root / pobysoPythonSage / src / sageSLZ / sageRunSLZ.sage @ 212
Historique | Voir | Annoter | Télécharger (86,9 ko)
1 |
""" |
---|---|
2 |
SLZ runtime function. |
3 |
""" |
4 |
|
5 |
def srs_run_SLZ_v01(inputFunction, |
6 |
inputLowerBound, |
7 |
inputUpperBound, |
8 |
alpha, |
9 |
degree, |
10 |
precision, |
11 |
emin, |
12 |
emax, |
13 |
targetHardnessToRound, |
14 |
debug = False): |
15 |
|
16 |
if debug: |
17 |
print "Function :", inputFunction |
18 |
print "Lower bound :", inputLowerBound |
19 |
print "Upper bounds :", inputUpperBound |
20 |
print "Alpha :", alpha |
21 |
print "Degree :", degree |
22 |
print "Precision :", precision |
23 |
print "Emin :", emin |
24 |
print "Emax :", emax |
25 |
print "Target hardness-to-round:", targetHardnessToRound |
26 |
|
27 |
## Important constants. |
28 |
### Stretch the interval if no error happens. |
29 |
noErrorIntervalStretch = 1 + 2^(-5) |
30 |
### If no vector validates the Coppersmith condition, shrink the interval |
31 |
# by the following factor. |
32 |
noCoppersmithIntervalShrink = 1/2 |
33 |
### If only (or at least) one vector validates the Coppersmith condition, |
34 |
# shrink the interval by the following factor. |
35 |
oneCoppersmithIntervalShrink = 3/4 |
36 |
#### If only null resultants are found, shrink the interval by the |
37 |
# following factor. |
38 |
onlyNullResultantsShrink = 3/4 |
39 |
## Structures. |
40 |
RRR = RealField(precision) |
41 |
RRIF = RealIntervalField(precision) |
42 |
## Converting input bound into the "right" field. |
43 |
lowerBound = RRR(inputLowerBound) |
44 |
upperBound = RRR(inputUpperBound) |
45 |
## Before going any further, check domain and image binade conditions. |
46 |
print inputFunction(1).n() |
47 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
48 |
if output is None: |
49 |
print "Invalid domain/image binades. Domain:",\ |
50 |
lowerBound, upperBound, "Images:", \ |
51 |
inputFunction(lowerBound), inputFunction(upperBound) |
52 |
raise Exception("Invalid domain/image binades.") |
53 |
lb = output[0] ; ub = output[1] |
54 |
if lb is None or lb != lowerBound or ub != upperBound: |
55 |
print "lb:", lb, " - ub:", ub |
56 |
print "Invalid domain/image binades. Domain:",\ |
57 |
lowerBound, upperBound, "Images:", \ |
58 |
inputFunction(lowerBound), inputFunction(upperBound) |
59 |
raise Exception("Invalid domain/image binades.") |
60 |
# |
61 |
## Progam initialization |
62 |
### Approximation polynomial accuracy and hardness to round. |
63 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
64 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
65 |
### Significand to integer conversion ratio. |
66 |
toIntegerFactor = 2^(precision-1) |
67 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
68 |
### Variables and rings for polynomials and root searching. |
69 |
i=var('i') |
70 |
t=var('t') |
71 |
inputFunctionVariable = inputFunction.variables()[0] |
72 |
function = inputFunction.subs({inputFunctionVariable:i}) |
73 |
# Polynomial Rings over the integers, for root finding. |
74 |
Zi = ZZ[i] |
75 |
Zt = ZZ[t] |
76 |
Zit = ZZ[i,t] |
77 |
## Number of iterations limit. |
78 |
maxIter = 100000 |
79 |
# |
80 |
## Compute the scaled function and the degree, in their Sollya version |
81 |
# once for all. |
82 |
(scaledf, sdlb, sdub, silb, siub) = \ |
83 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
84 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
85 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
86 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
87 |
# |
88 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
89 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
90 |
(unscalingFunction, scalingFunction) = \ |
91 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
92 |
#print scalingFunction, unscalingFunction |
93 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
94 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
95 |
if internalSollyaPrec < 192: |
96 |
internalSollyaPrec = 192 |
97 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
98 |
print "Sollya internal precision:", internalSollyaPrec |
99 |
## Some variables. |
100 |
### General variables |
101 |
lb = sdlb |
102 |
ub = sdub |
103 |
nbw = 0 |
104 |
intervalUlp = ub.ulp() |
105 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
106 |
ic = 0 |
107 |
icAsInt = 0 # Set from ic. |
108 |
solutionsSet = set() |
109 |
tsErrorWidth = [] |
110 |
csErrorVectors = [] |
111 |
csVectorsResultants = [] |
112 |
floatP = 0 # Taylor polynomial. |
113 |
floatPcv = 0 # Ditto with variable change. |
114 |
intvl = "" # Taylor interval |
115 |
terr = 0 # Taylor error. |
116 |
iterCount = 0 |
117 |
htrnSet = set() |
118 |
### Timers and counters. |
119 |
wallTimeStart = 0 |
120 |
cpuTimeStart = 0 |
121 |
taylCondFailedCount = 0 |
122 |
coppCondFailedCount = 0 |
123 |
resultCondFailedCount = 0 |
124 |
coppCondFailed = False |
125 |
resultCondFailed = False |
126 |
globalResultsList = [] |
127 |
basisConstructionsCount = 0 |
128 |
basisConstructionsFullTime = 0 |
129 |
basisConstructionTime = 0 |
130 |
reductionsCount = 0 |
131 |
reductionsFullTime = 0 |
132 |
reductionTime = 0 |
133 |
resultantsComputationsCount = 0 |
134 |
resultantsComputationsFullTime = 0 |
135 |
resultantsComputationTime = 0 |
136 |
rootsComputationsCount = 0 |
137 |
rootsComputationsFullTime = 0 |
138 |
rootsComputationTime = 0 |
139 |
|
140 |
## Global times are started here. |
141 |
wallTimeStart = walltime() |
142 |
cpuTimeStart = cputime() |
143 |
## Main loop. |
144 |
while True: |
145 |
if lb >= sdub: |
146 |
print "Lower bound reached upper bound." |
147 |
break |
148 |
if iterCount == maxIter: |
149 |
print "Reached maxIter. Aborting" |
150 |
break |
151 |
iterCount += 1 |
152 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
153 |
"log2(numbers)." |
154 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
155 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
156 |
degreeSo, |
157 |
lb, |
158 |
ub, |
159 |
polyApproxAccur) |
160 |
### Convert back the data into Sage space. |
161 |
(floatP, floatPcv, intvl, ic, terr) = \ |
162 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
163 |
prceSo[1], prceSo[2], |
164 |
prceSo[3])) |
165 |
intvl = RRIF(intvl) |
166 |
## Clean-up Sollya stuff. |
167 |
for elem in prceSo: |
168 |
sollya_lib_clear_obj(elem) |
169 |
#print floatP, floatPcv, intvl, ic, terr |
170 |
#print floatP |
171 |
#print intvl.endpoints()[0].n(), \ |
172 |
# ic.n(), |
173 |
#intvl.endpoints()[1].n() |
174 |
### Check returned data. |
175 |
#### Is approximation error OK? |
176 |
if terr > polyApproxAccur: |
177 |
exceptionErrorMess = \ |
178 |
"Approximation failed - computed error:" + \ |
179 |
str(terr) + " - target error: " |
180 |
exceptionErrorMess += \ |
181 |
str(polyApproxAccur) + ". Aborting!" |
182 |
raise Exception(exceptionErrorMess) |
183 |
#### Is lower bound OK? |
184 |
if lb != intvl.endpoints()[0]: |
185 |
exceptionErrorMess = "Wrong lower bound:" + \ |
186 |
str(lb) + ". Aborting!" |
187 |
raise Exception(exceptionErrorMess) |
188 |
#### Set upper bound. |
189 |
if ub > intvl.endpoints()[1]: |
190 |
ub = intvl.endpoints()[1] |
191 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
192 |
"log2(numbers)." |
193 |
taylCondFailedCount += 1 |
194 |
#### Is interval not degenerate? |
195 |
if lb >= ub: |
196 |
exceptionErrorMess = "Degenerate interval: " + \ |
197 |
"lowerBound(" + str(lb) +\ |
198 |
")>= upperBound(" + str(ub) + \ |
199 |
"). Aborting!" |
200 |
raise Exception(exceptionErrorMess) |
201 |
#### Is interval center ok? |
202 |
if ic <= lb or ic >= ub: |
203 |
exceptionErrorMess = "Invalid interval center for " + \ |
204 |
str(lb) + ',' + str(ic) + ',' + \ |
205 |
str(ub) + ". Aborting!" |
206 |
raise Exception(exceptionErrorMess) |
207 |
##### Current interval width and reset future interval width. |
208 |
bw = ub - lb |
209 |
nbw = 0 |
210 |
icAsInt = int(ic * toIntegerFactor) |
211 |
#### The following ratio is always >= 1. In case we may want to |
212 |
# enlarge the interval |
213 |
curTaylErrRat = polyApproxAccur / terr |
214 |
## Make the integral transformations. |
215 |
### First for interval center and bounds. |
216 |
intIc = int(ic * toIntegerFactor) |
217 |
intLb = int(lb * toIntegerFactor) - intIc |
218 |
intUb = int(ub * toIntegerFactor) - intIc |
219 |
# |
220 |
#### For polynomials |
221 |
basisConstructionTime = cputime() |
222 |
##### To a polynomial with rational coefficients with rational arguments |
223 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
224 |
##### To a polynomial with rational coefficients with integer arguments |
225 |
ratIntP = \ |
226 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
227 |
##### Ultimately a polynomial with integer coefficients with integer |
228 |
# arguments. |
229 |
coppersmithTuple = \ |
230 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
231 |
precision, |
232 |
targetHardnessToRound, |
233 |
i, t) |
234 |
#### Recover Coppersmith information. |
235 |
intIntP = coppersmithTuple[0] |
236 |
N = coppersmithTuple[1] |
237 |
nAtAlpha = N^alpha |
238 |
tBound = coppersmithTuple[2] |
239 |
leastCommonMultiple = coppersmithTuple[3] |
240 |
iBound = max(abs(intLb),abs(intUb)) |
241 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
242 |
basisConstructionsCount += 1 |
243 |
reductionTime = cputime() |
244 |
# Compute the reduced polynomials. |
245 |
ccReducedPolynomialsList = \ |
246 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
247 |
alpha, |
248 |
N, |
249 |
iBound, |
250 |
tBound) |
251 |
if ccReducedPolynomialsList is None: |
252 |
raise Exception("Reduction failed.") |
253 |
reductionsFullTime += cputime(reductionTime) |
254 |
reductionsCount += 1 |
255 |
if len(ccReducedPolynomialsList) < 2: |
256 |
print "Nothing to form resultants with." |
