Révision 213 pobysoPythonSage/src/sageSLZ/sageRunSLZ.sage
sageRunSLZ.sage (revision 213) | ||
---|---|---|
1 |
r""" |
|
2 |
Main SLZ algorithm body in several versions. |
|
3 |
|
|
4 |
AUTHORS: |
|
5 |
- S.T. (2015-10-10): initial version |
|
6 |
|
|
7 |
Examples: |
|
8 |
TODO |
|
1 | 9 |
""" |
10 |
print "sageRationalOperations loading..." |
|
11 |
|
|
12 |
def srs_compute_lattice_volume(inputFunction, |
|
13 |
inputLowerBound, |
|
14 |
inputUpperBound, |
|
15 |
alpha, |
|
16 |
degree, |
|
17 |
precision, |
|
18 |
emin, |
|
19 |
emax, |
|
20 |
targetHardnessToRound, |
|
21 |
debug = False): |
|
22 |
""" |
|
23 |
Changes from V2: |
|
24 |
Root search is changed: |
|
25 |
- we compute the resultants in i and in t; |
|
26 |
- we compute the roots set of each of these resultants; |
|
27 |
- we combine all the possible pairs between the two sets; |
|
28 |
- we check these pairs in polynomials for correctness. |
|
29 |
Changes from V1: |
|
30 |
1- check for roots as soon as a resultant is computed; |
|
31 |
2- once a non null resultant is found, check for roots; |
|
32 |
3- constant resultant == no root. |
|
33 |
""" |
|
34 |
|
|
35 |
if debug: |
|
36 |
print "Function :", inputFunction |
|
37 |
print "Lower bound :", inputLowerBound |
|
38 |
print "Upper bounds :", inputUpperBound |
|
39 |
print "Alpha :", alpha |
|
40 |
print "Degree :", degree |
|
41 |
print "Precision :", precision |
|
42 |
print "Emin :", emin |
|
43 |
print "Emax :", emax |
|
44 |
print "Target hardness-to-round:", targetHardnessToRound |
|
45 |
|
|
46 |
## Important constants. |
|
47 |
### Stretch the interval if no error happens. |
|
48 |
noErrorIntervalStretch = 1 + 2^(-5) |
|
49 |
### If no vector validates the Coppersmith condition, shrink the interval |
|
50 |
# by the following factor. |
|
51 |
noCoppersmithIntervalShrink = 1/2 |
|
52 |
### If only (or at least) one vector validates the Coppersmith condition, |
|
53 |
# shrink the interval by the following factor. |
|
54 |
oneCoppersmithIntervalShrink = 3/4 |
|
55 |
#### If only null resultants are found, shrink the interval by the |
|
56 |
# following factor. |
|
57 |
onlyNullResultantsShrink = 3/4 |
|
58 |
## Structures. |
|
59 |
RRR = RealField(precision) |
|
60 |
RRIF = RealIntervalField(precision) |
|
61 |
## Converting input bound into the "right" field. |
|
62 |
lowerBound = RRR(inputLowerBound) |
|
63 |
upperBound = RRR(inputUpperBound) |
|
64 |
## Before going any further, check domain and image binade conditions. |
|
65 |
print inputFunction(1).n() |
|
66 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
|
67 |
if output is None: |
|
68 |
print "Invalid domain/image binades. Domain:",\ |
|
69 |
lowerBound, upperBound, "Images:", \ |
|
70 |
inputFunction(lowerBound), inputFunction(upperBound) |
|
71 |
raise Exception("Invalid domain/image binades.") |
|
72 |
lb = output[0] ; ub = output[1] |
|
73 |
if lb != lowerBound or ub != upperBound: |
|
74 |
print "lb:", lb, " - ub:", ub |
|
75 |
print "Invalid domain/image binades. Domain:",\ |
|
76 |
lowerBound, upperBound, "Images:", \ |
|
77 |
inputFunction(lowerBound), inputFunction(upperBound) |
|
78 |
raise Exception("Invalid domain/image binades.") |
|
79 |
# |
|
80 |
## Progam initialization |
|
81 |
### Approximation polynomial accuracy and hardness to round. |
|
82 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
|
83 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
|
84 |
### Significand to integer conversion ratio. |
|
85 |
toIntegerFactor = 2^(precision-1) |
|
86 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
|
87 |
### Variables and rings for polynomials and root searching. |
|
88 |
