root / pobysoPythonSage / src / sageSLZ / sageRunSLZ.sage @ 197
Historique | Voir | Annoter | Télécharger (41,84 ko)
1 |
""" |
---|---|
2 |
SLZ runtime function. |
3 |
""" |
4 |
|
5 |
def srs_run_SLZ_v01(inputFunction, |
6 |
inputLowerBound, |
7 |
inputUpperBound, |
8 |
alpha, |
9 |
degree, |
10 |
precision, |
11 |
emin, |
12 |
emax, |
13 |
targetHardnessToRound, |
14 |
debug = False): |
15 |
|
16 |
if debug: |
17 |
print "Function :", inputFunction |
18 |
print "Lower bound :", inputLowerBound |
19 |
print "Upper bounds :", inputUpperBound |
20 |
print "Alpha :", alpha |
21 |
print "Degree :", degree |
22 |
print "Precision :", precision |
23 |
print "Emin :", emin |
24 |
print "Emax :", emax |
25 |
print "Target hardness-to-round:", targetHardnessToRound |
26 |
|
27 |
## Important constants. |
28 |
### Stretch the interval if no error happens. |
29 |
noErrorIntervalStretch = 1 + 2^(-5) |
30 |
### If no vector validates the Coppersmith condition, shrink the interval |
31 |
# by the following factor. |
32 |
noCoppersmithIntervalShrink = 1/2 |
33 |
### If only (or at least) one vector validates the Coppersmith condition, |
34 |
# shrink the interval by the following factor. |
35 |
oneCoppersmithIntervalShrink = 3/4 |
36 |
#### If only null resultants are found, shrink the interval by the |
37 |
# following factor. |
38 |
onlyNullResultantsShrink = 3/4 |
39 |
## Structures. |
40 |
RRR = RealField(precision) |
41 |
RRIF = RealIntervalField(precision) |
42 |
## Converting input bound into the "right" field. |
43 |
lowerBound = RRR(inputLowerBound) |
44 |
upperBound = RRR(inputUpperBound) |
45 |
## Before going any further, check domain and image binade conditions. |
46 |
print inputFunction(1).n() |
47 |
(lb,ub) = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
48 |
if lb != lowerBound or ub != upperBound: |
49 |
print "lb:", lb, " - ub:", ub |
50 |
print "Invalid domain/image binades. Domain:",\ |
51 |
lowerBound, upperBound, "Images:", \ |
52 |
inputFunction(lowerBound), inputFunction(upperBound) |
53 |
raise Exception("Invalid domain/image binades.") |
54 |
# |
55 |
## Progam initialization |
56 |
### Approximation polynomial accuracy and hardness to round. |
57 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
58 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
59 |
### Significand to integer conversion ratio. |
60 |
toIntegerFactor = 2^(precision-1) |
61 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
62 |
### Variables and rings for polynomials and root searching. |
63 |
i=var('i') |
64 |
t=var('t') |
65 |
inputFunctionVariable = inputFunction.variables()[0] |
66 |
function = inputFunction.subs({inputFunctionVariable:i}) |
67 |
# Polynomial Rings over the integers, for root finding. |
68 |
Zi = ZZ[i] |
69 |
Zt = ZZ[t] |
70 |
Zit = ZZ[i,t] |
71 |
## Number of iterations limit. |
72 |
maxIter = 100000 |
73 |
# |
74 |
## Compute the scaled function and the degree, in their Sollya version |
75 |
# once for all. |
76 |
(scaledf, sdlb, sdub, silb, siub) = \ |
77 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
78 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
79 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
80 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
81 |
# |
82 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
83 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
84 |
(unscalingFunction, scalingFunction) = \ |
85 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
86 |
#print scalingFunction, unscalingFunction |
87 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
88 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
89 |
if internalSollyaPrec < 192: |
90 |
internalSollyaPrec = 192 |
91 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
92 |
print "Sollya internal precision:", internalSollyaPrec |
93 |
## Some variables. |
94 |
### General variables |
95 |
lb = sdlb |
96 |
ub = sdub |
97 |
nbw = 0 |
98 |
intervalUlp = ub.ulp() |
99 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
100 |
ic = 0 |
101 |
icAsInt = 0 # Set from ic. |
102 |
solutionsSet = set() |
103 |
tsErrorWidth = [] |
104 |
csErrorVectors = [] |
105 |
csVectorsResultants = [] |
106 |
floatP = 0 # Taylor polynomial. |
107 |
floatPcv = 0 # Ditto with variable change. |
108 |
intvl = "" # Taylor interval |
109 |
terr = 0 # Taylor error. |
110 |
iterCount = 0 |
111 |
htrnSet = set() |
112 |
### Timers and counters. |
113 |
wallTimeStart = 0 |
114 |
cpuTimeStart = 0 |
115 |
taylCondFailedCount = 0 |
116 |
coppCondFailedCount = 0 |
117 |
resultCondFailedCount = 0 |
118 |