257 |
|
258 |
coppCondFailedCount += 1 |
259 |
coppCondFailed = True |
260 |
##### Apply a different shrink factor according to |
261 |
# the number of compliant polynomials. |
262 |
if len(ccReducedPolynomialsList) == 0: |
263 |
ub = lb + bw * noCoppersmithIntervalShrink |
264 |
else: # At least one compliant polynomial. |
265 |
ub = lb + bw * oneCoppersmithIntervalShrink |
266 |
if ub > sdub: |
267 |
ub = sdub |
268 |
if lb == ub: |
269 |
raise Exception("Cant shrink interval \ |
270 |
anymore to get Coppersmith condition.") |
271 |
nbw = 0 |
272 |
continue |
273 |
#### We have at least two polynomials. |
274 |
# Let us try to compute resultants. |
275 |
resultantsComputationTime = cputime() |
276 |
resultantsInTTuplesList = [] |
277 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
278 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
279 |
len(ccReducedPolynomialsList)): |
280 |
resultantTuple = \ |
281 |
slz_resultant_tuple(ccReducedPolynomialsList[polyOuterIndex], |
282 |
ccReducedPolynomialsList[polyInnerIndex], |
283 |
t) |
284 |
if len(resultantTuple) > 2: |
285 |
#print resultantTuple[2] |
286 |
resultantsInTTuplesList.append(resultantTuple) |
287 |
else: |
288 |
print "No non nul resultant" |
289 |
print len(resultantsInTTuplesList), "resultant(s) in t tuple(s) created." |
290 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
291 |
resultantsComputationsCount += 1 |
292 |
if len(resultantsInTTuplesList) == 0: |
293 |
print "Only null resultants, shrinking interval." |
294 |
resultCondFailed = True |
295 |
resultCondFailedCount += 1 |
296 |
### Shrink interval for next iteration. |
297 |
ub = lb + bw * onlyNullResultantsShrink |
298 |
if ub > sdub: |
299 |
ub = sdub |
300 |
nbw = 0 |
301 |
continue |
302 |
#### Compute roots. |
303 |
rootsComputationTime = cputime() |
304 |
reducedPolynomialsRootsSet = set() |
305 |
##### Solve in the second variable since resultants are in the first |
306 |
# variable. |
307 |
for resultantInTTuple in resultantsInTTuplesList: |
308 |
currentResultant = resultantInTTuple[2] |
309 |
##### If the resultant degree is not at least 1, there are no roots. |
310 |
if currentResultant.degree() < 1: |
311 |
print "Resultant is constant:", currentResultant |
312 |
continue # Next resultantInTTuple |
313 |
##### Compute i roots |
314 |
iRootsList = Zi(currentResultant).roots() |
315 |
##### For each iRoot, compute the corresponding tRoots and check |
316 |
# them in the input polynomial. |
317 |
for iRoot in iRootsList: |
318 |
####### Roots returned by roots() are (value, multiplicity) |
319 |
# tuples. |
320 |
#print "iRoot:", iRoot |
321 |
###### Use the tRoot against each polynomial, alternatively. |
322 |
for indexInTuple in range(0,2): |
323 |
currentPolynomial = resultantInTTuple[indexInTuple] |
324 |
####### If the polynomial is univariate, just drop it. |
325 |
if len(currentPolynomial.variables()) < 2: |
326 |
print " Current polynomial is not in two variables." |
327 |
continue # Next indexInTuple |
328 |
tRootsList = \ |
329 |
Zt(currentPolynomial.subs({currentPolynomial.variables()[0]:iRoot[0]})).roots() |
330 |
####### The tRootsList can be empty, hence the test. |
331 |
if len(tRootsList) == 0: |
332 |
print " No t root." |
333 |
continue # Next indexInTuple |
334 |
for tRoot in tRootsList: |
335 |
reducedPolynomialsRootsSet.add((iRoot[0], tRoot[0])) |
336 |
# End of roots computation |
337 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
338 |
rootsComputationsCount += 1 |
339 |
##### Prepare for results. |
340 |
intervalResultsList = [] |
341 |
intervalResultsList.append((lb, ub)) |
342 |
#### Check roots. |
343 |
rootsResultsList = [] |
344 |
for root in reducedPolynomialsRootsSet: |
345 |
specificRootResultsList = [] |
346 |
failingBounds = [] |
347 |
intIntPdivN = intIntP(root[0], root[1]) / N |
348 |
if int(intIntPdivN) != intIntPdivN: |
349 |
continue # Next root |
350 |
# Root qualifies for modular equation, test it for hardness to round. |
351 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
352 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
353 |
#print scalingFunction |
354 |
scaledHardToRoundCaseAsFloat = \ |
355 |
scalingFunction(hardToRoundCaseAsFloat) |
356 |
print "Candidate HTRNc at x =", \ |
357 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
358 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
359 |
function, |
360 |
2^-(targetHardnessToRound), |
361 |
RRR): |
362 |
print hardToRoundCaseAsFloat, "is HTRN case." |
363 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
364 |
print "Found in interval." |
365 |
else: |
366 |
print "Found out of interval." |
367 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
368 |
# Check the root is in the bounds |
369 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
370 |
print "Root", root, "is out of bounds." |
371 |
if abs(root[0]) > iBound: |
372 |
print "root[0]:", root[0] |
373 |
print "i bound:", iBound |
374 |
failingBounds.append('i') |
375 |
failingBounds.append(root[0]) |
376 |
failingBounds.append(iBound) |
377 |
if abs(root[1]) > tBound: |
378 |
print "root[1]:", root[1] |
379 |
print "t bound:", tBound |
380 |
failingBounds.append('t') |
381 |
failingBounds.append(root[1]) |
382 |
failingBounds.append(tBound) |
383 |
if len(failingBounds) > 0: |
384 |
specificRootResultsList.append(failingBounds) |
385 |
else: # From slz_is_htrn... |
386 |
print "is not an HTRN case." |
387 |
if len(specificRootResultsList) > 0: |
388 |
rootsResultsList.append(specificRootResultsList) |
389 |
if len(rootsResultsList) > 0: |
390 |
intervalResultsList.append(rootsResultsList) |
391 |
#### An intervalResultsList has at least the bounds. |
392 |
globalResultsList.append(intervalResultsList) |
393 |
#### Compute an incremented width for next upper bound, only |
394 |
# if not Coppersmith condition nor resultant condition |
395 |
# failed at the previous run. |
396 |
if not coppCondFailed and not resultCondFailed: |
397 |
nbw = noErrorIntervalStretch * bw |
398 |
else: |
399 |
nbw = bw |
400 |
##### Reset the failure flags. They will be raised |
401 |
# again if needed. |
402 |
coppCondFailed = False |
403 |
resultCondFailed = False |
404 |
#### For next iteration (at end of loop) |
405 |
#print "nbw:", nbw |
406 |
lb = ub |
407 |
ub += nbw |
408 |
if ub > sdub: |
409 |
ub = sdub |
410 |
|
411 |
# End while True |
412 |
## Main loop just ended. |
413 |
globalWallTime = walltime(wallTimeStart) |
414 |
globalCpuTime = cputime(cpuTimeStart) |
415 |
## Output results |
416 |
print ; print "Intervals and HTRNs" ; print |
417 |
for intervalResultsList in globalResultsList: |
418 |
print "[", intervalResultsList[0][0], ",",intervalResultsList[0][1], "]", |
419 |
if len(intervalResultsList) > 1: |
420 |
rootsResultsList = intervalResultsList[1] |
421 |
for specificRootResultsList in rootsResultsList: |
422 |
print "\t", specificRootResultsList[0], |
423 |
if len(specificRootResultsList) > 1: |
424 |
print specificRootResultsList[1], |
425 |
print ; print |
426 |
#print globalResultsList |
427 |
# |
428 |
print "Timers and counters" |
429 |
|
430 |
print "Number of iterations:", iterCount |
431 |
print "Taylor condition failures:", taylCondFailedCount |
432 |
print "Coppersmith condition failures:", coppCondFailedCount |
433 |
print "Resultant condition failures:", resultCondFailedCount |
434 |
print "Iterations count: ", iterCount |
435 |
print "Number of intervals:", len(globalResultsList) |
436 |
print "Number of basis constructions:", basisConstructionsCount |
437 |
print "Total CPU time spent in basis constructions:", \ |
438 |
basisConstructionsFullTime |
439 |
if basisConstructionsCount != 0: |
440 |
print "Average basis construction CPU time:", \ |
441 |
basisConstructionsFullTime/basisConstructionsCount |
442 |
print "Number of reductions:", reductionsCount |
443 |
print "Total CPU time spent in reductions:", reductionsFullTime |
444 |
if reductionsCount != 0: |
445 |
print "Average reduction CPU time:", \ |
446 |
reductionsFullTime/reductionsCount |
447 |
print "Number of resultants computation rounds:", \ |
448 |
resultantsComputationsCount |
449 |
print "Total CPU time spent in resultants computation rounds:", \ |
450 |
resultantsComputationsFullTime |
451 |
if resultantsComputationsCount != 0: |
452 |
print "Average resultants computation round CPU time:", \ |
453 |
resultantsComputationsFullTime/resultantsComputationsCount |
454 |
print "Number of root finding rounds:", rootsComputationsCount |
455 |
print "Total CPU time spent in roots finding rounds:", \ |
456 |
rootsComputationsFullTime |
457 |
if rootsComputationsCount != 0: |
458 |
print "Average roots finding round CPU time:", \ |
459 |
rootsComputationsFullTime/rootsComputationsCount |
460 |
print "Global Wall time:", globalWallTime |
461 |
print "Global CPU time:", globalCpuTime |
462 |
## Output counters |
463 |
# End srs_runSLZ-v01 |
464 |
|
465 |
def srs_run_SLZ_v02(inputFunction, |
466 |
inputLowerBound, |
467 |
inputUpperBound, |
468 |
alpha, |
469 |
degree, |
470 |
precision, |
471 |
emin, |
472 |
emax, |
473 |
targetHardnessToRound, |
474 |
debug = False): |
475 |
""" |
476 |
Changes from V1: |
477 |
1- check for roots as soon as a resultant is computed; |
478 |
2- once a non null resultant is found, check for roots; |
479 |
3- constant resultant == no root. |
480 |
""" |
481 |
|
482 |
if debug: |
483 |
print "Function :", inputFunction |
484 |
print "Lower bound :", inputLowerBound |
485 |
print "Upper bounds :", inputUpperBound |
486 |
print "Alpha :", alpha |
487 |
print "Degree :", degree |
488 |
print "Precision :", precision |
489 |
print "Emin :", emin |
490 |
print "Emax :", emax |
491 |
print "Target hardness-to-round:", targetHardnessToRound |
492 |
|
493 |
## Important constants. |
494 |
### Stretch the interval if no error happens. |
495 |