i=var('i') |
|
89 |
t=var('t') |
|
90 |
inputFunctionVariable = inputFunction.variables()[0] |
|
91 |
function = inputFunction.subs({inputFunctionVariable:i}) |
|
92 |
# Polynomial Rings over the integers, for root finding. |
|
93 |
Zi = ZZ[i] |
|
94 |
Zt = ZZ[t] |
|
95 |
Zit = ZZ[i,t] |
|
96 |
## Number of iterations limit. |
|
97 |
maxIter = 100000 |
|
98 |
# |
|
99 |
## Compute the scaled function and the degree, in their Sollya version |
|
100 |
# once for all. |
|
101 |
(scaledf, sdlb, sdub, silb, siub) = \ |
|
102 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
|
103 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
|
104 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
|
105 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
|
106 |
# |
|
107 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
|
108 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
|
109 |
(unscalingFunction, scalingFunction) = \ |
|
110 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
|
111 |
#print scalingFunction, unscalingFunction |
|
112 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
|
113 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
|
114 |
if internalSollyaPrec < 192: |
|
115 |
internalSollyaPrec = 192 |
|
116 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
|
117 |
print "Sollya internal precision:", internalSollyaPrec |
|
118 |
## Some variables. |
|
119 |
### General variables |
|
120 |
lb = sdlb |
|
121 |
ub = sdub |
|
122 |
nbw = 0 |
|
123 |
intervalUlp = ub.ulp() |
|
124 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
|
125 |
ic = 0 |
|
126 |
icAsInt = 0 # Set from ic. |
|
127 |
solutionsSet = set() |
|
128 |
tsErrorWidth = [] |
|
129 |
csErrorVectors = [] |
|
130 |
csVectorsResultants = [] |
|
131 |
floatP = 0 # Taylor polynomial. |
|
132 |
floatPcv = 0 # Ditto with variable change. |
|
133 |
intvl = "" # Taylor interval |
|
134 |
terr = 0 # Taylor error. |
|
135 |
iterCount = 0 |
|
136 |
htrnSet = set() |
|
137 |
### Timers and counters. |
|
138 |
wallTimeStart = 0 |
|
139 |
cpuTimeStart = 0 |
|
140 |
taylCondFailedCount = 0 |
|
141 |
coppCondFailedCount = 0 |
|
142 |
resultCondFailedCount = 0 |
|
143 |
coppCondFailed = False |
|
144 |
resultCondFailed = False |
|
145 |
globalResultsList = [] |
|
146 |
basisConstructionsCount = 0 |
|
147 |
basisConstructionsFullTime = 0 |
|
148 |
basisConstructionTime = 0 |
|
149 |
reductionsCount = 0 |
|
150 |
reductionsFullTime = 0 |
|
151 |
reductionTime = 0 |
|
152 |
resultantsComputationsCount = 0 |
|
153 |
resultantsComputationsFullTime = 0 |
|
154 |
resultantsComputationTime = 0 |
|
155 |
rootsComputationsCount = 0 |
|
156 |
rootsComputationsFullTime = 0 |
|
157 |
rootsComputationTime = 0 |
|
158 |
|
|
159 |
## Global times are started here. |
|
160 |
wallTimeStart = walltime() |
|
161 |
cpuTimeStart = cputime() |
|
162 |
## Main loop. |
|
163 |
while True: |
|
164 |
if lb >= sdub: |
|
165 |
print "Lower bound reached upper bound." |
|
166 |
break |
|
167 |
if iterCount == maxIter: |
|
168 |
print "Reached maxIter. Aborting" |
|
169 |
break |
|
170 |
iterCount += 1 |
|
171 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
|
172 |
"log2(numbers)." |
|
173 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
|
174 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
|
175 |
degreeSo, |
|
176 |
lb, |
|
177 |
ub, |
|
178 |
polyApproxAccur) |
|
179 |
### Convert back the data into Sage space. |
|
180 |
(floatP, floatPcv, intvl, ic, terr) = \ |
|
181 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
|
182 |
prceSo[1], prceSo[2], |
|
183 |
prceSo[3])) |
|
184 |
intvl = RRIF(intvl) |
|
185 |
## Clean-up Sollya stuff. |
|