coppCondFailed = False |
119 |
resultCondFailed = False |
120 |
globalResultsList = [] |
121 |
basisConstructionsCount = 0 |
122 |
basisConstructionsFullTime = 0 |
123 |
basisConstructionTime = 0 |
124 |
reductionsCount = 0 |
125 |
reductionsFullTime = 0 |
126 |
reductionTime = 0 |
127 |
resultantsComputationsCount = 0 |
128 |
resultantsComputationsFullTime = 0 |
129 |
resultantsComputationTime = 0 |
130 |
rootsComputationsCount = 0 |
131 |
rootsComputationsFullTime = 0 |
132 |
rootsComputationTime = 0 |
133 |
|
134 |
## Global times are started here. |
135 |
wallTimeStart = walltime() |
136 |
cpuTimeStart = cputime() |
137 |
## Main loop. |
138 |
while True: |
139 |
if lb >= sdub: |
140 |
print "Lower bound reached upper bound." |
141 |
break |
142 |
if iterCount == maxIter: |
143 |
print "Reached maxIter. Aborting" |
144 |
break |
145 |
iterCount += 1 |
146 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
147 |
"log2(numbers)." |
148 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
149 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
150 |
degreeSo, |
151 |
lb, |
152 |
ub, |
153 |
polyApproxAccur) |
154 |
### Convert back the data into Sage space. |
155 |
(floatP, floatPcv, intvl, ic, terr) = \ |
156 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
157 |
prceSo[1], prceSo[2], |
158 |
prceSo[3])) |
159 |
intvl = RRIF(intvl) |
160 |
## Clean-up Sollya stuff. |
161 |
for elem in prceSo: |
162 |
sollya_lib_clear_obj(elem) |
163 |
#print floatP, floatPcv, intvl, ic, terr |
164 |
#print floatP |
165 |
#print intvl.endpoints()[0].n(), \ |
166 |
# ic.n(), |
167 |
#intvl.endpoints()[1].n() |
168 |
### Check returned data. |
169 |
#### Is approximation error OK? |
170 |
if terr > polyApproxAccur: |
171 |
exceptionErrorMess = \ |
172 |
"Approximation failed - computed error:" + \ |
173 |
str(terr) + " - target error: " |
174 |
exceptionErrorMess += \ |
175 |
str(polyApproxAccur) + ". Aborting!" |
176 |
raise Exception(exceptionErrorMess) |
177 |
#### Is lower bound OK? |
178 |
if lb != intvl.endpoints()[0]: |
179 |
exceptionErrorMess = "Wrong lower bound:" + \ |
180 |
str(lb) + ". Aborting!" |
181 |
raise Exception(exceptionErrorMess) |
182 |
#### Set upper bound. |
183 |
if ub > intvl.endpoints()[1]: |
184 |
ub = intvl.endpoints()[1] |
185 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
186 |
"log2(numbers)." |
187 |
taylCondFailedCount += 1 |
188 |
#### Is interval not degenerate? |
189 |
if lb >= ub: |
190 |
exceptionErrorMess = "Degenerate interval: " + \ |
191 |
"lowerBound(" + str(lb) +\ |
192 |
")>= upperBound(" + str(ub) + \ |
193 |
"). Aborting!" |
194 |
raise Exception(exceptionErrorMess) |
195 |
#### Is interval center ok? |
196 |
if ic <= lb or ic >= ub: |
197 |
exceptionErrorMess = "Invalid interval center for " + \ |
198 |
str(lb) + ',' + str(ic) + ',' + \ |
199 |
str(ub) + ". Aborting!" |
200 |
raise Exception(exceptionErrorMess) |
201 |
##### Current interval width and reset future interval width. |
202 |
bw = ub - lb |
203 |
nbw = 0 |
204 |
icAsInt = int(ic * toIntegerFactor) |
205 |
#### The following ratio is always >= 1. In case we may want to |
206 |
# enlarge the interval |
207 |
curTaylErrRat = polyApproxAccur / terr |
208 |
## Make the integral transformations. |
209 |
### First for interval center and bounds. |
210 |
intIc = int(ic * toIntegerFactor) |
211 |
intLb = int(lb * toIntegerFactor) - intIc |
212 |
intUb = int(ub * toIntegerFactor) - intIc |
213 |
# |
214 |
#### For polynomials |
215 |
basisConstructionTime = cputime() |
216 |
##### To a polynomial with rational coefficients with rational arguments |
217 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
218 |
##### To a polynomial with rational coefficients with integer arguments |
219 |
ratIntP = \ |
220 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
221 |
##### Ultimately a polynomial with integer coefficients with integer |
222 |
# arguments. |
223 |
coppersmithTuple = \ |
224 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
225 |
precision, |
226 |
targetHardnessToRound, |
227 |
i, t) |
228 |
#### Recover Coppersmith information. |
229 |
intIntP = coppersmithTuple[0] |
230 |
N = coppersmithTuple[1] |
231 |
nAtAlpha = N^alpha |
232 |
tBound = coppersmithTuple[2] |
233 |
leastCommonMultiple = coppersmithTuple[3] |
234 |
iBound = max(abs(intLb),abs(intUb)) |
235 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
236 |
basisConstructionsCount += 1 |
237 |
reductionTime = cputime() |
238 |
# Compute the reduced polynomials. |
239 |
ccReducedPolynomialsList = \ |
240 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