noErrorIntervalStretch = 1 + 2^(-5) |
496 |
### If no vector validates the Coppersmith condition, shrink the interval |
497 |
# by the following factor. |
498 |
noCoppersmithIntervalShrink = 1/2 |
499 |
### If only (or at least) one vector validates the Coppersmith condition, |
500 |
# shrink the interval by the following factor. |
501 |
oneCoppersmithIntervalShrink = 3/4 |
502 |
#### If only null resultants are found, shrink the interval by the |
503 |
# following factor. |
504 |
onlyNullResultantsShrink = 3/4 |
505 |
## Structures. |
506 |
RRR = RealField(precision) |
507 |
RRIF = RealIntervalField(precision) |
508 |
## Converting input bound into the "right" field. |
509 |
lowerBound = RRR(inputLowerBound) |
510 |
upperBound = RRR(inputUpperBound) |
511 |
## Before going any further, check domain and image binade conditions. |
512 |
print inputFunction(1).n() |
513 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
514 |
if output is None: |
515 |
print "Invalid domain/image binades. Domain:",\ |
516 |
lowerBound, upperBound, "Images:", \ |
517 |
inputFunction(lowerBound), inputFunction(upperBound) |
518 |
raise Exception("Invalid domain/image binades.") |
519 |
lb = output[0] ; ub = output[1] |
520 |
if lb != lowerBound or ub != upperBound: |
521 |
print "lb:", lb, " - ub:", ub |
522 |
print "Invalid domain/image binades. Domain:",\ |
523 |
lowerBound, upperBound, "Images:", \ |
524 |
inputFunction(lowerBound), inputFunction(upperBound) |
525 |
raise Exception("Invalid domain/image binades.") |
526 |
# |
527 |
## Progam initialization |
528 |
### Approximation polynomial accuracy and hardness to round. |
529 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
530 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
531 |
### Significand to integer conversion ratio. |
532 |
toIntegerFactor = 2^(precision-1) |
533 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
534 |
### Variables and rings for polynomials and root searching. |
535 |
i=var('i') |
536 |
t=var('t') |
537 |
inputFunctionVariable = inputFunction.variables()[0] |
538 |
function = inputFunction.subs({inputFunctionVariable:i}) |
539 |
# Polynomial Rings over the integers, for root finding. |
540 |
Zi = ZZ[i] |
541 |
Zt = ZZ[t] |
542 |
Zit = ZZ[i,t] |
543 |
## Number of iterations limit. |
544 |
maxIter = 100000 |
545 |
# |
546 |
## Compute the scaled function and the degree, in their Sollya version |
547 |
# once for all. |
548 |
(scaledf, sdlb, sdub, silb, siub) = \ |
549 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
550 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
551 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
552 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
553 |
# |
554 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
555 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
556 |
(unscalingFunction, scalingFunction) = \ |
557 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
558 |
#print scalingFunction, unscalingFunction |
559 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
560 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
561 |
if internalSollyaPrec < 192: |
562 |
internalSollyaPrec = 192 |
563 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
564 |
print "Sollya internal precision:", internalSollyaPrec |
565 |
## Some variables. |
566 |
### General variables |
567 |
lb = sdlb |
568 |
ub = sdub |
569 |
nbw = 0 |
570 |
intervalUlp = ub.ulp() |
571 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
572 |
ic = 0 |
573 |
icAsInt = 0 # Set from ic. |
574 |
solutionsSet = set() |
575 |
tsErrorWidth = [] |
576 |
csErrorVectors = [] |
577 |
csVectorsResultants = [] |
578 |
floatP = 0 # Taylor polynomial. |
579 |
floatPcv = 0 # Ditto with variable change. |
580 |
intvl = "" # Taylor interval |
581 |
terr = 0 # Taylor error. |
582 |
iterCount = 0 |
583 |
htrnSet = set() |
584 |
### Timers and counters. |
585 |
wallTimeStart = 0 |
586 |
cpuTimeStart = 0 |
587 |
taylCondFailedCount = 0 |
588 |
coppCondFailedCount = 0 |
589 |
resultCondFailedCount = 0 |
590 |
coppCondFailed = False |
591 |
resultCondFailed = False |
592 |
globalResultsList = [] |
593 |
basisConstructionsCount = 0 |
594 |
basisConstructionsFullTime = 0 |
595 |
basisConstructionTime = 0 |
596 |
reductionsCount = 0 |
597 |
reductionsFullTime = 0 |
598 |
reductionTime = 0 |
599 |
resultantsComputationsCount = 0 |
600 |
resultantsComputationsFullTime = 0 |
601 |
resultantsComputationTime = 0 |
602 |
rootsComputationsCount = 0 |
603 |
rootsComputationsFullTime = 0 |
604 |
rootsComputationTime = 0 |
605 |
|
606 |
## Global times are started here. |
607 |
wallTimeStart = walltime() |
608 |
cpuTimeStart = cputime() |
609 |
## Main loop. |
610 |
while True: |
611 |
if lb >= sdub: |
612 |
print "Lower bound reached upper bound." |
613 |
break |
614 |
if iterCount == maxIter: |
615 |
print "Reached maxIter. Aborting" |
616 |
break |
617 |
iterCount += 1 |
618 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
619 |
"log2(numbers)." |
620 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
621 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
622 |
degreeSo, |
623 |
lb, |
624 |
ub, |
625 |
polyApproxAccur) |
626 |
### Convert back the data into Sage space. |
627 |
(floatP, floatPcv, intvl, ic, terr) = \ |
628 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
629 |
prceSo[1], prceSo[2], |
630 |
prceSo[3])) |
631 |
intvl = RRIF(intvl) |
632 |
## Clean-up Sollya stuff. |
633 |
for elem in prceSo: |
634 |
sollya_lib_clear_obj(elem) |
635 |
#print floatP, floatPcv, intvl, ic, terr |
636 |
#print floatP |
637 |
#print intvl.endpoints()[0].n(), \ |
638 |
# ic.n(), |
639 |
#intvl.endpoints()[1].n() |
640 |
### Check returned data. |
641 |
#### Is approximation error OK? |
642 |
if terr > polyApproxAccur: |
643 |
exceptionErrorMess = \ |
644 |
"Approximation failed - computed error:" + \ |
645 |
str(terr) + " - target error: " |
646 |
exceptionErrorMess += \ |
647 |
str(polyApproxAccur) + ". Aborting!" |
648 |
raise Exception(exceptionErrorMess) |
649 |
#### Is lower bound OK? |
650 |
if lb != intvl.endpoints()[0]: |
651 |
exceptionErrorMess = "Wrong lower bound:" + \ |
652 |
str(lb) + ". Aborting!" |
653 |
raise Exception(exceptionErrorMess) |
654 |
#### Set upper bound. |
655 |
if ub > intvl.endpoints()[1]: |
656 |
ub = intvl.endpoints()[1] |
657 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
658 |
"log2(numbers)." |
659 |
taylCondFailedCount += 1 |
660 |
#### Is interval not degenerate? |
661 |
if lb >= ub: |
662 |
exceptionErrorMess = "Degenerate interval: " + \ |
663 |
"lowerBound(" + str(lb) +\ |
664 |
")>= upperBound(" + str(ub) + \ |
665 |
"). Aborting!" |
666 |
raise Exception(exceptionErrorMess) |
667 |
#### Is interval center ok? |
668 |
if ic <= lb or ic >= ub: |
669 |
exceptionErrorMess = "Invalid interval center for " + \ |
670 |
str(lb) + ',' + str(ic) + ',' + \ |
671 |
str(ub) + ". Aborting!" |
672 |
raise Exception(exceptionErrorMess) |
673 |
##### Current interval width and reset future interval width. |
674 |
bw = ub - lb |
675 |
nbw = 0 |
676 |
icAsInt = int(ic * toIntegerFactor) |
677 |
#### The following ratio is always >= 1. In case we may want to |
678 |
# enlarge the interval |
679 |
curTaylErrRat = polyApproxAccur / terr |
680 |
### Make the integral transformations. |
681 |
#### Bounds and interval center. |
682 |
intIc = int(ic * toIntegerFactor) |
683 |
intLb = int(lb * toIntegerFactor) - intIc |
684 |
intUb = int(ub * toIntegerFactor) - intIc |
685 |
# |
686 |
#### Polynomials |
687 |
basisConstructionTime = cputime() |
688 |
##### To a polynomial with rational coefficients with rational arguments |
689 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
690 |
##### To a polynomial with rational coefficients with integer arguments |
691 |
ratIntP = \ |
692 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
693 |
##### Ultimately a multivariate polynomial with integer coefficients |
694 |
# with integer arguments. |
695 |
coppersmithTuple = \ |
696 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
697 |
precision, |
698 |
targetHardnessToRound, |
699 |
i, t) |
700 |
#### Recover Coppersmith information. |
701 |
intIntP = coppersmithTuple[0] |
702 |
N = coppersmithTuple[1] |
703 |
nAtAlpha = N^alpha |
704 |
tBound = coppersmithTuple[2] |
705 |
leastCommonMultiple = coppersmithTuple[3] |
706 |
iBound = max(abs(intLb),abs(intUb)) |
707 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
708 |
basisConstructionsCount += 1 |
709 |
reductionTime = cputime() |
710 |
#### Compute the reduced polynomials. |
711 |
ccReducedPolynomialsList = \ |
712 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
713 |
alpha, |
714 |
N, |
715 |
iBound, |
716 |
tBound) |
717 |
if ccReducedPolynomialsList is None: |
718 |
raise Exception("Reduction failed.") |
719 |
reductionsFullTime += cputime(reductionTime) |
720 |
reductionsCount += 1 |
721 |
if len(ccReducedPolynomialsList) < 2: |
722 |
print "Nothing to form resultants with." |
723 |
|
724 |
coppCondFailedCount += 1 |
725 |
coppCondFailed = True |
726 |
##### Apply a different shrink factor according to |
727 |
# the number of compliant polynomials. |
728 |
if len(ccReducedPolynomialsList) == 0: |
729 |
ub = lb + bw * noCoppersmithIntervalShrink |
730 |
else: # At least one compliant polynomial. |
731 |
ub = lb + bw * oneCoppersmithIntervalShrink |
732 |
if ub > sdub: |
733 |
ub = sdub |
734 |
if lb == ub: |
735 |
raise Exception("Cant shrink interval \ |
736 |
anymore to get Coppersmith condition.") |
737 |
nbw = 0 |
738 |
continue |
739 |
#### We have at least two polynomials. |
740 |
# Let us try to compute resultants. |
741 |
# For each resultant computed, go for the solutions. |
742 |
##### Build the pairs list. |
743 |
polyPairsList = [] |