186 |
for elem in prceSo: |
|
187 |
sollya_lib_clear_obj(elem) |
|
188 |
#print floatP, floatPcv, intvl, ic, terr |
|
189 |
#print floatP |
|
190 |
#print intvl.endpoints()[0].n(), \ |
|
191 |
# ic.n(), |
|
192 |
#intvl.endpoints()[1].n() |
|
193 |
### Check returned data. |
|
194 |
#### Is approximation error OK? |
|
195 |
if terr > polyApproxAccur: |
|
196 |
exceptionErrorMess = \ |
|
197 |
"Approximation failed - computed error:" + \ |
|
198 |
str(terr) + " - target error: " |
|
199 |
exceptionErrorMess += \ |
|
200 |
str(polyApproxAccur) + ". Aborting!" |
|
201 |
raise Exception(exceptionErrorMess) |
|
202 |
#### Is lower bound OK? |
|
203 |
if lb != intvl.endpoints()[0]: |
|
204 |
exceptionErrorMess = "Wrong lower bound:" + \ |
|
205 |
str(lb) + ". Aborting!" |
|
206 |
raise Exception(exceptionErrorMess) |
|
207 |
#### Set upper bound. |
|
208 |
if ub > intvl.endpoints()[1]: |
|
209 |
ub = intvl.endpoints()[1] |
|
210 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
|
211 |
"log2(numbers)." |
|
212 |
taylCondFailedCount += 1 |
|
213 |
#### Is interval not degenerate? |
|
214 |
if lb >= ub: |
|
215 |
exceptionErrorMess = "Degenerate interval: " + \ |
|
216 |
"lowerBound(" + str(lb) +\ |
|
217 |
")>= upperBound(" + str(ub) + \ |
|
218 |
"). Aborting!" |
|
219 |
raise Exception(exceptionErrorMess) |
|
220 |
#### Is interval center ok? |
|
221 |
if ic <= lb or ic >= ub: |
|
222 |
exceptionErrorMess = "Invalid interval center for " + \ |
|
223 |
str(lb) + ',' + str(ic) + ',' + \ |
|
224 |
str(ub) + ". Aborting!" |
|
225 |
raise Exception(exceptionErrorMess) |
|
226 |
##### Current interval width and reset future interval width. |
|
227 |
bw = ub - lb |
|
228 |
nbw = 0 |
|
229 |
icAsInt = int(ic * toIntegerFactor) |
|
230 |
#### The following ratio is always >= 1. In case we may want to |
|
231 |
# enlarge the interval |
|
232 |
curTaylErrRat = polyApproxAccur / terr |
|
233 |
### Make the integral transformations. |
|
234 |
#### Bounds and interval center. |
|
235 |
intIc = int(ic * toIntegerFactor) |
|
236 |
intLb = int(lb * toIntegerFactor) - intIc |
|
237 |
intUb = int(ub * toIntegerFactor) - intIc |
|
238 |
# |
|
239 |
#### Polynomials |
|
240 |
basisConstructionTime = cputime() |
|
241 |
##### To a polynomial with rational coefficients with rational arguments |
|
242 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
|
243 |
##### To a polynomial with rational coefficients with integer arguments |
|
244 |
ratIntP = \ |
|
245 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
|
246 |
##### Ultimately a multivariate polynomial with integer coefficients |
|
247 |
# with integer arguments. |
|
248 |
coppersmithTuple = \ |
|
249 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
|
250 |
precision, |
|
251 |
targetHardnessToRound, |
|
252 |
i, t) |
|
253 |
#### Recover Coppersmith information. |
|
254 |
intIntP = coppersmithTuple[0] |
|
255 |
N = coppersmithTuple[1] |
|
256 |
nAtAlpha = N^alpha |
|
257 |
tBound = coppersmithTuple[2] |
|
258 |
leastCommonMultiple = coppersmithTuple[3] |
|
259 |
iBound = max(abs(intLb),abs(intUb)) |
|
260 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
|
261 |
basisConstructionsCount += 1 |
|
262 |
reductionTime = cputime() |
|
263 |
#### Compute the reduced polynomials. |
|
264 |
ccReducedPolynomialsList = \ |
|
265 |
slz_compute_coppersmith_reduced_polynomials_with_lattice_volume(intIntP, |
|
266 |
alpha, |
|
267 |
N, |
|
268 |
iBound, |
|
269 |
tBound) |
|
270 |
if ccReducedPolynomialsList is None: |
|
271 |
raise Exception("Reduction failed.") |
|
272 |
reductionsFullTime += cputime(reductionTime) |
|
273 |
reductionsCount += 1 |
|
274 |