241 |
alpha, |
242 |
N, |
243 |
iBound, |
244 |
tBound) |
245 |
if ccReducedPolynomialsList is None: |
246 |
raise Exception("Reduction failed.") |
247 |
reductionsFullTime += cputime(reductionTime) |
248 |
reductionsCount += 1 |
249 |
if len(ccReducedPolynomialsList) < 2: |
250 |
print "Nothing to form resultants with." |
251 |
|
252 |
coppCondFailedCount += 1 |
253 |
coppCondFailed = True |
254 |
##### Apply a different shrink factor according to |
255 |
# the number of compliant polynomials. |
256 |
if len(ccReducedPolynomialsList) == 0: |
257 |
ub = lb + bw * noCoppersmithIntervalShrink |
258 |
else: # At least one compliant polynomial. |
259 |
ub = lb + bw * oneCoppersmithIntervalShrink |
260 |
if ub > sdub: |
261 |
ub = sdub |
262 |
if lb == ub: |
263 |
raise Exception("Cant shrink interval \ |
264 |
anymore to get Coppersmith condition.") |
265 |
nbw = 0 |
266 |
continue |
267 |
#### We have at least two polynomials. |
268 |
# Let us try to compute resultants. |
269 |
resultantsComputationTime = cputime() |
270 |
resultantsInTTuplesList = [] |
271 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
272 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
273 |
len(ccReducedPolynomialsList)): |
274 |
resultantTuple = \ |
275 |
slz_resultant_tuple(ccReducedPolynomialsList[polyOuterIndex], |
276 |
ccReducedPolynomialsList[polyInnerIndex], |
277 |
t) |
278 |
if len(resultantTuple) > 2: |
279 |
#print resultantTuple[2] |
280 |
resultantsInTTuplesList.append(resultantTuple) |
281 |
else: |
282 |
print "No non nul resultant" |
283 |
print len(resultantsInTTuplesList), "resultant(s) in t tuple(s) created." |
284 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
285 |
resultantsComputationsCount += 1 |
286 |
if len(resultantsInTTuplesList) == 0: |
287 |
print "Only null resultants, shrinking interval." |
288 |
resultCondFailed = True |
289 |
resultCondFailedCount += 1 |
290 |
### Shrink interval for next iteration. |
291 |
ub = lb + bw * onlyNullResultantsShrink |
292 |
if ub > sdub: |
293 |
ub = sdub |
294 |
nbw = 0 |
295 |
continue |
296 |
#### Compute roots. |
297 |
rootsComputationTime = cputime() |
298 |
reducedPolynomialsRootsSet = set() |
299 |
##### Solve in the second variable since resultants are in the first |
300 |
# variable. |
301 |
for resultantInTTuple in resultantsInTTuplesList: |
302 |
currentResultant = resultantInTTuple[2] |
303 |
##### If the resultant degree is not at least 1, there are no roots. |
304 |
if currentResultant.degree() < 1: |
305 |
print "Resultant is constant:", currentResultant |
306 |
continue # Next resultantInTTuple |
307 |
##### Compute i roots |
308 |
iRootsList = Zi(currentResultant).roots() |
309 |
##### For each iRoot, compute the corresponding tRoots and check |
310 |
# them in the input polynomial. |
311 |
for iRoot in iRootsList: |
312 |
####### Roots returned by roots() are (value, multiplicity) |
313 |
# tuples. |
314 |
#print "iRoot:", iRoot |
315 |
###### Use the tRoot against each polynomial, alternatively. |
316 |
for indexInTuple in range(0,2): |
317 |
currentPolynomial = resultantInTTuple[indexInTuple] |
318 |
####### If the polynomial is univariate, just drop it. |
319 |
if len(currentPolynomial.variables()) < 2: |
320 |
print " Current polynomial is not in two variables." |
321 |
continue # Next indexInTuple |
322 |
tRootsList = \ |
323 |
Zt(currentPolynomial.subs({currentPolynomial.variables()[0]:iRoot[0]})).roots() |
324 |
####### The tRootsList can be empty, hence the test. |
325 |
if len(tRootsList) == 0: |
326 |
print " No t root." |
327 |
continue # Next indexInTuple |
328 |
for tRoot in tRootsList: |
329 |
reducedPolynomialsRootsSet.add((iRoot[0], tRoot[0])) |
330 |
# End of roots computation |
331 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
332 |
rootsComputationsCount += 1 |
333 |
##### Prepare for results. |
334 |
intervalResultsList = [] |
335 |
intervalResultsList.append((lb, ub)) |
336 |
#### Check roots. |
337 |
rootsResultsList = [] |
338 |
for root in reducedPolynomialsRootsSet: |
339 |
specificRootResultsList = [] |
340 |
failingBounds = [] |
341 |
intIntPdivN = intIntP(root[0], root[1]) / N |
342 |
if int(intIntPdivN) != intIntPdivN: |
343 |
continue # Next root |
344 |
# Root qualifies for modular equation, test it for hardness to round. |
345 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
346 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
347 |
#print scalingFunction |
348 |
scaledHardToRoundCaseAsFloat = \ |
349 |
scalingFunction(hardToRoundCaseAsFloat) |
350 |
print "Candidate HTRNc at x =", \ |