744 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
745 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
746 |
len(ccReducedPolynomialsList)): |
747 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
748 |
ccReducedPolynomialsList[polyInnerIndex])) |
749 |
#### Actual root search. |
750 |
rootsSet = set() |
751 |
hasNonNullResultant = False |
752 |
for polyPair in polyPairsList: |
753 |
if hasNonNullResultant: |
754 |
break |
755 |
resultantsComputationTime = cputime() |
756 |
currentResultant = \ |
757 |
slz_resultant(polyPair[0], |
758 |
polyPair[1], |
759 |
t) |
760 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
761 |
resultantsComputationsCount += 1 |
762 |
if currentResultant is None: |
763 |
print "Nul resultant" |
764 |
continue # Next polyPair. |
765 |
else: |
766 |
hasNonNullResultant = True |
767 |
#### We have a non null resultant. From now on, whatever the |
768 |
# root search yields, no extra root search is necessary. |
769 |
#### A constant resultant leads to no root. Root search is done. |
770 |
if currentResultant.degree() < 1: |
771 |
print "Resultant is constant:", currentResultant |
772 |
continue # Next polyPair and should break. |
773 |
#### Actual roots computation. |
774 |
rootsComputationTime = cputime() |
775 |
##### Compute i roots |
776 |
iRootsList = Zi(currentResultant).roots() |
777 |
##### For each iRoot, compute the corresponding tRoots and |
778 |
# and build populate the .rootsSet. |
779 |
for iRoot in iRootsList: |
780 |
####### Roots returned by roots() are (value, multiplicity) |
781 |
# tuples. |
782 |
#print "iRoot:", iRoot |
783 |
###### Use the tRoot against each polynomial, alternatively. |
784 |
for indexInPair in range(0,2): |
785 |
currentPolynomial = polyPair[indexInPair] |
786 |
####### If the polynomial is univariate, just drop it. |
787 |
if len(currentPolynomial.variables()) < 2: |
788 |
print " Current polynomial is not in two variables." |
789 |
continue # Next indexInPair |
790 |
tRootsList = \ |
791 |
Zt(currentPolynomial.subs({currentPolynomial.variables()[0]:iRoot[0]})).roots() |
792 |
####### The tRootsList can be empty, hence the test. |
793 |
if len(tRootsList) == 0: |
794 |
print " No t root." |
795 |
continue # Next indexInPair |
796 |
for tRoot in tRootsList: |
797 |
rootsSet.add((iRoot[0], tRoot[0])) |
798 |
# End of roots computation. |
799 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
800 |
rootsComputationsCount += 1 |
801 |
# End loop for polyPair in polyParsList. Will break at next iteration. |
802 |
# since a non null resultant was found. |
803 |
#### Prepare for results for the current interval.. |
804 |
intervalResultsList = [] |
805 |
intervalResultsList.append((lb, ub)) |
806 |
#### Check roots. |
807 |
rootsResultsList = [] |
808 |
for root in rootsSet: |
809 |
specificRootResultsList = [] |
810 |
failingBounds = [] |
811 |
intIntPdivN = intIntP(root[0], root[1]) / N |
812 |
if int(intIntPdivN) != intIntPdivN: |
813 |
continue # Next root |
814 |
# Root qualifies for modular equation, test it for hardness to round. |
815 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
816 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
817 |
#print scalingFunction |
818 |
scaledHardToRoundCaseAsFloat = \ |
819 |
scalingFunction(hardToRoundCaseAsFloat) |
820 |
print "Candidate HTRNc at x =", \ |
821 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
822 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
823 |
function, |
824 |
2^-(targetHardnessToRound), |
825 |
RRR): |
826 |
print hardToRoundCaseAsFloat, "is HTRN case." |
827 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
828 |
print "Found in interval." |
829 |
else: |
830 |
print "Found out of interval." |
831 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
832 |
# Check the root is in the bounds |
833 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
834 |
print "Root", root, "is out of bounds for modular equation." |
835 |
if abs(root[0]) > iBound: |
836 |
print "root[0]:", root[0] |
837 |
print "i bound:", iBound |
838 |
failingBounds.append('i') |
839 |
failingBounds.append(root[0]) |
840 |
failingBounds.append(iBound) |
841 |
if abs(root[1]) > tBound: |
842 |
print "root[1]:", root[1] |
843 |
print "t bound:", tBound |
844 |
failingBounds.append('t') |
845 |
failingBounds.append(root[1]) |
846 |
failingBounds.append(tBound) |
847 |
if len(failingBounds) > 0: |
848 |
specificRootResultsList.append(failingBounds) |
849 |
else: # From slz_is_htrn... |
850 |
print "is not an HTRN case." |
851 |
if len(specificRootResultsList) > 0: |
852 |
rootsResultsList.append(specificRootResultsList) |
853 |
if len(rootsResultsList) > 0: |
854 |
intervalResultsList.append(rootsResultsList) |
855 |
### Check if a non null resultant was found. If not shrink the interval. |
856 |
if not hasNonNullResultant: |
857 |
print "Only null resultants for this reduction, shrinking interval." |
858 |
resultCondFailed = True |
859 |
resultCondFailedCount += 1 |
860 |
### Shrink interval for next iteration. |
861 |
ub = lb + bw * onlyNullResultantsShrink |
862 |
if ub > sdub: |
863 |
ub = sdub |
864 |
nbw = 0 |
865 |
continue |
866 |
#### An intervalResultsList has at least the bounds. |
867 |
globalResultsList.append(intervalResultsList) |
868 |
#### Compute an incremented width for next upper bound, only |
869 |
# if not Coppersmith condition nor resultant condition |
870 |
# failed at the previous run. |
871 |
if not coppCondFailed and not resultCondFailed: |
872 |
nbw = noErrorIntervalStretch * bw |
873 |
else: |
874 |
nbw = bw |
875 |
##### Reset the failure flags. They will be raised |
876 |
# again if needed. |
877 |
coppCondFailed = False |
878 |
resultCondFailed = False |
879 |
#### For next iteration (at end of loop) |
880 |
#print "nbw:", nbw |
881 |
lb = ub |
882 |
ub += nbw |
883 |
if ub > sdub: |
884 |
ub = sdub |
885 |
|
886 |
# End while True |
887 |
## Main loop just ended. |
888 |
globalWallTime = walltime(wallTimeStart) |
889 |
globalCpuTime = cputime(cpuTimeStart) |
890 |
## Output results |
891 |
print ; print "Intervals and HTRNs" ; print |
892 |
for intervalResultsList in globalResultsList: |
893 |
print "[", intervalResultsList[0][0], ",",intervalResultsList[0][1], "]", |
894 |
if len(intervalResultsList) > 1: |
895 |
rootsResultsList = intervalResultsList[1] |
896 |
for specificRootResultsList in rootsResultsList: |
897 |
print "\t", specificRootResultsList[0], |
898 |
if len(specificRootResultsList) > 1: |
899 |
print specificRootResultsList[1], |
900 |
print ; print |
901 |
#print globalResultsList |
902 |
# |
903 |
print "Timers and counters" |
904 |
|
905 |
print "Number of iterations:", iterCount |
906 |
print "Taylor condition failures:", taylCondFailedCount |
907 |
print "Coppersmith condition failures:", coppCondFailedCount |
908 |
print "Resultant condition failures:", resultCondFailedCount |
909 |
print "Iterations count: ", iterCount |
910 |
print "Number of intervals:", len(globalResultsList) |
911 |
print "Number of basis constructions:", basisConstructionsCount |
912 |
print "Total CPU time spent in basis constructions:", \ |
913 |
basisConstructionsFullTime |
914 |
if basisConstructionsCount != 0: |
915 |
print "Average basis construction CPU time:", \ |
916 |
basisConstructionsFullTime/basisConstructionsCount |
917 |
print "Number of reductions:", reductionsCount |
918 |
print "Total CPU time spent in reductions:", reductionsFullTime |
919 |
if reductionsCount != 0: |
920 |
print "Average reduction CPU time:", \ |
921 |
reductionsFullTime/reductionsCount |
922 |
print "Number of resultants computation rounds:", \ |
923 |
resultantsComputationsCount |
924 |
print "Total CPU time spent in resultants computation rounds:", \ |
925 |
resultantsComputationsFullTime |
926 |
if resultantsComputationsCount != 0: |
927 |
print "Average resultants computation round CPU time:", \ |
928 |
resultantsComputationsFullTime/resultantsComputationsCount |
929 |
print "Number of root finding rounds:", rootsComputationsCount |
930 |
print "Total CPU time spent in roots finding rounds:", \ |
931 |
rootsComputationsFullTime |
932 |
if rootsComputationsCount != 0: |
933 |
print "Average roots finding round CPU time:", \ |
934 |
rootsComputationsFullTime/rootsComputationsCount |
935 |
print "Global Wall time:", globalWallTime |
936 |
print "Global CPU time:", globalCpuTime |
937 |
## Output counters |
938 |
# End srs_runSLZ-v02 |
939 |
|
940 |
def srs_run_SLZ_v03(inputFunction, |
941 |
inputLowerBound, |
942 |
inputUpperBound, |
943 |
alpha, |
944 |
degree, |
945 |
precision, |
946 |
emin, |
947 |
emax, |
948 |
targetHardnessToRound, |
949 |
debug = False): |
950 |
""" |
951 |
Changes from V2: |
952 |
Root search is changed: |
953 |
- we compute the resultants in i and in t; |
954 |
- we compute the roots set of each of these resultants; |
955 |
- we combine all the possible pairs between the two sets; |
956 |
- we check these pairs in polynomials for correctness. |
957 |
Changes from V1: |
958 |
1- check for roots as soon as a resultant is computed; |
959 |
2- once a non null resultant is found, check for roots; |
960 |
3- constant resultant == no root. |
961 |
""" |
962 |
|
963 |
if debug: |
964 |
print "Function :", inputFunction |
965 |
print "Lower bound :", inputLowerBound |
966 |
print "Upper bounds :", inputUpperBound |
967 |
print "Alpha :", alpha |
968 |
print "Degree :", degree |
969 |
print "Precision :", precision |
970 |
print "Emin :", emin |
971 |
print "Emax :", emax |
972 |
print "Target hardness-to-round:", targetHardnessToRound |
973 |
|
974 |
## Important constants. |
975 |
### Stretch the interval if no error happens. |
976 |
noErrorIntervalStretch = 1 + 2^(-5) |
977 |
### If no vector validates the Coppersmith condition, shrink the interval |
978 |