if len(ccReducedPolynomialsList) < 2: |
|
275 |
print "Nothing to form resultants with." |
|
276 |
|
|
277 |
coppCondFailedCount += 1 |
|
278 |
coppCondFailed = True |
|
279 |
##### Apply a different shrink factor according to |
|
280 |
# the number of compliant polynomials. |
|
281 |
if len(ccReducedPolynomialsList) == 0: |
|
282 |
ub = lb + bw * noCoppersmithIntervalShrink |
|
283 |
else: # At least one compliant polynomial. |
|
284 |
ub = lb + bw * oneCoppersmithIntervalShrink |
|
285 |
if ub > sdub: |
|
286 |
ub = sdub |
|
287 |
if lb == ub: |
|
288 |
raise Exception("Cant shrink interval \ |
|
289 |
anymore to get Coppersmith condition.") |
|
290 |
nbw = 0 |
|
291 |
continue |
|
292 |
#### We have at least two polynomials. |
|
293 |
# Let us try to compute resultants. |
|
294 |
# For each resultant computed, go for the solutions. |
|
295 |
##### Build the pairs list. |
|
296 |
polyPairsList = [] |
|
297 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
|
298 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
|
299 |
len(ccReducedPolynomialsList)): |
|
300 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
|
301 |
ccReducedPolynomialsList[polyInnerIndex])) |
|
302 |
#### Actual root search. |
|
303 |
rootsSet = set() |
|
304 |
hasNonNullResultant = False |
|
305 |
for polyPair in polyPairsList: |
|
306 |
if hasNonNullResultant: |
|
307 |
break |
|
308 |
resultantsComputationTime = cputime() |
|
309 |
currentResultantI = \ |
|
310 |
slz_resultant(polyPair[0], |
|
311 |
polyPair[1], |
|
312 |
t) |
|
313 |
resultantsComputationsCount += 1 |
|
314 |
if currentResultantI is None: |
|
315 |
resultantsComputationsFullTime += \ |
|
316 |
cputime(resultantsComputationTime) |
|
317 |
print "Nul resultant" |
|
318 |
continue # Next polyPair. |
|
319 |
currentResultantT = \ |
|
320 |
slz_resultant(polyPair[0], |
|
321 |
polyPair[1], |
|
322 |
i) |
|
323 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
|
324 |
resultantsComputationsCount += 1 |
|
325 |
if currentResultantT is None: |
|
326 |
print "Nul resultant" |
|
327 |
continue # Next polyPair. |
|
328 |
else: |
|
329 |
hasNonNullResultant = True |
|
330 |
#### We have a non null resultants pair. From now on, whatever the |
|
331 |
# root search yields, no extra root search is necessary. |
|
332 |
#### A constant resultant leads to no root. Root search is done. |
|
333 |
if currentResultantI.degree() < 1: |
|
334 |
print "Resultant is constant:", currentResultantI |
|
335 |
break # Next polyPair and should break. |
|
336 |
if currentResultantT.degree() < 1: |
|
337 |
print "Resultant is constant:", currentResultantT |
|
338 |
break # Next polyPair and should break. |
|
339 |
#### Actual roots computation. |
|
340 |
rootsComputationTime = cputime() |
|
341 |
##### Compute i roots |
|
342 |
iRootsList = Zi(currentResultantI).roots() |
|
343 |
rootsComputationsCount += 1 |
|
344 |
if len(iRootsList) == 0: |
|
345 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
|
346 |
print "No roots in \"i\"." |
|
347 |
break # No roots in i. |
|
348 |
tRootsList = Zt(currentResultantT).roots() |
|
349 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
|
350 |
rootsComputationsCount += 1 |
|
351 |
if len(tRootsList) == 0: |
|
352 |
print "No roots in \"t\"." |
|
353 |
break # No roots in i. |
|
354 |
##### For each iRoot, get a tRoot and check against the polynomials. |
|
355 |
for iRoot in iRootsList: |
|
356 |
####### Roots returned by roots() are (value, multiplicity) |
|
357 |
# tuples. |
|
358 |
#print "iRoot:", iRoot |
|
359 |
for tRoot in tRootsList: |
|
360 |
###### Use the tRoot against each polynomial, alternatively. |
|
361 |