351 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
352 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
353 |
function, |
354 |
2^-(targetHardnessToRound), |
355 |
RRR): |
356 |
print hardToRoundCaseAsFloat, "is HTRN case." |
357 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
358 |
print "Found in interval." |
359 |
else: |
360 |
print "Found out of interval." |
361 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
362 |
# Check the root is in the bounds |
363 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
364 |
print "Root", root, "is out of bounds." |
365 |
if abs(root[0]) > iBound: |
366 |
print "root[0]:", root[0] |
367 |
print "i bound:", iBound |
368 |
failingBounds.append('i') |
369 |
failingBounds.append(root[0]) |
370 |
failingBounds.append(iBound) |
371 |
if abs(root[1]) > tBound: |
372 |
print "root[1]:", root[1] |
373 |
print "t bound:", tBound |
374 |
failingBounds.append('t') |
375 |
failingBounds.append(root[1]) |
376 |
failingBounds.append(tBound) |
377 |
if len(failingBounds) > 0: |
378 |
specificRootResultsList.append(failingBounds) |
379 |
else: # From slz_is_htrn... |
380 |
print "is not an HTRN case." |
381 |
if len(specificRootResultsList) > 0: |
382 |
rootsResultsList.append(specificRootResultsList) |
383 |
if len(rootsResultsList) > 0: |
384 |
intervalResultsList.append(rootsResultsList) |
385 |
#### An intervalResultsList has at least the bounds. |
386 |
globalResultsList.append(intervalResultsList) |
387 |
#### Compute an incremented width for next upper bound, only |
388 |
# if not Coppersmith condition nor resultant condition |
389 |
# failed at the previous run. |
390 |
if not coppCondFailed and not resultCondFailed: |
391 |
nbw = noErrorIntervalStretch * bw |
392 |
else: |
393 |
nbw = bw |
394 |
##### Reset the failure flags. They will be raised |
395 |
# again if needed. |
396 |
coppCondFailed = False |
397 |
resultCondFailed = False |
398 |
#### For next iteration (at end of loop) |
399 |
#print "nbw:", nbw |
400 |
lb = ub |
401 |
ub += nbw |
402 |
if ub > sdub: |
403 |
ub = sdub |
404 |
|
405 |
# End while True |
406 |
## Main loop just ended. |
407 |
globalWallTime = walltime(wallTimeStart) |
408 |
globalCpuTime = cputime(cpuTimeStart) |
409 |
## Output results |
410 |
print ; print "Intervals and HTRNs" ; print |
411 |
for intervalResultsList in globalResultsList: |
412 |
print "[", intervalResultsList[0][0], ",",intervalResultsList[0][1], "]", |
413 |
if len(intervalResultsList) > 1: |
414 |
rootsResultsList = intervalResultsList[1] |
415 |
for specificRootResultsList in rootsResultsList: |
416 |
print "\t", specificRootResultsList[0], |
417 |
if len(specificRootResultsList) > 1: |
418 |
print specificRootResultsList[1], |
419 |
print ; print |
420 |
#print globalResultsList |
421 |
# |
422 |
print "Timers and counters" |
423 |
|
424 |
print "Number of iterations:", iterCount |
425 |
print "Taylor condition failures:", taylCondFailedCount |
426 |
print "Coppersmith condition failures:", coppCondFailedCount |
427 |
print "Resultant condition failures:", resultCondFailedCount |
428 |
print "Iterations count: ", iterCount |
429 |
print "Number of intervals:", len(globalResultsList) |
430 |
print "Number of basis constructions:", basisConstructionsCount |
431 |
print "Total CPU time spent in basis constructions:", \ |
432 |
basisConstructionsFullTime |
433 |
if basisConstructionsCount != 0: |
434 |
print "Average basis construction CPU time:", \ |
435 |
basisConstructionsFullTime/basisConstructionsCount |
436 |
print "Number of reductions:", reductionsCount |
437 |
print "Total CPU time spent in reductions:", reductionsFullTime |
438 |
if reductionsCount != 0: |
439 |
print "Average reduction CPU time:", \ |
440 |
reductionsFullTime/reductionsCount |
441 |
print "Number of resultants computation rounds:", \ |
442 |
resultantsComputationsCount |
443 |
print "Total CPU time spent in resultants computation rounds:", \ |
444 |
resultantsComputationsFullTime |
445 |
if resultantsComputationsCount != 0: |
446 |
print "Average resultants computation round CPU time:", \ |
447 |
resultantsComputationsFullTime/resultantsComputationsCount |
448 |
print "Number of root finding rounds:", rootsComputationsCount |
449 |
print "Total CPU time spent in roots finding rounds:", \ |
450 |
rootsComputationsFullTime |
451 |
if rootsComputationsCount != 0: |
452 |
print "Average roots finding round CPU time:", \ |
453 |
rootsComputationsFullTime/rootsComputationsCount |
454 |
print "Global Wall time:", globalWallTime |
455 |
print "Global CPU time:", globalCpuTime |