# by the following factor. |
979 |
noCoppersmithIntervalShrink = 1/2 |
980 |
### If only (or at least) one vector validates the Coppersmith condition, |
981 |
# shrink the interval by the following factor. |
982 |
oneCoppersmithIntervalShrink = 3/4 |
983 |
#### If only null resultants are found, shrink the interval by the |
984 |
# following factor. |
985 |
onlyNullResultantsShrink = 3/4 |
986 |
## Structures. |
987 |
RRR = RealField(precision) |
988 |
RRIF = RealIntervalField(precision) |
989 |
## Converting input bound into the "right" field. |
990 |
lowerBound = RRR(inputLowerBound) |
991 |
upperBound = RRR(inputUpperBound) |
992 |
## Before going any further, check domain and image binade conditions. |
993 |
print inputFunction(1).n() |
994 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
995 |
if output is None: |
996 |
print "Invalid domain/image binades. Domain:",\ |
997 |
lowerBound, upperBound, "Images:", \ |
998 |
inputFunction(lowerBound), inputFunction(upperBound) |
999 |
raise Exception("Invalid domain/image binades.") |
1000 |
lb = output[0] ; ub = output[1] |
1001 |
if lb != lowerBound or ub != upperBound: |
1002 |
print "lb:", lb, " - ub:", ub |
1003 |
print "Invalid domain/image binades. Domain:",\ |
1004 |
lowerBound, upperBound, "Images:", \ |
1005 |
inputFunction(lowerBound), inputFunction(upperBound) |
1006 |
raise Exception("Invalid domain/image binades.") |
1007 |
# |
1008 |
## Progam initialization |
1009 |
### Approximation polynomial accuracy and hardness to round. |
1010 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
1011 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
1012 |
### Significand to integer conversion ratio. |
1013 |
toIntegerFactor = 2^(precision-1) |
1014 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
1015 |
### Variables and rings for polynomials and root searching. |
1016 |
i=var('i') |
1017 |
t=var('t') |
1018 |
inputFunctionVariable = inputFunction.variables()[0] |
1019 |
function = inputFunction.subs({inputFunctionVariable:i}) |
1020 |
# Polynomial Rings over the integers, for root finding. |
1021 |
Zi = ZZ[i] |
1022 |
Zt = ZZ[t] |
1023 |
Zit = ZZ[i,t] |
1024 |
## Number of iterations limit. |
1025 |
maxIter = 100000 |
1026 |
# |
1027 |
## Compute the scaled function and the degree, in their Sollya version |
1028 |
# once for all. |
1029 |
(scaledf, sdlb, sdub, silb, siub) = \ |
1030 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
1031 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
1032 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
1033 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
1034 |
# |
1035 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
1036 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
1037 |
(unscalingFunction, scalingFunction) = \ |
1038 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
1039 |
#print scalingFunction, unscalingFunction |
1040 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
1041 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
1042 |
if internalSollyaPrec < 192: |
1043 |
internalSollyaPrec = 192 |
1044 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
1045 |
print "Sollya internal precision:", internalSollyaPrec |
1046 |
## Some variables. |
1047 |
### General variables |
1048 |
lb = sdlb |
1049 |
ub = sdub |
1050 |
nbw = 0 |
1051 |
intervalUlp = ub.ulp() |
1052 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
1053 |
ic = 0 |
1054 |
icAsInt = 0 # Set from ic. |
1055 |
solutionsSet = set() |
1056 |
tsErrorWidth = [] |
1057 |
csErrorVectors = [] |
1058 |
csVectorsResultants = [] |
1059 |
floatP = 0 # Taylor polynomial. |
1060 |
floatPcv = 0 # Ditto with variable change. |
1061 |
intvl = "" # Taylor interval |
1062 |
terr = 0 # Taylor error. |
1063 |
iterCount = 0 |
1064 |
htrnSet = set() |
1065 |
### Timers and counters. |
1066 |
wallTimeStart = 0 |
1067 |
cpuTimeStart = 0 |
1068 |
taylCondFailedCount = 0 |
1069 |
coppCondFailedCount = 0 |
1070 |
resultCondFailedCount = 0 |
1071 |
coppCondFailed = False |
1072 |
resultCondFailed = False |
1073 |
globalResultsList = [] |
1074 |
basisConstructionsCount = 0 |
1075 |
basisConstructionsFullTime = 0 |
1076 |
basisConstructionTime = 0 |
1077 |
reductionsCount = 0 |
1078 |
reductionsFullTime = 0 |
1079 |
reductionTime = 0 |
1080 |
resultantsComputationsCount = 0 |
1081 |
resultantsComputationsFullTime = 0 |
1082 |
resultantsComputationTime = 0 |
1083 |
rootsComputationsCount = 0 |
1084 |
rootsComputationsFullTime = 0 |
1085 |
rootsComputationTime = 0 |
1086 |
|
1087 |
## Global times are started here. |
1088 |
wallTimeStart = walltime() |
1089 |
cpuTimeStart = cputime() |
1090 |
## Main loop. |
1091 |
while True: |
1092 |
if lb >= sdub: |
1093 |
print "Lower bound reached upper bound." |
1094 |
break |
1095 |
if iterCount == maxIter: |
1096 |
print "Reached maxIter. Aborting" |
1097 |
break |
1098 |
iterCount += 1 |
1099 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1100 |
"log2(numbers)." |
1101 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
1102 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
1103 |
degreeSo, |
1104 |
lb, |
1105 |
ub, |
1106 |
polyApproxAccur) |
1107 |
### Convert back the data into Sage space. |
1108 |
(floatP, floatPcv, intvl, ic, terr) = \ |
1109 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
1110 |
prceSo[1], prceSo[2], |
1111 |
prceSo[3])) |
1112 |
intvl = RRIF(intvl) |
1113 |
## Clean-up Sollya stuff. |
1114 |
for elem in prceSo: |
1115 |
sollya_lib_clear_obj(elem) |
1116 |
#print floatP, floatPcv, intvl, ic, terr |
1117 |
#print floatP |
1118 |
#print intvl.endpoints()[0].n(), \ |
1119 |
# ic.n(), |
1120 |
#intvl.endpoints()[1].n() |
1121 |
### Check returned data. |
1122 |
#### Is approximation error OK? |
1123 |
if terr > polyApproxAccur: |
1124 |
exceptionErrorMess = \ |
1125 |
"Approximation failed - computed error:" + \ |
1126 |
str(terr) + " - target error: " |
1127 |
exceptionErrorMess += \ |
1128 |
str(polyApproxAccur) + ". Aborting!" |
1129 |
raise Exception(exceptionErrorMess) |
1130 |
#### Is lower bound OK? |
1131 |
if lb != intvl.endpoints()[0]: |
1132 |
exceptionErrorMess = "Wrong lower bound:" + \ |
1133 |
str(lb) + ". Aborting!" |
1134 |
raise Exception(exceptionErrorMess) |
1135 |
#### Set upper bound. |
1136 |
if ub > intvl.endpoints()[1]: |
1137 |
ub = intvl.endpoints()[1] |
1138 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1139 |
"log2(numbers)." |
1140 |
taylCondFailedCount += 1 |
1141 |
#### Is interval not degenerate? |
1142 |
if lb >= ub: |
1143 |
exceptionErrorMess = "Degenerate interval: " + \ |
1144 |
"lowerBound(" + str(lb) +\ |
1145 |
")>= upperBound(" + str(ub) + \ |
1146 |
"). Aborting!" |
1147 |
raise Exception(exceptionErrorMess) |
1148 |
#### Is interval center ok? |
1149 |
if ic <= lb or ic >= ub: |
1150 |
exceptionErrorMess = "Invalid interval center for " + \ |
1151 |
str(lb) + ',' + str(ic) + ',' + \ |
1152 |
str(ub) + ". Aborting!" |
1153 |
raise Exception(exceptionErrorMess) |
1154 |
##### Current interval width and reset future interval width. |
1155 |
bw = ub - lb |
1156 |
nbw = 0 |
1157 |
icAsInt = int(ic * toIntegerFactor) |
1158 |
#### The following ratio is always >= 1. In case we may want to |
1159 |
# enlarge the interval |
1160 |
curTaylErrRat = polyApproxAccur / terr |
1161 |
### Make the integral transformations. |
1162 |
#### Bounds and interval center. |
1163 |
intIc = int(ic * toIntegerFactor) |
1164 |
intLb = int(lb * toIntegerFactor) - intIc |
1165 |
intUb = int(ub * toIntegerFactor) - intIc |
1166 |
# |
1167 |
#### Polynomials |
1168 |
basisConstructionTime = cputime() |
1169 |
##### To a polynomial with rational coefficients with rational arguments |
1170 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
1171 |
##### To a polynomial with rational coefficients with integer arguments |
1172 |
ratIntP = \ |
1173 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
1174 |
##### Ultimately a multivariate polynomial with integer coefficients |
1175 |
# with integer arguments. |
1176 |
coppersmithTuple = \ |
1177 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
1178 |
precision, |
1179 |
targetHardnessToRound, |
1180 |
i, t) |
1181 |
#### Recover Coppersmith information. |
1182 |
intIntP = coppersmithTuple[0] |
1183 |
N = coppersmithTuple[1] |
1184 |
nAtAlpha = N^alpha |
1185 |
tBound = coppersmithTuple[2] |
1186 |
leastCommonMultiple = coppersmithTuple[3] |
1187 |
iBound = max(abs(intLb),abs(intUb)) |
1188 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
1189 |
basisConstructionsCount += 1 |
1190 |
reductionTime = cputime() |
1191 |
#### Compute the reduced polynomials. |
1192 |
ccReducedPolynomialsList = \ |
1193 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
1194 |
alpha, |
1195 |
N, |
1196 |
iBound, |
1197 |
tBound) |
1198 |
if ccReducedPolynomialsList is None: |
1199 |
raise Exception("Reduction failed.") |
1200 |
reductionsFullTime += cputime(reductionTime) |
1201 |
reductionsCount += 1 |
1202 |
if len(ccReducedPolynomialsList) < 2: |
1203 |
print "Nothing to form resultants with." |
1204 |
|
1205 |
coppCondFailedCount += 1 |
1206 |
coppCondFailed = True |
1207 |
##### Apply a different shrink factor according to |
1208 |
# the number of compliant polynomials. |
1209 |
if len(ccReducedPolynomialsList) == 0: |
1210 |
ub = lb + bw * noCoppersmithIntervalShrink |
1211 |
else: # At least one compliant polynomial. |
1212 |
ub = lb + bw * oneCoppersmithIntervalShrink |
1213 |
if ub > sdub: |
1214 |
ub = sdub |
1215 |
if lb == ub: |
1216 |
raise Exception("Cant shrink interval \ |
1217 |
anymore to get Coppersmith condition.") |
1218 |
nbw = 0 |
1219 |
continue |
1220 |
#### We have at least two polynomials. |
1221 |
# Let us try to compute resultants. |
1222 |
# For each resultant computed, go for the solutions. |
1223 |