if polyPair[0](iRoot[0],tRoot[0]) != 0: |
|
362 |
continue |
|
363 |
if polyPair[1](iRoot[0],tRoot[0]) != 0: |
|
364 |
continue |
|
365 |
rootsSet.add((iRoot[0], tRoot[0])) |
|
366 |
# End of roots computation. |
|
367 |
# End loop for polyPair in polyParsList. Will break at next iteration. |
|
368 |
# since a non null resultant was found. |
|
369 |
#### Prepare for results for the current interval.. |
|
370 |
intervalResultsList = [] |
|
371 |
intervalResultsList.append((lb, ub)) |
|
372 |
#### Check roots. |
|
373 |
rootsResultsList = [] |
|
374 |
for root in rootsSet: |
|
375 |
specificRootResultsList = [] |
|
376 |
failingBounds = [] |
|
377 |
intIntPdivN = intIntP(root[0], root[1]) / N |
|
378 |
if int(intIntPdivN) != intIntPdivN: |
|
379 |
continue # Next root |
|
380 |
# Root qualifies for modular equation, test it for hardness to round. |
|
381 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
|
382 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
|
383 |
#print scalingFunction |
|
384 |
scaledHardToRoundCaseAsFloat = \ |
|
385 |
scalingFunction(hardToRoundCaseAsFloat) |
|
386 |
print "Candidate HTRNc at x =", \ |
|
387 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
|
388 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
|
389 |
function, |
|
390 |
2^-(targetHardnessToRound), |
|
391 |
RRR): |
|
392 |
print hardToRoundCaseAsFloat, "is HTRN case." |
|
393 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
|
394 |
print "Found in interval." |
|
395 |
else: |
|
396 |
print "Found out of interval." |
|
397 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
|
398 |
# Check the root is in the bounds |
|
399 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
|
400 |
print "Root", root, "is out of bounds for modular equation." |
|
401 |
if abs(root[0]) > iBound: |
|
402 |
print "root[0]:", root[0] |
|
403 |
print "i bound:", iBound |
|
404 |
failingBounds.append('i') |
|
405 |
failingBounds.append(root[0]) |
|
406 |
failingBounds.append(iBound) |
|
407 |
if abs(root[1]) > tBound: |
|
408 |
print "root[1]:", root[1] |
|
409 |
print "t bound:", tBound |
|
410 |
failingBounds.append('t') |
|
411 |
failingBounds.append(root[1]) |
|
412 |
failingBounds.append(tBound) |
|
413 |
if len(failingBounds) > 0: |
|
414 |
specificRootResultsList.append(failingBounds) |
|
415 |
else: # From slz_is_htrn... |
|
416 |
print "is not an HTRN case." |
|
417 |
if len(specificRootResultsList) > 0: |
|
418 |
rootsResultsList.append(specificRootResultsList) |
|
419 |
if len(rootsResultsList) > 0: |
|
420 |
intervalResultsList.append(rootsResultsList) |
|
421 |
### Check if a non null resultant was found. If not shrink the interval. |
|
422 |
if not hasNonNullResultant: |
|
423 |
print "Only null resultants for this reduction, shrinking interval." |
|
424 |
resultCondFailed = True |
|
425 |
resultCondFailedCount += 1 |
|
426 |
### Shrink interval for next iteration. |
|
427 |
ub = lb + bw * onlyNullResultantsShrink |
|
428 |
if ub > sdub: |
|
429 |
ub = sdub |
|
430 |
nbw = 0 |
|
431 |
continue |
|
432 |
#### An intervalResultsList has at least the bounds. |
|
433 |
globalResultsList.append(intervalResultsList) |
|
434 |
#### Compute an incremented width for next upper bound, only |
|
435 |
# if not Coppersmith condition nor resultant condition |
|
436 |
# failed at the previous run. |
|
437 |
if not coppCondFailed and not resultCondFailed: |
|
438 |
nbw = noErrorIntervalStretch * bw |
|
439 |
else: |
|
440 |
nbw = bw |
|
441 |
##### Reset the failure flags. They will be raised |
|
442 |
# again if needed. |
|
443 |
coppCondFailed = False |
|
444 |
resultCondFailed = False |
|
445 |