456 |
## Output counters |
457 |
# End srs_runSLZ-v01 |
458 |
|
459 |
def srs_run_SLZ_v02(inputFunction, |
460 |
inputLowerBound, |
461 |
inputUpperBound, |
462 |
alpha, |
463 |
degree, |
464 |
precision, |
465 |
emin, |
466 |
emax, |
467 |
targetHardnessToRound, |
468 |
debug = False): |
469 |
""" |
470 |
Changes from V1: |
471 |
1- check for roots as soon as a resultant is computed; |
472 |
2- once a non null resultant is found, check for roots; |
473 |
3- constant resultant == no root. |
474 |
""" |
475 |
|
476 |
if debug: |
477 |
print "Function :", inputFunction |
478 |
print "Lower bound :", inputLowerBound |
479 |
print "Upper bounds :", inputUpperBound |
480 |
print "Alpha :", alpha |
481 |
print "Degree :", degree |
482 |
print "Precision :", precision |
483 |
print "Emin :", emin |
484 |
print "Emax :", emax |
485 |
print "Target hardness-to-round:", targetHardnessToRound |
486 |
|
487 |
## Important constants. |
488 |
### Stretch the interval if no error happens. |
489 |
noErrorIntervalStretch = 1 + 2^(-5) |
490 |
### If no vector validates the Coppersmith condition, shrink the interval |
491 |
# by the following factor. |
492 |
noCoppersmithIntervalShrink = 1/2 |
493 |
### If only (or at least) one vector validates the Coppersmith condition, |
494 |
# shrink the interval by the following factor. |
495 |
oneCoppersmithIntervalShrink = 3/4 |
496 |
#### If only null resultants are found, shrink the interval by the |
497 |
# following factor. |
498 |
onlyNullResultantsShrink = 3/4 |
499 |
## Structures. |
500 |
RRR = RealField(precision) |
501 |
RRIF = RealIntervalField(precision) |
502 |
## Converting input bound into the "right" field. |
503 |
lowerBound = RRR(inputLowerBound) |
504 |
upperBound = RRR(inputUpperBound) |
505 |
## Before going any further, check domain and image binade conditions. |
506 |
print inputFunction(1).n() |
507 |
(lb,ub) = slz_fix_bounds_for_binades(lowerBound, upperBound, inputFunction) |
508 |
if lb != lowerBound or ub != upperBound: |
509 |
print "lb:", lb, " - ub:", ub |
510 |
print "Invalid domain/image binades. Domain:",\ |
511 |
lowerBound, upperBound, "Images:", \ |
512 |
inputFunction(lowerBound), inputFunction(upperBound) |
513 |
raise Exception("Invalid domain/image binades.") |
514 |
# |
515 |
## Progam initialization |
516 |
### Approximation polynomial accuracy and hardness to round. |
517 |
polyApproxAccur = 2^(-(targetHardnessToRound + 1)) |
518 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
519 |
### Significand to integer conversion ratio. |
520 |
toIntegerFactor = 2^(precision-1) |
521 |
print "Polynomial approximation required accuracy:", polyApproxAccur.n() |
522 |
### Variables and rings for polynomials and root searching. |
523 |
i=var('i') |
524 |
t=var('t') |
525 |
inputFunctionVariable = inputFunction.variables()[0] |
526 |
function = inputFunction.subs({inputFunctionVariable:i}) |
527 |
# Polynomial Rings over the integers, for root finding. |
528 |
Zi = ZZ[i] |
529 |
Zt = ZZ[t] |
530 |
Zit = ZZ[i,t] |
531 |
## Number of iterations limit. |
532 |
maxIter = 100000 |
533 |
# |
534 |
## Compute the scaled function and the degree, in their Sollya version |
535 |
# once for all. |
536 |
(scaledf, sdlb, sdub, silb, siub) = \ |
537 |
slz_compute_scaled_function(function, lowerBound, upperBound, precision) |
538 |
print "Scaled function:", scaledf._assume_str().replace('_SAGE_VAR_', '') |
539 |
scaledfSo = sollya_lib_parse_string(scaledf._assume_str().replace('_SAGE_VAR_', '')) |
540 |
degreeSo = pobyso_constant_from_int_sa_so(degree) |
541 |
# |
542 |
## Compute the scaling. boundsIntervalRifSa defined out of the loops. |
543 |
domainBoundsInterval = RRIF(lowerBound, upperBound) |
544 |
(unscalingFunction, scalingFunction) = \ |
545 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
546 |
#print scalingFunction, unscalingFunction |
547 |
## Set the Sollya internal precision (with an arbitrary minimum of 192). |
548 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
549 |
if internalSollyaPrec < 192: |
550 |
internalSollyaPrec = 192 |
551 |
pobyso_set_prec_sa_so(internalSollyaPrec) |
552 |
print "Sollya internal precision:", internalSollyaPrec |
553 |
## Some variables. |
554 |
### General variables |
555 |
lb = sdlb |
556 |
ub = sdub |
557 |
nbw = 0 |
558 |
intervalUlp = ub.ulp() |
559 |
#### Will be set by slz_interval_and_polynomila_to_sage. |
560 |
ic = 0 |
561 |
icAsInt = 0 # Set from ic. |
562 |
solutionsSet = set() |
563 |
tsErrorWidth = [] |
564 |
csErrorVectors = [] |
565 |
csVectorsResultants = [] |
566 |