##### Build the pairs list. |
1224 |
polyPairsList = [] |
1225 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
1226 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
1227 |
len(ccReducedPolynomialsList)): |
1228 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
1229 |
ccReducedPolynomialsList[polyInnerIndex])) |
1230 |
#### Actual root search. |
1231 |
rootsSet = set() |
1232 |
hasNonNullResultant = False |
1233 |
for polyPair in polyPairsList: |
1234 |
if hasNonNullResultant: |
1235 |
break |
1236 |
resultantsComputationTime = cputime() |
1237 |
currentResultantI = \ |
1238 |
slz_resultant(polyPair[0], |
1239 |
polyPair[1], |
1240 |
t) |
1241 |
resultantsComputationsCount += 1 |
1242 |
if currentResultantI is None: |
1243 |
resultantsComputationsFullTime += \ |
1244 |
cputime(resultantsComputationTime) |
1245 |
print "Nul resultant" |
1246 |
continue # Next polyPair. |
1247 |
currentResultantT = \ |
1248 |
slz_resultant(polyPair[0], |
1249 |
polyPair[1], |
1250 |
i) |
1251 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
1252 |
resultantsComputationsCount += 1 |
1253 |
if currentResultantT is None: |
1254 |
print "Nul resultant" |
1255 |
continue # Next polyPair. |
1256 |
else: |
1257 |
hasNonNullResultant = True |
1258 |
#### We have a non null resultants pair. From now on, whatever the |
1259 |
# root search yields, no extra root search is necessary. |
1260 |
#### A constant resultant leads to no root. Root search is done. |
1261 |
if currentResultantI.degree() < 1: |
1262 |
print "Resultant is constant:", currentResultantI |
1263 |
break # Next polyPair and should break. |
1264 |
if currentResultantT.degree() < 1: |
1265 |
print "Resultant is constant:", currentResultantT |
1266 |
break # Next polyPair and should break. |
1267 |
#### Actual roots computation. |
1268 |
rootsComputationTime = cputime() |
1269 |
##### Compute i roots |
1270 |
iRootsList = Zi(currentResultantI).roots() |
1271 |
rootsComputationsCount += 1 |
1272 |
if len(iRootsList) == 0: |
1273 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
1274 |
print "No roots in \"i\"." |
1275 |
break # No roots in i. |
1276 |
tRootsList = Zt(currentResultantT).roots() |
1277 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
1278 |
rootsComputationsCount += 1 |
1279 |
if len(tRootsList) == 0: |
1280 |
print "No roots in \"t\"." |
1281 |
break # No roots in i. |
1282 |
##### For each iRoot, get a tRoot and check against the polynomials. |
1283 |
for iRoot in iRootsList: |
1284 |
####### Roots returned by roots() are (value, multiplicity) |
1285 |
# tuples. |
1286 |
#print "iRoot:", iRoot |
1287 |
for tRoot in tRootsList: |
1288 |
###### Use the tRoot against each polynomial, alternatively. |
1289 |
if polyPair[0](iRoot[0],tRoot[0]) != 0: |
1290 |
continue |
1291 |
if polyPair[1](iRoot[0],tRoot[0]) != 0: |
1292 |
continue |
1293 |
rootsSet.add((iRoot[0], tRoot[0])) |
1294 |
# End of roots computation. |
1295 |
# End loop for polyPair in polyParsList. Will break at next iteration. |
1296 |
# since a non null resultant was found. |
1297 |
#### Prepare for results for the current interval.. |
1298 |
intervalResultsList = [] |
1299 |
intervalResultsList.append((lb, ub)) |
1300 |
#### Check roots. |
1301 |
rootsResultsList = [] |
1302 |
for root in rootsSet: |
1303 |
specificRootResultsList = [] |
1304 |
failingBounds = [] |
1305 |
intIntPdivN = intIntP(root[0], root[1]) / N |
1306 |
if int(intIntPdivN) != intIntPdivN: |
1307 |
continue # Next root |
1308 |
# Root qualifies for modular equation, test it for hardness to round. |
1309 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
1310 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
1311 |
#print scalingFunction |
1312 |
scaledHardToRoundCaseAsFloat = \ |
1313 |
scalingFunction(hardToRoundCaseAsFloat) |
1314 |
print "Candidate HTRNc at x =", \ |
1315 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
1316 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
1317 |
function, |
1318 |
2^-(targetHardnessToRound), |
1319 |
RRR): |
1320 |
print hardToRoundCaseAsFloat, "is HTRN case." |
1321 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
1322 |
print "Found in interval." |
1323 |
else: |
1324 |
print "Found out of interval." |
1325 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
1326 |
# Check the root is in the bounds |
1327 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
1328 |
print "Root", root, "is out of bounds for modular equation." |
1329 |
if abs(root[0]) > iBound: |
1330 |
print "root[0]:", root[0] |
1331 |
print "i bound:", iBound |
1332 |
failingBounds.append('i') |
1333 |
failingBounds.append(root[0]) |
1334 |
failingBounds.append(iBound) |
1335 |
if abs(root[1]) > tBound: |
1336 |
print "root[1]:", root[1] |
1337 |
print "t bound:", tBound |
1338 |
failingBounds.append('t') |
1339 |
failingBounds.append(root[1]) |
1340 |
failingBounds.append(tBound) |
1341 |
if len(failingBounds) > 0: |
1342 |
specificRootResultsList.append(failingBounds) |
1343 |
else: # From slz_is_htrn... |
1344 |
print "is not an HTRN case." |
1345 |
if len(specificRootResultsList) > 0: |
1346 |
rootsResultsList.append(specificRootResultsList) |
1347 |
if len(rootsResultsList) > 0: |
1348 |
intervalResultsList.append(rootsResultsList) |
1349 |
### Check if a non null resultant was found. If not shrink the interval. |
1350 |
if not hasNonNullResultant: |
1351 |
print "Only null resultants for this reduction, shrinking interval." |
1352 |
resultCondFailed = True |
1353 |
resultCondFailedCount += 1 |
1354 |
### Shrink interval for next iteration. |
1355 |
ub = lb + bw * onlyNullResultantsShrink |
1356 |
if ub > sdub: |
1357 |
ub = sdub |
1358 |
nbw = 0 |
1359 |
continue |
1360 |
#### An intervalResultsList has at least the bounds. |
1361 |
globalResultsList.append(intervalResultsList) |
1362 |
#### Compute an incremented width for next upper bound, only |
1363 |
# if not Coppersmith condition nor resultant condition |
1364 |
# failed at the previous run. |
1365 |
if not coppCondFailed and not resultCondFailed: |
1366 |
nbw = noErrorIntervalStretch * bw |
1367 |
else: |
1368 |
nbw = bw |
1369 |
##### Reset the failure flags. They will be raised |
1370 |
# again if needed. |
1371 |
coppCondFailed = False |
1372 |
resultCondFailed = False |
1373 |
#### For next iteration (at end of loop) |
1374 |
#print "nbw:", nbw |
1375 |
lb = ub |
1376 |
ub += nbw |
1377 |
if ub > sdub: |
1378 |
ub = sdub |
1379 |
|
1380 |
# End while True |
1381 |
## Main loop just ended. |
1382 |
globalWallTime = walltime(wallTimeStart) |
1383 |
globalCpuTime = cputime(cpuTimeStart) |
1384 |
## Output results |
1385 |
print ; print "Intervals and HTRNs" ; print |
1386 |
for intervalResultsList in globalResultsList: |
1387 |
print "[", intervalResultsList[0][0], ",",intervalResultsList[0][1], "]", |
1388 |
if len(intervalResultsList) > 1: |
1389 |
rootsResultsList = intervalResultsList[1] |
1390 |
for specificRootResultsList in rootsResultsList: |
1391 |
print "\t", specificRootResultsList[0], |
1392 |
if len(specificRootResultsList) > 1: |
1393 |
print specificRootResultsList[1], |
1394 |
print ; print |
1395 |
#print globalResultsList |
1396 |
# |
1397 |
print "Timers and counters" |
1398 |
|
1399 |
print "Number of iterations:", iterCount |
1400 |
print "Taylor condition failures:", taylCondFailedCount |
1401 |
print "Coppersmith condition failures:", coppCondFailedCount |
1402 |
print "Resultant condition failures:", resultCondFailedCount |
1403 |
print "Iterations count: ", iterCount |
1404 |
print "Number of intervals:", len(globalResultsList) |
1405 |
print "Number of basis constructions:", basisConstructionsCount |
1406 |
print "Total CPU time spent in basis constructions:", \ |
1407 |
basisConstructionsFullTime |
1408 |
if basisConstructionsCount != 0: |
1409 |
print "Average basis construction CPU time:", \ |
1410 |
basisConstructionsFullTime/basisConstructionsCount |
1411 |
print "Number of reductions:", reductionsCount |
1412 |
print "Total CPU time spent in reductions:", reductionsFullTime |
1413 |
if reductionsCount != 0: |
1414 |
print "Average reduction CPU time:", \ |
1415 |
reductionsFullTime/reductionsCount |
1416 |
print "Number of resultants computation rounds:", \ |
1417 |
resultantsComputationsCount |
1418 |
print "Total CPU time spent in resultants computation rounds:", \ |
1419 |
resultantsComputationsFullTime |
1420 |
if resultantsComputationsCount != 0: |
1421 |
print "Average resultants computation round CPU time:", \ |
1422 |
resultantsComputationsFullTime/resultantsComputationsCount |
1423 |
print "Number of root finding rounds:", rootsComputationsCount |
1424 |
print "Total CPU time spent in roots finding rounds:", \ |
1425 |
rootsComputationsFullTime |
1426 |
if rootsComputationsCount != 0: |
1427 |
print "Average roots finding round CPU time:", \ |
1428 |
rootsComputationsFullTime/rootsComputationsCount |
1429 |
print "Global Wall time:", globalWallTime |
1430 |
print "Global CPU time:", globalCpuTime |
1431 |
## Output counters |
1432 |
# End srs_runSLZ-v03 |
1433 |
|
1434 |
def srs_compute_lattice_volume(inputFunction, |
1435 |
inputLowerBound, |
1436 |
inputUpperBound, |
1437 |
alpha, |
1438 |
degree, |
1439 |
precision, |
1440 |
emin, |
1441 |
emax, |
1442 |
targetHardnessToRound, |
1443 |
debug = False): |
1444 |
""" |
1445 |
Changes from V2: |
1446 |
Root search is changed: |
1447 |
- we compute the resultants in i and in t; |
1448 |
- we compute the roots set of each of these resultants; |
1449 |
- we combine all the possible pairs between the two sets; |
1450 |
- we check these pairs in polynomials for correctness. |
1451 |
Changes from V1: |
1452 |
1- check for roots as soon as a resultant is computed; |
1453 |
2- once a non null resultant is found, check for roots; |
1454 |