#### For next iteration (at end of loop) |
|
446 |
#print "nbw:", nbw |
|
447 |
lb = ub |
|
448 |
ub += nbw |
|
449 |
if ub > sdub: |
|
450 |
ub = sdub |
|
451 |
|
|
452 |
# End while True |
|
453 |
## Main loop just ended. |
|
454 |
globalWallTime = walltime(wallTimeStart) |
|
455 |
globalCpuTime = cputime(cpuTimeStart) |
|
456 |
## Output results |
|
457 |
print ; print "Intervals and HTRNs" ; print |
|
458 |
for intervalResultsList in globalResultsList: |
|
459 |
print "[", intervalResultsList[0][0], ",",intervalResultsList[0][1], "]", |
|
460 |
if len(intervalResultsList) > 1: |
|
461 |
rootsResultsList = intervalResultsList[1] |
|
462 |
for specificRootResultsList in rootsResultsList: |
|
463 |
print "\t", specificRootResultsList[0], |
|
464 |
if len(specificRootResultsList) > 1: |
|
465 |
print specificRootResultsList[1], |
|
466 |
print ; print |
|
467 |
#print globalResultsList |
|
468 |
# |
|
469 |
print "Timers and counters" |
|
470 |
|
|
471 |
print "Number of iterations:", iterCount |
|
472 |
print "Taylor condition failures:", taylCondFailedCount |
|
473 |
print "Coppersmith condition failures:", coppCondFailedCount |
|
474 |
print "Resultant condition failures:", resultCondFailedCount |
|
475 |
print "Iterations count: ", iterCount |
|
476 |
print "Number of intervals:", len(globalResultsList) |
|
477 |
print "Number of basis constructions:", basisConstructionsCount |
|
478 |
print "Total CPU time spent in basis constructions:", \ |
|
479 |
basisConstructionsFullTime |
|
480 |
if basisConstructionsCount != 0: |
|
481 |
print "Average basis construction CPU time:", \ |
|
482 |
basisConstructionsFullTime/basisConstructionsCount |
|
483 |
print "Number of reductions:", reductionsCount |
|
484 |
print "Total CPU time spent in reductions:", reductionsFullTime |
|
485 |
if reductionsCount != 0: |
|
486 |
print "Average reduction CPU time:", \ |
|
487 |
reductionsFullTime/reductionsCount |
|
488 |
print "Number of resultants computation rounds:", \ |
|
489 |
resultantsComputationsCount |
|
490 |
print "Total CPU time spent in resultants computation rounds:", \ |
|
491 |
resultantsComputationsFullTime |
|
492 |
if resultantsComputationsCount != 0: |
|
493 |
print "Average resultants computation round CPU time:", \ |
|
494 |
resultantsComputationsFullTime/resultantsComputationsCount |
|
495 |
print "Number of root finding rounds:", rootsComputationsCount |
|
496 |
print "Total CPU time spent in roots finding rounds:", \ |
|
497 |
rootsComputationsFullTime |
|
498 |
if rootsComputationsCount != 0: |
|
499 |
print "Average roots finding round CPU time:", \ |
|
500 |
rootsComputationsFullTime/rootsComputationsCount |
|
501 |
print "Global Wall time:", globalWallTime |
|
502 |
print "Global CPU time:", globalCpuTime |
|
503 |
## Output counters |
|
504 |
# End srs_compute_lattice_volume |
|
505 |
|
|
506 |
""" |
|
2 | 507 |
SLZ runtime function. |
3 | 508 |
""" |
4 | 509 |
|
... | ... | |
1431 | 1936 |
## Output counters |
1432 | 1937 |
# End srs_runSLZ-v03 |
1433 | 1938 |
|
1434 |
def srs_compute_lattice_volume(inputFunction,
|
|
1939 |
def srs_run_SLZ_v04(inputFunction,
|
|
1435 | 1940 |
inputLowerBound, |
1436 | 1941 |
inputUpperBound, |
1437 | 1942 |
alpha, |
... | ... | |
1442 | 1947 |
targetHardnessToRound, |
1443 | 1948 |
debug = False): |
1444 | 1949 |
""" |
1950 |
Changes from V3: |
|
1951 |
Root search is changed again: |
|
1952 |
- only resultants in i are computed; |
|
1953 |
- root are searched for; |
|
1954 |
- if any, they are tested for hardness-to-round. |
|
1445 | 1955 |
Changes from V2: |
1446 | 1956 |
Root search is changed: |
1447 | 1957 |
- we compute the resultants in i and in t; |