floatP = 0 # Taylor polynomial. |
567 |
floatPcv = 0 # Ditto with variable change. |
568 |
intvl = "" # Taylor interval |
569 |
terr = 0 # Taylor error. |
570 |
iterCount = 0 |
571 |
htrnSet = set() |
572 |
### Timers and counters. |
573 |
wallTimeStart = 0 |
574 |
cpuTimeStart = 0 |
575 |
taylCondFailedCount = 0 |
576 |
coppCondFailedCount = 0 |
577 |
resultCondFailedCount = 0 |
578 |
coppCondFailed = False |
579 |
resultCondFailed = False |
580 |
globalResultsList = [] |
581 |
basisConstructionsCount = 0 |
582 |
basisConstructionsFullTime = 0 |
583 |
basisConstructionTime = 0 |
584 |
reductionsCount = 0 |
585 |
reductionsFullTime = 0 |
586 |
reductionTime = 0 |
587 |
resultantsComputationsCount = 0 |
588 |
resultantsComputationsFullTime = 0 |
589 |
resultantsComputationTime = 0 |
590 |
rootsComputationsCount = 0 |
591 |
rootsComputationsFullTime = 0 |
592 |
rootsComputationTime = 0 |
593 |
|
594 |
## Global times are started here. |
595 |
wallTimeStart = walltime() |
596 |
cpuTimeStart = cputime() |
597 |
## Main loop. |
598 |
while True: |
599 |
if lb >= sdub: |
600 |
print "Lower bound reached upper bound." |
601 |
break |
602 |
if iterCount == maxIter: |
603 |
print "Reached maxIter. Aborting" |
604 |
break |
605 |
iterCount += 1 |
606 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
607 |
"log2(numbers)." |
608 |
### Compute a Sollya polynomial that will honor the Taylor condition. |
609 |
prceSo = slz_compute_polynomial_and_interval(scaledfSo, |
610 |
degreeSo, |
611 |
lb, |
612 |
ub, |
613 |
polyApproxAccur) |
614 |
### Convert back the data into Sage space. |
615 |
(floatP, floatPcv, intvl, ic, terr) = \ |
616 |
slz_interval_and_polynomial_to_sage((prceSo[0], prceSo[0], |
617 |
prceSo[1], prceSo[2], |
618 |
prceSo[3])) |
619 |
intvl = RRIF(intvl) |
620 |
## Clean-up Sollya stuff. |
621 |
for elem in prceSo: |
622 |
sollya_lib_clear_obj(elem) |
623 |
#print floatP, floatPcv, intvl, ic, terr |
624 |
#print floatP |
625 |
#print intvl.endpoints()[0].n(), \ |
626 |
# ic.n(), |
627 |
#intvl.endpoints()[1].n() |
628 |
### Check returned data. |
629 |
#### Is approximation error OK? |
630 |
if terr > polyApproxAccur: |
631 |
exceptionErrorMess = \ |
632 |
"Approximation failed - computed error:" + \ |
633 |
str(terr) + " - target error: " |
634 |
exceptionErrorMess += \ |
635 |
str(polyApproxAccur) + ". Aborting!" |
636 |
raise Exception(exceptionErrorMess) |
637 |
#### Is lower bound OK? |
638 |
if lb != intvl.endpoints()[0]: |
639 |
exceptionErrorMess = "Wrong lower bound:" + \ |
640 |
str(lb) + ". Aborting!" |
641 |
raise Exception(exceptionErrorMess) |
642 |
#### Set upper bound. |
643 |
if ub > intvl.endpoints()[1]: |
644 |
ub = intvl.endpoints()[1] |
645 |
print "[", lb, ",", ub, "]", ((ub - lb) / intervalUlp).log2().n(), \ |
646 |
"log2(numbers)." |
647 |
taylCondFailedCount += 1 |
648 |
#### Is interval not degenerate? |
649 |
if lb >= ub: |
650 |
exceptionErrorMess = "Degenerate interval: " + \ |
651 |
"lowerBound(" + str(lb) +\ |
652 |
")>= upperBound(" + str(ub) + \ |
653 |
"). Aborting!" |
654 |
raise Exception(exceptionErrorMess) |
655 |
#### Is interval center ok? |
656 |
if ic <= lb or ic >= ub: |
657 |
exceptionErrorMess = "Invalid interval center for " + \ |
658 |
str(lb) + ',' + str(ic) + ',' + \ |
659 |
str(ub) + ". Aborting!" |
660 |
raise Exception(exceptionErrorMess) |
661 |
##### Current interval width and reset future interval width. |
662 |
bw = ub - lb |
663 |
nbw = 0 |
664 |
icAsInt = int(ic * toIntegerFactor) |
665 |
#### The following ratio is always >= 1. In case we may want to |
666 |
# enlarge the interval |
667 |
curTaylErrRat = polyApproxAccur / terr |
668 |
### Make the integral transformations. |
669 |
#### Bounds and interval center. |
670 |
intIc = int(ic * toIntegerFactor) |
671 |
intLb = int(lb * toIntegerFactor) - intIc |
672 |
intUb = int(ub * toIntegerFactor) - intIc |
673 |
# |
674 |
#### Polynomials |
675 |
basisConstructionTime = cputime() |
676 |
##### To a polynomial with rational coefficients with rational arguments |
677 |
ratRatP = slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(floatP) |
678 |
##### To a polynomial with rational coefficients with integer arguments |
679 |
ratIntP = \ |
680 |
slz_rat_poly_of_rat_to_rat_poly_of_int(ratRatP, precision) |
681 |
##### Ultimately a multivariate polynomial with integer coefficients |
682 |
# with integer arguments. |
683 |
coppersmithTuple = \ |
684 |
slz_rat_poly_of_int_to_poly_for_coppersmith(ratIntP, |
685 |
precision, |
686 |
targetHardnessToRound, |
687 |
i, t) |
688 |
#### Recover Coppersmith information. |
689 |
