3212 |
print "Polynomial: integer coefficients for integer argument:" |
3213 |
print intIntP |
3214 |
print "N:", N |
3215 |
print "t bound:", tBound |
3216 |
print "i bound:", iBound |
3217 |
print "Least common multiple:", leastCommonMultiple |
3218 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
3219 |
basisConstructionsCount += 1 |
3220 |
""" |
3221 |
#### Compute the matrix to reduce. |
3222 |
matrixToReduce = slz_compute_initial_lattice_matrix(intIntP, |
3223 |
alpha, |
3224 |
N, |
3225 |
iBound, |
3226 |
tBound) |
3227 |
matrixFile = file('/tmp/matrixToReduce.txt', 'w') |
3228 |
for row in matrixToReduce.rows(): |
3229 |
matrixFile.write(str(row) + "\n") |
3230 |
matrixFile.close() |
3231 |
raise Exception("Deliberate stop here.") |
3232 |
""" |
3233 |
reductionTime = cputime() |
3234 |
#### Compute the reduced polynomials. |
3235 |
ccReducedPolynomialsList = \ |
3236 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
3237 |
alpha, |
3238 |
N, |
3239 |
iBound, |
3240 |
tBound) |
3241 |
if ccReducedPolynomialsList is None: |
3242 |
raise Exception("Reduction failed.") |
3243 |
reductionsFullTime += cputime(reductionTime) |
3244 |
reductionsCount += 1 |
3245 |
if len(ccReducedPolynomialsList) < 2: |
3246 |
print "Nothing to form resultants with." |
3247 |
|
3248 |
coppCondFailedCount += 1 |
3249 |
coppCondFailed = True |
3250 |
##### Apply a different shrink factor according to |
3251 |
# the number of compliant polynomials. |
3252 |
if len(ccReducedPolynomialsList) == 0: |
3253 |
ub = lb + bw * noCoppersmithIntervalShrink |
3254 |
else: # At least one compliant polynomial. |
3255 |
ub = lb + bw * oneCoppersmithIntervalShrink |
3256 |
if ub > sdub: |
3257 |
ub = sdub |
3258 |
if lb == ub: |
3259 |
raise Exception("Cant shrink interval \ |
3260 |
anymore to get Coppersmith condition.") |
3261 |
nbw = 0 |
3262 |
continue |
3263 |
#### We have at least two polynomials. |
3264 |
# Let us try to compute resultants. |
3265 |
# For each resultant computed, go for the solutions. |
3266 |
##### Build the pairs list. |
3267 |
polyPairsList = [] |
3268 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
3269 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
3270 |
len(ccReducedPolynomialsList)): |
3271 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
3272 |
ccReducedPolynomialsList[polyInnerIndex])) |
3273 |
#### Actual root search. |
3274 |
iRootsSet = set() |
3275 |
hasNonNullResultant = False |
3276 |
for polyPair in polyPairsList: |
3277 |
resultantsComputationTime = cputime() |
3278 |
currentResultantI = \ |
3279 |
slz_resultant(polyPair[0], |
3280 |
polyPair[1], |
3281 |
t) |
3282 |
resultantsComputationsCount += 1 |
3283 |
resultantsComputationsFullTime += \ |
3284 |
cputime(resultantsComputationTime) |
3285 |
#### Function slz_resultant returns None both for None and O |
3286 |
# resultants. |
3287 |
if currentResultantI is None: |
3288 |
print "Nul resultant" |
3289 |
continue # Next polyPair. |
3290 |
## We deleted the currentResultantI computation. |
3291 |
#### We have a non null resultant. From now on, whatever this |
3292 |
# root search yields, no extra root search is necessary. |
3293 |
hasNonNullResultant = True |
3294 |
#### A constant resultant leads to no root. Root search is done. |
3295 |
if currentResultantI.degree() < 1: |
3296 |
print "Resultant is constant:", currentResultantI |
3297 |
break # There is no root. |
3298 |
#### Actual iroots computation. |
3299 |
rootsComputationTime = cputime() |
3300 |
iRootsList = Zi(currentResultantI).roots() |
3301 |
rootsComputationsCount += 1 |
3302 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
3303 |
if len(iRootsList) == 0: |
3304 |
print "No roots in \"i\"." |
3305 |
break # No roots in i. |
3306 |
else: |
3307 |
for iRoot in iRootsList: |
3308 |
# A root is given as a (value, multiplicity) tuple. |
3309 |
iRootsSet.add(iRoot[0]) |
3310 |
# End loop for polyPair in polyParsList. We only loop again if a |
3311 |
# None or zero resultant is found. |
3312 |
#### Prepare for results for the current interval.. |
3313 |
intervalResultsList = [] |
3314 |
intervalResultsList.append((lb, ub)) |
3315 |
#### Check roots. |
3316 |
rootsResultsList = [] |
3317 |
for iRoot in iRootsSet: |
3318 |
specificRootResultsList = [] |
3319 |
failingBounds = [] |
3320 |
# Root qualifies for modular equation, test it for hardness to round. |
3321 |
hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor) |
3322 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
3323 |
#print scalingFunction |
3324 |
scaledHardToRoundCaseAsFloat = \ |
3325 |
scalingFunction(hardToRoundCaseAsFloat) |
3326 |
print "Candidate HTRNc at x =", \ |
3327 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
3328 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
3329 |
function, |
3330 |
2^-(targetHardnessToRound), |
3331 |
RRR, |
3332 |
targetPlusOnePrecRF, |
3333 |
quasiExactRF): |
3334 |
print hardToRoundCaseAsFloat, "is HTRN case." |