... | ... | |
1684 | 2194 |
reductionTime = cputime() |
1685 | 2195 |
#### Compute the reduced polynomials. |
1686 | 2196 |
ccReducedPolynomialsList = \ |
1687 |
slz_compute_coppersmith_reduced_polynomials_with_lattice_volume(intIntP,
|
|
1688 |
alpha, |
|
1689 |
N, |
|
1690 |
iBound, |
|
1691 |
tBound) |
|
2197 |
slz_compute_coppersmith_reduced_polynomials(intIntP,
|
|
2198 |
alpha,
|
|
2199 |
N,
|
|
2200 |
iBound,
|
|
2201 |
tBound)
|
|
1692 | 2202 |
if ccReducedPolynomialsList is None: |
1693 | 2203 |
raise Exception("Reduction failed.") |
1694 | 2204 |
reductionsFullTime += cputime(reductionTime) |
... | ... | |
1722 | 2232 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
1723 | 2233 |
ccReducedPolynomialsList[polyInnerIndex])) |
1724 | 2234 |
#### Actual root search. |
1725 |
rootsSet = set()
|
|
2235 |
iRootsSet = set()
|
|
1726 | 2236 |
hasNonNullResultant = False |
1727 | 2237 |
for polyPair in polyPairsList: |
1728 |
if hasNonNullResultant: |
|
1729 |
break |
|
1730 | 2238 |
resultantsComputationTime = cputime() |
1731 | 2239 |
currentResultantI = \ |
1732 | 2240 |
slz_resultant(polyPair[0], |
1733 | 2241 |
polyPair[1], |
1734 | 2242 |
t) |
1735 | 2243 |
resultantsComputationsCount += 1 |
2244 |
resultantsComputationsFullTime += \ |
|
2245 |
cputime(resultantsComputationTime) |
|
2246 |
#### Function slz_resultant returns None both for None and O |
|
2247 |
# resultants. |
|
1736 | 2248 |
if currentResultantI is None: |
1737 |
resultantsComputationsFullTime += \ |
|
1738 |
cputime(resultantsComputationTime) |
|
1739 | 2249 |
print "Nul resultant" |
1740 | 2250 |
continue # Next polyPair. |
1741 |
currentResultantT = \ |
|
1742 |
slz_resultant(polyPair[0], |
|
1743 |
polyPair[1], |
|
1744 |
i) |
|
1745 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
|
1746 |
resultantsComputationsCount += 1 |
|
1747 |
if currentResultantT is None: |
|
1748 |
print "Nul resultant" |
|
1749 |
continue # Next polyPair. |
|
1750 |
else: |
|
1751 |
hasNonNullResultant = True |
|
1752 |
#### We have a non null resultants pair. From now on, whatever the |
|
2251 |
## We deleted the currentResultantI computation. |
|
2252 |
#### We have a non null resultant. From now on, whatever this |
|
1753 | 2253 |
# root search yields, no extra root search is necessary. |
2254 |
hasNonNullResultant = True |
|
1754 | 2255 |
#### A constant resultant leads to no root. Root search is done. |
1755 | 2256 |
if currentResultantI.degree() < 1: |
1756 | 2257 |
print "Resultant is constant:", currentResultantI |
1757 |
break # Next polyPair and should break. |
|
1758 |
if currentResultantT.degree() < 1: |
|
1759 |
print "Resultant is constant:", currentResultantT |
|
1760 |
break # Next polyPair and should break. |
|
1761 |
#### Actual roots computation. |
|
1762 |
rootsComputationTime = cputime() |
|
1763 |
##### Compute i roots |
|
2258 |
break # There is no root. |
|
2259 |
#### Actual iroots computation. |
|
2260 |
rootsComputationTime = cputime() |
|
1764 | 2261 |
iRootsList = Zi(currentResultantI).roots() |
1765 | 2262 |
rootsComputationsCount += 1 |
2263 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
|
1766 | 2264 |
if len(iRootsList) == 0: |
1767 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
|
1768 | 2265 |
print "No roots in \"i\"." |
1769 | 2266 |
break # No roots in i. |
1770 |
tRootsList = Zt(currentResultantT).roots() |
|
1771 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
|
1772 |
rootsComputationsCount += 1 |
|
1773 |
if len(tRootsList) == 0: |
|
1774 |
print "No roots in \"t\"." |
|
1775 |
break # No roots in i. |
|
1776 |
##### For each iRoot, get a tRoot and check against the polynomials. |
|