intIntP = coppersmithTuple[0] |
690 |
N = coppersmithTuple[1] |
691 |
nAtAlpha = N^alpha |
692 |
tBound = coppersmithTuple[2] |
693 |
leastCommonMultiple = coppersmithTuple[3] |
694 |
iBound = max(abs(intLb),abs(intUb)) |
695 |
basisConstructionsFullTime += cputime(basisConstructionTime) |
696 |
basisConstructionsCount += 1 |
697 |
reductionTime = cputime() |
698 |
#### Compute the reduced polynomials. |
699 |
ccReducedPolynomialsList = \ |
700 |
slz_compute_coppersmith_reduced_polynomials(intIntP, |
701 |
alpha, |
702 |
N, |
703 |
iBound, |
704 |
tBound) |
705 |
if ccReducedPolynomialsList is None: |
706 |
raise Exception("Reduction failed.") |
707 |
reductionsFullTime += cputime(reductionTime) |
708 |
reductionsCount += 1 |
709 |
if len(ccReducedPolynomialsList) < 2: |
710 |
print "Nothing to form resultants with." |
711 |
|
712 |
coppCondFailedCount += 1 |
713 |
coppCondFailed = True |
714 |
##### Apply a different shrink factor according to |
715 |
# the number of compliant polynomials. |
716 |
if len(ccReducedPolynomialsList) == 0: |
717 |
ub = lb + bw * noCoppersmithIntervalShrink |
718 |
else: # At least one compliant polynomial. |
719 |
ub = lb + bw * oneCoppersmithIntervalShrink |
720 |
if ub > sdub: |
721 |
ub = sdub |
722 |
if lb == ub: |
723 |
raise Exception("Cant shrink interval \ |
724 |
anymore to get Coppersmith condition.") |
725 |
nbw = 0 |
726 |
continue |
727 |
#### We have at least two polynomials. |
728 |
# Let us try to compute resultants. |
729 |
# For each resultant computed, go for the solutions. |
730 |
##### Build the pairs list. |
731 |
polyPairsList = [] |
732 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList) - 1): |
733 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
734 |
len(ccReducedPolynomialsList)): |
735 |
polyPairsList.append((ccReducedPolynomialsList[polyOuterIndex], |
736 |
ccReducedPolynomialsList[polyInnerIndex])) |
737 |
#### Actual root search. |
738 |
rootsSet = set() |
739 |
hasNonNullResultant = False |
740 |
for polyPair in polyPairsList: |
741 |
if hasNonNullResultant: |
742 |
break |
743 |
resultantsComputationTime = cputime() |
744 |
currentResultant = \ |
745 |
slz_resultant(polyPair[0], |
746 |
polyPair[1], |
747 |
t) |
748 |
resultantsComputationsFullTime += cputime(resultantsComputationTime) |
749 |
resultantsComputationsCount += 1 |
750 |
if currentResultant is None: |
751 |
print "Nul resultant" |
752 |
continue # Next polyPair. |
753 |
else: |
754 |
hasNonNullResultant = True |
755 |
#### We have a non null resultant. From now on, whatever the |
756 |
# root search yields, no extra root search is necessary. |
757 |
#### A constant resultant leads to no root. Root search is done. |
758 |
if currentResultant.degree() < 1: |
759 |
print "Resultant is constant:", currentResultant |
760 |
continue # Next polyPair and should break. |
761 |
#### Actual roots computation. |
762 |
rootsComputationTime = cputime() |
763 |
##### Compute i roots |
764 |
iRootsList = Zi(currentResultant).roots() |
765 |
##### For each iRoot, compute the corresponding tRoots and |
766 |
# and build populate the .rootsSet. |
767 |
for iRoot in iRootsList: |
768 |
####### Roots returned by roots() are (value, multiplicity) |
769 |
# tuples. |
770 |
#print "iRoot:", iRoot |
771 |
###### Use the tRoot against each polynomial, alternatively. |
772 |
for indexInPair in range(0,2): |
773 |
currentPolynomial = polyPair[indexInPair] |
774 |
####### If the polynomial is univariate, just drop it. |
775 |
if len(currentPolynomial.variables()) < 2: |
776 |
print " Current polynomial is not in two variables." |
777 |
continue # Next indexInPair |
778 |
tRootsList = \ |
779 |
Zt(currentPolynomial.subs({currentPolynomial.variables()[0]:iRoot[0]})).roots() |
780 |
####### The tRootsList can be empty, hence the test. |
781 |
if len(tRootsList) == 0: |
782 |
print " No t root." |
783 |
continue # Next indexInPair |
784 |
for tRoot in tRootsList: |
785 |
rootsSet.add((iRoot[0], tRoot[0])) |
786 |
# End of roots computation. |
787 |
rootsComputationsFullTime = cputime(rootsComputationTime) |
788 |
rootsComputationsCount += 1 |
789 |
# End loop for polyPair in polyParsList. Will break at next iteration. |
790 |
# since a non null resultant was found. |
791 |
#### Prepare for results for the current interval.. |
792 |
intervalResultsList = [] |
793 |
intervalResultsList.append((lb, ub)) |
794 |
#### Check roots. |
795 |
rootsResultsList = [] |
796 |
for root in rootsSet: |
797 |
specificRootResultsList = [] |
798 |
failingBounds = [] |
799 |
intIntPdivN = intIntP(root[0], root[1]) / N |