3- constant resultant == no root. |
1455 |
""" |
1456 |
|
1457 |
if debug: |
1458 |
print "Function :", inputFunction |
1459 |
print "Lower bound :", inputLowerBound |
1460 |
print "Upper bounds :", inputUpperBound |
1461 |
print "Alpha :", alpha |
1462 |
print "Degree :", degree |
1463 |
print "Precision :", precision |
1464 |
print "Emin :", emin |
1465 |
print "Emax :", emax |
1466 |
print "Target hardness-to-round:", targetHardnessToRound |
1467 |
|
1468 |
## Important constants. |
1469 |
### Stretch the interval if no error happens. |
1470 |
noErrorIntervalStretch = 1 + 2^(-5) |
1471 |
### If no vector validates the Coppersmith condition, shrink the interval |
1472 |
# by the following factor. |
1473 |
noCoppersmithIntervalShrink = 1/2 |
1474 |
### If only (or at least) one vector validates the Coppersmith condition, |
1475 |
# shrink the interval by the following factor. |
1476 |
oneCoppersmithIntervalShrink = 3/4 |
1477 |
#### If only null resultants are found, shrink the interval by the |
1478 |
# following factor. |
1479 |
onlyNullResultantsShrink = 3/4 |
1480 |
## Structures. |
1481 |
RRR = RealField(precision) |
1482 |
RRIF = RealIntervalField(precision) |
1483 |
## Converting input bound into the "right" field. |
1484 |
lowerBound = RRR(inputLowerBound) |
1485 |
upperBound = RRR(inputUpperBound) |
1486 |
## Before going any further, check domain and image binade conditions. |
1487 |
print inputFunction(1).n() |
1488 |
output = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
1489 |
if output is None: |
1490 |
print "Invalid domain/image binades. Domain:",\ |
1491 |
lowerBound, upperBound, "Images:", \ |
1492 |
inputFunction(lowerBound), inputFunction(upperBound) |
1493 |
raise Exception("Invalid domain/image binades.") |
1494 |
lb = output[0] ; ub = output[1] |
1495 |
if lb != lowerBound or ub != upperBound: |
1496 |
print "lb:", lb, " - ub:", ub |
1497 |
print "Invalid domain/image binades. Domain:",\ |
1498 |
lowerBound, upperBound, "Images:", \ |
1499 |
inputFunction(lowerBound), inputFunction(upperBound) |
1500 |
raise Exception("Invalid domain/image binades.") |
1501 |
# |
1502 |
## Progam initialization |
1503 |
### Approximation polynomial accuracy and hardness to round. |
1504 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
1505 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
1506 |
### Significand to integer conversion ratio. |
1507 |
toIntegerFactor = 2^(precision-1) |
1508 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
1509 |
### Variables and rings for polynomials and root searching. |
1510 |
i=var('i') |
1511 |
t=var('t') |
1512 |
inputFunctionVariable = inputFunction.variables()[0] |
1513 |
function = inputFunction.subs({inputFunctionVariable:i}) |
1514 |
# Polynomial Rings over the integers, for root finding. |
1515 |
Zi = ZZ[i] |
1516 |
Zt = ZZ[t] |
1517 |
Zit = ZZ[i,t] |
1518 |
## Number of iterations limit. |
1519 |
maxIter = 100000 |
1520 |
# |
1521 |
## Compute the scaled function and the degree, in their Sollya version |
1522 |
# once for all. |
1523 |
(scaledf, sdlb, sdub, silb, siub) = \ |
1524 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
1525 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
1526 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
1527 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
1528 |
# |
1529 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
1530 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
1531 |
(unscalingFunction, scalingFunction) = \ |
1532 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
1533 |
#print scalingFunction, unscalingFunction |
1534 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
1535 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
1536 |
if internalSollyaPrec < 192: |
1537 |
internalSollyaPrec = 192 |
1538 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
1539 |
print "Sollya internal precision:", internalSollyaPrec |
1540 |
## Some variables. |
1541 |
### General variables |
1542 |
lb = sdlb |
1543 |
ub = sdub |
1544 |
nbw = 0 |
1545 |
intervalUlp = ub.ulp() |
1546 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
1547 |
ic = 0 |
1548 |
icAsInt = 0 # Set from ic. |
1549 |
solutionsSet = set() |
1550 |
tsErrorWidth = [] |
1551 |
csErrorVectors = [] |
1552 |
csVectorsResultants = [] |
1553 |
floatP = 0 # Taylor polynomial. |
1554 |
floatPcv = 0 # Ditto with variable change. |
1555 |
intvl = "" # Taylor interval |
1556 |
terr = 0 # Taylor error. |
1557 |
iterCount = 0 |
1558 |
htrnSet = set() |
1559 |
### Timers and counters. |
1560 |
wallTimeStart = 0 |
1561 |
cpuTimeStart = 0 |
1562 |
taylCondFailedCount = 0 |
1563 |
coppCondFailedCount = 0 |
1564 |
resultCondFailedCount = 0 |
1565 |
coppCondFailed = False |
1566 |
resultCondFailed = False |
1567 |
globalResultsList = [] |
1568 |
basisConstructionsCount = 0 |
1569 |
basisConstructionsFullTime = 0 |
1570 |
basisConstructionTime = 0 |
1571 |
reductionsCount = 0 |
1572 |
reductionsFullTime = 0 |
1573 |
reductionTime = 0 |
1574 |
resultantsComputationsCount = 0 |
1575 |
resultantsComputationsFullTime = 0 |
1576 |
resultantsComputationTime = 0 |
1577 |
rootsComputationsCount = 0 |
1578 |
rootsComputationsFullTime = 0 |
1579 |
rootsComputationTime = 0 |
1580 |
|
1581 |
## Global times are started here. |
1582 |
wallTimeStart = walltime() |
1583 |
cpuTimeStart = cputime() |
1584 |
## Main loop. |
1585 |
while True: |
1586 |
if lb >= sdub: |
1587 |
print "Lower bound reached upper bound." |
1588 |
break |
1589 |
if iterCount == maxIter: |
1590 |
print "Reached maxIter. Aborting" |
1591 |
break |
1592 |
iterCount += 1 |
1593 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1594 |
"log2(numbers)." |
1595 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
1596 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
1597 |
degreeSo, |
1598 |
lb, |
1599 |
ub, |
1600 |
polyApproxAccur) |
1601 |
### Convert back the data into Sage space. |
1602 |
(floatP, floatPcv, intvl, ic, terr) = \ |
1603 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
1604 |
prceSo[1], prceSo[2], |
1605 |
prceSo[3])) |
1606 |
intvl = RRIF(intvl) |
1607 |
## Clean-up Sollya stuff. |
1608 |
for elem in prceSo: |
1609 |
sollya_lib_clear_obj(elem) |
1610 |
#print floatP, floatPcv, intvl, ic, terr |
1611 |
#print floatP |
1612 |
#print intvl.endpoints()[0].n(), \ |
1613 |
# ic.n(), |
1614 |
#intvl.endpoints()[1].n() |
1615 |
### Check returned data. |
1616 |
#### Is approximation error OK? |
1617 |
if terr > polyApproxAccur: |
1618 |
exceptionErrorMess = \ |
1619 |
"Approximation failed - computed error:" + \ |
1620 |
str(terr) + " - target error: " |
1621 |
exceptionErrorMess += \ |
1622 |
str(polyApproxAccur) + ". Aborting!" |
1623 |
raise Exception(exceptionErrorMess) |
1624 |
#### Is lower bound OK? |
1625 |
if lb != intvl.endpoints()[0]: |
1626 |
exceptionErrorMess = "Wrong lower bound:" + \ |
1627 |
str(lb) + ". Aborting!" |
1628 |
raise Exception(exceptionErrorMess) |
1629 |
#### Set upper bound. |
1630 |
if ub > intvl.endpoints()[1]: |
1631 |
ub = intvl.endpoints()[1] |
1632 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
1633 |
"log2(numbers)." |
1634 |
taylCondFailedCount += 1 |
1635 |
#### Is interval not degenerate? |
1636 |
if lb >= ub: |
1637 |
exceptionErrorMess = "Degenerate interval: " + \ |
1638 |
"lowerBound(" + str(lb) +\ |
1639 |
")>= upperBound(" + str(ub) + \ |
1640 |
"). Aborting!" |
1641 |
raise Exception(exceptionErrorMess) |
1642 |
#### Is interval center ok? |
1643 |
if ic <= lb or ic >= ub: |
1644 |
exceptionErrorMess = "Invalid interval center for " + \ |
1645 |
str(lb) + ',' + str(ic) + ',' + \ |
1646 |
str(ub) + ". Aborting!" |
1647 |
raise Exception(exceptionErrorMess) |
1648 |
##### Current interval width and reset future interval width. |
1649 |
bw = ub - lb |
1650 |
nbw = 0 |
1651 |
icAsInt = int(ic * toIntegerFactor) |
1652 |
#### The following ratio is always >= 1. In case we may want to |
1653 |
# enlarge the interval |
1654 |
curTaylErrRat = polyApproxAccur / terr |
1655 |
### Make the integral transformations. |
1656 |
#### Bounds and interval center. |
1657 |
intIc = int(ic * toIntegerFactor) |
1658 |
intLb = int(lb * toIntegerFactor) - intIc |
1659 |
intUb = int(ub * toIntegerFactor) - intIc |
1660 |
# |
1661 |
#### Polynomials |
1662 |
basisConstructionTime = cputime() |
1663 |
##### To a polynomial with rational coefficients with rational arguments |
1664 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
1665 |
##### To a polynomial with rational coefficients with integer arguments |
1666 |
ratIntP = \ |
1667 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
1668 |
##### Ultimately a multivariate polynomial with integer coefficients |
1669 |
# with integer arguments. |
1670 |
coppersmithTuple = \ |
1671 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
1672 |
precision, |
1673 |
targetHardnessToRound, |
1674 |
i, t) |
1675 |
#### Recover Coppersmith information. |
1676 |
intIntP = coppersmithTuple[0] |
1677 |
N = coppersmithTuple[1] |
1678 |
nAtAlpha = N^alpha |
1679 |
tBound = coppersmithTuple[2] |
1680 |
leastCommonMultiple = coppersmithTuple[3] |
1681 |
iBound = max(abs(intLb),abs(intUb)) |
1682 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
1683 |
basisConstructionsCount += 1 |
1684 |
reductionTime = cputime() |
1685 |
#### Compute the reduced polynomials. |
1686 |
ccReducedPolynomialsList = \ |
1687 |
slz_compute_coppersmith_reduced_polynomials_with_lattice_volume(intIntP, |
1688 |
alpha, |
1689 |
N, |
1690 |
iBound, |
1691 |
tBound) |
1692 |
if ccReducedPolynomialsList is None: |
1693 |
raise Exception("Reduction failed.") |
1694 |
reductionsFullTime += cputime(reductionTime) |
1695 |
reductionsCount += 1 |
1696 |
if len(ccReducedPolynomialsList) < 2: |
1697 |
print "Nothing to form resultants with." |
1698 |
|