1777 |
for iRoot in iRootsList: |
|
1778 |
####### Roots returned by roots() are (value, multiplicity) |
|
1779 |
# tuples. |
|
1780 |
#print "iRoot:", iRoot |
|
1781 |
for tRoot in tRootsList: |
|
1782 |
###### Use the tRoot against each polynomial, alternatively. |
|
1783 |
if polyPair[0](iRoot[0],tRoot[0]) != 0: |
|
1784 |
continue |
|
1785 |
if polyPair[1](iRoot[0],tRoot[0]) != 0: |
|
1786 |
continue |
|
1787 |
rootsSet.add((iRoot[0], tRoot[0])) |
|
1788 |
# End of roots computation. |
|
1789 |
# End loop for polyPair in polyParsList. Will break at next iteration. |
|
1790 |
# since a non null resultant was found. |
|
2267 |
else: |
|
2268 |
for iRoot in iRootsList: |
|
2269 |
# A root is given as a (value, multiplicity) tuple. |
|
2270 |
iRootsSet.add(iRoot[0]) |
|
2271 |
# End loop for polyPair in polyParsList. We only loop again if a |
|
2272 |
# None or zero resultant is found. |
|
1791 | 2273 |
#### Prepare for results for the current interval.. |
1792 | 2274 |
intervalResultsList = [] |
1793 | 2275 |
intervalResultsList.append((lb, ub)) |
1794 | 2276 |
#### Check roots. |
1795 | 2277 |
rootsResultsList = [] |
1796 |
for root in rootsSet:
|
|
2278 |
for iRoot in iRootsSet:
|
|
1797 | 2279 |
specificRootResultsList = [] |
1798 |
failingBounds = [] |
|
1799 |
intIntPdivN = intIntP(root[0], root[1]) / N |
|
1800 |
if int(intIntPdivN) != intIntPdivN: |
|
1801 |
continue # Next root |
|
2280 |
failingBounds = [] |
|
1802 | 2281 |
# Root qualifies for modular equation, test it for hardness to round. |
1803 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor)
|
|
2282 |
hardToRoundCaseAsFloat = RRR((icAsInt + iRoot) / toIntegerFactor)
|
|
1804 | 2283 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
1805 | 2284 |
#print scalingFunction |
1806 | 2285 |
scaledHardToRoundCaseAsFloat = \ |
... | ... | |
1812 | 2291 |
2^-(targetHardnessToRound), |
1813 | 2292 |
RRR): |
1814 | 2293 |
print hardToRoundCaseAsFloat, "is HTRN case." |
2294 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
|
1815 | 2295 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
1816 | 2296 |
print "Found in interval." |
1817 | 2297 |
else: |
1818 | 2298 |
print "Found out of interval." |
1819 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
|
1820 |
# Check the root is in the bounds |
|
1821 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
|
1822 |
print "Root", root, "is out of bounds for modular equation." |
|
1823 |
if abs(root[0]) > iBound: |
|
1824 |
print "root[0]:", root[0] |
|
1825 |
print "i bound:", iBound |
|
1826 |
failingBounds.append('i') |
|
1827 |
failingBounds.append(root[0]) |
|
1828 |
failingBounds.append(iBound) |
|
1829 |
if abs(root[1]) > tBound: |
|
1830 |
print "root[1]:", root[1] |
|
1831 |
print "t bound:", tBound |
|
1832 |
failingBounds.append('t') |
|
1833 |
failingBounds.append(root[1]) |
|
1834 |
failingBounds.append(tBound) |
|
2299 |
# Check the i root is within the i bound. |
|
2300 |
if abs(iRoot) > iBound: |
|
2301 |
print "IRoot", iRoot, "is out of bounds for modular equation." |
|
2302 |
print "i bound:", iBound |
|
2303 |
failingBounds.append('i') |
|
2304 |
failingBounds.append(iRoot) |
|
2305 |
failingBounds.append(iBound) |
|
1835 | 2306 |
if len(failingBounds) > 0: |
1836 | 2307 |
specificRootResultsList.append(failingBounds) |
1837 | 2308 |
else: # From slz_is_htrn... |
... | ... | |
1923 | 2394 |
print "Global Wall time:", globalWallTime |
1924 | 2395 |
print "Global CPU time:", globalCpuTime |
1925 | 2396 |
## Output counters |
1926 |
# End srs_compute_lattice_volume |
|
1927 |
|
|
2397 |
# End srs_runSLZ-v04 |
|
2398 |
|
Formats disponibles : Unified diff