3335 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
3336 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
3337 |
print "Found in interval." |
3338 |
else: |
3339 |
print "Found out of interval." |
3340 |
# Check the i root is within the i bound. |
3341 |
if abs(iRoot) > iBound: |
3342 |
print "IRoot", iRoot, "is out of bounds for modular equation." |
3343 |
print "i bound:", iBound |
3344 |
failingBounds.append('i') |
3345 |
failingBounds.append(iRoot) |
3346 |
failingBounds.append(iBound) |
3347 |
if len(failingBounds) > 0: |
3348 |
specificRootResultsList.append(failingBounds) |
3349 |
else: # From slz_is_htrn... |
3350 |
print "is not an HTRN case." |
3351 |
if len(specificRootResultsList) > 0: |
3352 |
rootsResultsList.append(specificRootResultsList) |
3353 |
if len(rootsResultsList) > 0: |
3354 |
intervalResultsList.append(rootsResultsList) |
3355 |
### Check if a non null resultant was found. If not shrink the interval. |
3356 |
if not hasNonNullResultant: |
3357 |
print "Only null resultants for this reduction, shrinking interval." |
3358 |
resultCondFailed = True |
3359 |
resultCondFailedCount += 1 |
3360 |
### Shrink interval for next iteration. |
3361 |
ub = lb + bw * onlyNullResultantsShrink |
3362 |
if ub > sdub: |
3363 |
ub = sdub |
3364 |
nbw = 0 |
3365 |
continue |
3366 |
#### An intervalResultsList has at least the bounds. |
3367 |
globalResultsList.append(intervalResultsList) |
3368 |
#### Compute an incremented width for next upper bound, only |
3369 |
# if not Coppersmith condition nor resultant condition |
3370 |
# failed at the previous run. |
3371 |
if not coppCondFailed and not resultCondFailed: |
3372 |
nbw = noErrorIntervalStretch * bw |
3373 |
else: |
3374 |
nbw = bw |
3375 |
##### Reset the failure flags. They will be raised |
3376 |
# again if needed. |
3377 |
coppCondFailed = False |
3378 |
resultCondFailed = False |
3379 |
#### For next iteration (at end of loop) |
3380 |
#print "nbw:", nbw |
3381 |
lb = ub |
3382 |
ub += nbw |
3383 |
if ub > sdub: |
3384 |
ub = sdub |
3385 |
|
3386 |
# End while True |
3387 |
## Main loop just ended. |
3388 |
globalWallTime = walltime(wallTimeStart) |
3389 |
globalCpuTime = cputime(cpuTimeStart) |
3390 |
## Output results |
3391 |
print ; print "Intervals and HTRNs" ; print |
3392 |
for intervalResultsList in globalResultsList: |
3393 |
intervalResultString = "[" + str(intervalResultsList[0][0]) +\ |
3394 |
"," + str(intervalResultsList[0][1]) + "]" |
3395 |
print intervalResultString, |
3396 |
if len(intervalResultsList) > 1: |
3397 |
rootsResultsList = intervalResultsList[1] |
3398 |
specificRootResultIndex = 0 |
3399 |
for specificRootResultsList in rootsResultsList: |
3400 |
if specificRootResultIndex == 0: |
3401 |
print "\t", specificRootResultsList[0], |
3402 |
else: |
3403 |
print " " * len(intervalResultString), "\t", \ |
3404 |
specificRootResultsList[0], |
3405 |
if len(specificRootResultsList) > 1: |
3406 |
print specificRootResultsList[1] |
3407 |
specificRootResultIndex += 1 |
3408 |
print ; print |
3409 |
#print globalResultsList |
3410 |
# |
3411 |
print "Timers and counters" |
3412 |
|
3413 |
print "Number of iterations:", iterCount |
3414 |
print "Taylor condition failures:", taylCondFailedCount |
3415 |
print "Coppersmith condition failures:", coppCondFailedCount |
3416 |
print "Resultant condition failures:", resultCondFailedCount |
3417 |
print "Iterations count: ", iterCount |
3418 |
print "Number of intervals:", len(globalResultsList) |
3419 |
print "Number of basis constructions:", basisConstructionsCount |
3420 |
print "Total CPU time spent in basis constructions:", \ |
3421 |
basisConstructionsFullTime |
3422 |
if basisConstructionsCount != 0: |
3423 |
print "Average basis construction CPU time:", \ |
3424 |
basisConstructionsFullTime/basisConstructionsCount |
3425 |
print "Number of reductions:", reductionsCount |
3426 |
print "Total CPU time spent in reductions:", reductionsFullTime |
3427 |
if reductionsCount != 0: |
3428 |
print "Average reduction CPU time:", \ |
3429 |
reductionsFullTime/reductionsCount |
3430 |
print "Number of resultants computation rounds:", \ |
3431 |
resultantsComputationsCount |
3432 |
print "Total CPU time spent in resultants computation rounds:", \ |
3433 |
resultantsComputationsFullTime |
3434 |
if resultantsComputationsCount != 0: |
3435 |
print "Average resultants computation round CPU time:", \ |
3436 |
resultantsComputationsFullTime/resultantsComputationsCount |
3437 |
print "Number of root finding rounds:", rootsComputationsCount |
3438 |
print "Total CPU time spent in roots finding rounds:", \ |
3439 |
rootsComputationsFullTime |
3440 |
if rootsComputationsCount != 0: |
3441 |
print "Average roots finding round CPU time:", \ |
3442 |
rootsComputationsFullTime/rootsComputationsCount |
3443 |
print "Global Wall time:", globalWallTime |
3444 |
print "Global CPU time:", globalCpuTime |
3445 |
## Output counters |
3446 |
# End srs_runSLZ-v06 |