1699 |
coppCondFailedCount += 1 |
1700 |
coppCondFailed = True |
1701 |
##### Apply a different shrink factor according to |
1702 |
# the number of compliant polynomials. |
1703 |
if len(ccReducedPolynomialsList) == 0: |
1704 |
ub = lb + bw * noCoppersmithIntervalShrink |
1705 |
else: # At least one compliant polynomial. |
1706 |
ub = lb + bw * oneCoppersmithIntervalShrink |
1707 |
if ub > sdub: |
1708 |
ub = sdub |
1709 |
if lb == ub: |
1710 |
raise Exception("Cant shrink interval \ |
1711 |
anymore to get Coppersmith condition.") |
1712 |
nbw = 0 |
1713 |
continue |
1714 |
#### We have at least two polynomials. |
1715 |
# Let us try to compute resultants. |
1716 |
# For each resultant computed, go for the solutions. |
1717 |
##### Build the pairs list. |
1718 |
polyPairsList = [] |
1719 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
1720 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
1721 |
len(ccReducedPolynomialsList)): |
1722 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
1723 |
ccReducedPolynomialsList[polyInnerIndex])) |
1724 |
#### Actual root search. |
1725 |
rootsSet = set() |
1726 |
hasNonNullResultant = False |
1727 |
for polyPair in polyPairsList: |
1728 |
if hasNonNullResultant: |
1729 |
break |
1730 |
resultantsComputationTime = cputime() |
1731 |
currentResultantI = \ |
1732 |
slz_resultant(polyPair[0], |
1733 |
polyPair[1], |
1734 |
t) |
1735 |
resultantsComputationsCount += 1 |
1736 |
if currentResultantI is None: |
1737 |
resultantsComputationsFullTime += \ |
1738 |
cputime(resultantsComputationTime) |
1739 |
print "Nul resultant" |
1740 |
continue # Next polyPair. |
1741 |
currentResultantT = \ |
1742 |
slz_resultant(polyPair[0], |
1743 |
polyPair[1], |
1744 |
i) |
1745 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
1746 |
resultantsComputationsCount += 1 |
1747 |
if currentResultantT is None: |
1748 |
print "Nul resultant" |
1749 |
continue # Next polyPair. |
1750 |
else: |
1751 |
hasNonNullResultant = True |
1752 |
#### We have a non null resultants pair. From now on, whatever the |
1753 |
# root search yields, no extra root search is necessary. |
1754 |
#### A constant resultant leads to no root. Root search is done. |
1755 |
if currentResultantI.degree() < 1: |
1756 |
print "Resultant is constant:", currentResultantI |
1757 |
break # Next polyPair and should break. |
1758 |
if currentResultantT.degree() < 1: |
1759 |
print "Resultant is constant:", currentResultantT |
1760 |
break # Next polyPair and should break. |
1761 |
#### Actual roots computation. |
1762 |
rootsComputationTime = cputime() |
1763 |
##### Compute i roots |
1764 |
iRootsList = Zi(currentResultantI).roots() |
1765 |
rootsComputationsCount += 1 |
1766 |
if len(iRootsList) == 0: |
1767 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
1768 |
print "No roots in \"i\"." |
1769 |
break # No roots in i. |
1770 |
tRootsList = Zt(currentResultantT).roots() |
1771 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
1772 |
rootsComputationsCount += 1 |
1773 |
if len(tRootsList) == 0: |
1774 |
print "No roots in \"t\"." |
1775 |
break # No roots in i. |
1776 |
##### For each iRoot, get a tRoot and check against the polynomials. |
1777 |
for iRoot in iRootsList: |
1778 |
####### Roots returned by roots() are (value, multiplicity) |
1779 |
# tuples. |
1780 |
#print "iRoot:", iRoot |
1781 |
for tRoot in tRootsList: |
1782 |
###### Use the tRoot against each polynomial, alternatively. |
1783 |
if polyPair[0](iRoot[0],tRoot[0]) != 0: |
1784 |
continue |
1785 |
if polyPair[1](iRoot[0],tRoot[0]) != 0: |
1786 |
continue |
1787 |
rootsSet.add((iRoot[0], tRoot[0])) |
1788 |
# End of roots computation. |
1789 |
# End loop for polyPair in polyParsList. Will break at next iteration. |
1790 |
# since a non null resultant was found. |
1791 |
#### Prepare for results for the current interval.. |
1792 |
intervalResultsList = [] |
1793 |
intervalResultsList.append((lb, ub)) |
1794 |
#### Check roots. |
1795 |
rootsResultsList = [] |
1796 |
for root in rootsSet: |
1797 |
specificRootResultsList = [] |
1798 |
failingBounds = [] |
1799 |
intIntPdivN = intIntP(root[0], root[1]) / N |
1800 |
if int(intIntPdivN) != intIntPdivN: |
1801 |
continue # Next root |
1802 |
# Root qualifies for modular equation, test it for hardness to round. |
1803 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
1804 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
1805 |
#print scalingFunction |
1806 |
scaledHardToRoundCaseAsFloat = \ |
1807 |
scalingFunction(hardToRoundCaseAsFloat) |
1808 |
print "Candidate HTRNc at x =", \ |
1809 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
1810 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
1811 |
function, |
1812 |
2^-(targetHardnessToRound), |
1813 |
RRR): |
1814 |
print hardToRoundCaseAsFloat, "is HTRN case." |
1815 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
1816 |
print "Found in interval." |
1817 |
else: |
1818 |
print "Found out of interval." |
1819 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
1820 |
# Check the root is in the bounds |
1821 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
1822 |
print "Root", root, "is out of bounds for modular equation." |
1823 |
if abs(root[0]) > iBound: |
1824 |
print "root[0]:", root[0] |
1825 |
print "i bound:", iBound |
1826 |
failingBounds.append('i') |
1827 |
failingBounds.append(root[0]) |
1828 |
failingBounds.append(iBound) |
1829 |
if abs(root[1]) > tBound: |
1830 |
print "root[1]:", root[1] |
1831 |
print "t bound:", tBound |
1832 |
failingBounds.append('t') |
1833 |
failingBounds.append(root[1]) |
1834 |
failingBounds.append(tBound) |
1835 |
if len(failingBounds) > 0: |
1836 |
specificRootResultsList.append(failingBounds) |
1837 |
else: # From slz_is_htrn... |
1838 |
print "is not an HTRN case." |
1839 |
if len(specificRootResultsList) > 0: |
1840 |
rootsResultsList.append(specificRootResultsList) |
1841 |
if len(rootsResultsList) > 0: |
1842 |
intervalResultsList.append(rootsResultsList) |
1843 |
### Check if a non null resultant was found. If not shrink the interval. |
1844 |
if not hasNonNullResultant: |
1845 |
print "Only null resultants for this reduction, shrinking interval." |
1846 |
resultCondFailed = True |
1847 |
resultCondFailedCount += 1 |
1848 |
### Shrink interval for next iteration. |
1849 |
ub = lb + bw * onlyNullResultantsShrink |
1850 |
if ub > sdub: |
1851 |
ub = sdub |
1852 |
nbw = 0 |
1853 |
continue |
1854 |
#### An intervalResultsList has at least the bounds. |
1855 |
globalResultsList.append(intervalResultsList) |
1856 |
#### Compute an incremented width for next upper bound, only |
1857 |
# if not Coppersmith condition nor resultant condition |
1858 |
# failed at the previous run. |
1859 |
if not coppCondFailed and not resultCondFailed: |
1860 |
nbw = noErrorIntervalStretch * bw |
1861 |
else: |
1862 |
nbw = bw |
1863 |
##### Reset the failure flags. They will be raised |
1864 |
# again if needed. |
1865 |
coppCondFailed = False |
1866 |
resultCondFailed = False |
1867 |
#### For next iteration (at end of loop) |
1868 |
#print "nbw:", nbw |
1869 |
lb = ub |
1870 |
ub += nbw |
1871 |
if ub > sdub: |
1872 |
ub = sdub |
1873 |
|
1874 |
# End while True |
1875 |
## Main loop just ended. |
1876 |
globalWallTime = walltime(wallTimeStart) |
1877 |
globalCpuTime = cputime(cpuTimeStart) |
1878 |
## Output results |
1879 |
print ; print "Intervals and HTRNs" ; print |
1880 |
for intervalResultsList in globalResultsList: |
1881 |
print "[", intervalResultsList[0][0], ",",intervalResultsList[0][1], "]", |
1882 |
if len(intervalResultsList) > 1: |
1883 |
rootsResultsList = intervalResultsList[1] |
1884 |
for specificRootResultsList in rootsResultsList: |
1885 |
print "\t", specificRootResultsList[0], |
1886 |
if len(specificRootResultsList) > 1: |
1887 |
print specificRootResultsList[1], |
1888 |
print ; print |
1889 |
#print globalResultsList |
1890 |
# |
1891 |
print "Timers and counters" |
1892 |
|
1893 |
print "Number of iterations:", iterCount |
1894 |
print "Taylor condition failures:", taylCondFailedCount |
1895 |
print "Coppersmith condition failures:", coppCondFailedCount |
1896 |
print "Resultant condition failures:", resultCondFailedCount |
1897 |
print "Iterations count: ", iterCount |
1898 |
print "Number of intervals:", len(globalResultsList) |
1899 |
print "Number of basis constructions:", basisConstructionsCount |
1900 |
print "Total CPU time spent in basis constructions:", \ |
1901 |
basisConstructionsFullTime |
1902 |
if basisConstructionsCount != 0: |
1903 |
print "Average basis construction CPU time:", \ |
1904 |
basisConstructionsFullTime/basisConstructionsCount |
1905 |
print "Number of reductions:", reductionsCount |
1906 |
print "Total CPU time spent in reductions:", reductionsFullTime |
1907 |
if reductionsCount != 0: |
1908 |
print "Average reduction CPU time:", \ |
1909 |
reductionsFullTime/reductionsCount |
1910 |
print "Number of resultants computation rounds:", \ |
1911 |
resultantsComputationsCount |
1912 |
print "Total CPU time spent in resultants computation rounds:", \ |
1913 |
resultantsComputationsFullTime |
1914 |
if resultantsComputationsCount != 0: |
1915 |
print "Average resultants computation round CPU time:", \ |
1916 |
resultantsComputationsFullTime/resultantsComputationsCount |
1917 |
print "Number of root finding rounds:", rootsComputationsCount |
1918 |
print "Total CPU time spent in roots finding rounds:", \ |
1919 |
rootsComputationsFullTime |
1920 |
if rootsComputationsCount != 0: |
1921 |
print "Average roots finding round CPU time:", \ |
1922 |
rootsComputationsFullTime/rootsComputationsCount |
1923 |
print "Global Wall time:", globalWallTime |
1924 |
print "Global CPU time:", globalCpuTime |
1925 |
## Output counters |
1926 |
# End srs_compute_lattice_volume |
1927 |
|