800 |
if int(intIntPdivN) != intIntPdivN: |
801 |
continue # Next root |
802 |
# Root qualifies for modular equation, test it for hardness to round. |
803 |
hardToRoundCaseAsFloat = RRR((icAsInt + root[0]) / toIntegerFactor) |
804 |
#print "Before unscaling:", hardToRoundCaseAsFloat.n(prec=precision) |
805 |
#print scalingFunction |
806 |
scaledHardToRoundCaseAsFloat = \ |
807 |
scalingFunction(hardToRoundCaseAsFloat) |
808 |
print "Candidate HTRNc at x =", \ |
809 |
scaledHardToRoundCaseAsFloat.n().str(base=2), |
810 |
if slz_is_htrn(scaledHardToRoundCaseAsFloat, |
811 |
function, |
812 |
2^-(targetHardnessToRound), |
813 |
RRR): |
814 |
print hardToRoundCaseAsFloat, "is HTRN case." |
815 |
if lb <= hardToRoundCaseAsFloat and hardToRoundCaseAsFloat <= ub: |
816 |
print "Found in interval." |
817 |
else: |
818 |
print "Found out of interval." |
819 |
specificRootResultsList.append(hardToRoundCaseAsFloat.n().str(base=2)) |
820 |
# Check the root is in the bounds |
821 |
if abs(root[0]) > iBound or abs(root[1]) > tBound: |
822 |
print "Root", root, "is out of bounds for modular equation." |
823 |
if abs(root[0]) > iBound: |
824 |
print "root[0]:", root[0] |
825 |
print "i bound:", iBound |
826 |
failingBounds.append('i') |
827 |
failingBounds.append(root[0]) |
828 |
failingBounds.append(iBound) |
829 |
if abs(root[1]) > tBound: |
830 |
print "root[1]:", root[1] |
831 |
print "t bound:", tBound |
832 |
failingBounds.append('t') |
833 |
failingBounds.append(root[1]) |
834 |
failingBounds.append(tBound) |
835 |
if len(failingBounds) > 0: |
836 |
specificRootResultsList.append(failingBounds) |
837 |
else: # From slz_is_htrn... |
838 |
print "is not an HTRN case." |
839 |
if len(specificRootResultsList) > 0: |
840 |
rootsResultsList.append(specificRootResultsList) |
841 |
if len(rootsResultsList) > 0: |
842 |
intervalResultsList.append(rootsResultsList) |
843 |
### Check if a non null resultant was found. If not shrink the interval. |
844 |
if not hasNonNullResultant: |
845 |
print "Only null resultants for this reduction, shrinking interval." |
846 |
resultCondFailed = True |
847 |
resultCondFailedCount += 1 |
848 |
### Shrink interval for next iteration. |
849 |
ub = lb + bw * onlyNullResultantsShrink |
850 |
if ub > sdub: |
851 |
ub = sdub |
852 |
nbw = 0 |
853 |
continue |
854 |
#### An intervalResultsList has at least the bounds. |
855 |
globalResultsList.append(intervalResultsList) |
856 |
#### Compute an incremented width for next upper bound, only |
857 |
# if not Coppersmith condition nor resultant condition |
858 |
# failed at the previous run. |
859 |
if not coppCondFailed and not resultCondFailed: |
860 |
nbw = noErrorIntervalStretch * bw |
861 |
else: |
862 |
nbw = bw |
863 |
##### Reset the failure flags. They will be raised |
864 |
# again if needed. |
865 |
coppCondFailed = False |
866 |
resultCondFailed = False |
867 |
#### For next iteration (at end of loop) |
868 |
#print "nbw:", nbw |
869 |
lb = ub |
870 |
ub += nbw |
871 |
if ub > sdub: |
872 |
ub = sdub |
873 |
|
874 |
# End while True |
875 |
## Main loop just ended. |
876 |
globalWallTime = walltime(wallTimeStart) |
877 |
globalCpuTime = cputime(cpuTimeStart) |
878 |
## Output results |
879 |
print ; print "Intervals and HTRNs" ; print |
880 |
for intervalResultsList in globalResultsList: |
881 |
print "[", intervalResultsList[0][0], ",",intervalResultsList[0][1], "]", |
882 |
if len(intervalResultsList) > 1: |
883 |
rootsResultsList = intervalResultsList[1] |
884 |
for specificRootResultsList in rootsResultsList: |
885 |
print "\t", specificRootResultsList[0], |
886 |
if len(specificRootResultsList) > 1: |
887 |
print specificRootResultsList[1], |
888 |
print ; print |
889 |
#print globalResultsList |
890 |
# |
891 |
print "Timers and counters" |
892 |
|
893 |
print "Number of iterations:", iterCount |
894 |
print "Taylor condition failures:", taylCondFailedCount |
895 |
print "Coppersmith condition failures:", coppCondFailedCount |
896 |
print "Resultant condition failures:", resultCondFailedCount |
897 |
print "Iterations count: ", iterCount |
898 |
print "Number of intervals:", len(globalResultsList) |
899 |
print "Number of basis constructions:", basisConstructionsCount |
900 |
print "Total CPU time spent in basis constructions:", \ |
901 |
basisConstructionsFullTime |
902 |
if basisConstructionsCount != 0: |
903 |
print "Average basis construction CPU time:", \ |
904 |
basisConstructionsFullTime/basisConstructionsCount |
905 |
print "Number of reductions:", reductionsCount |
906 |
print "Total CPU time spent in reductions:", reductionsFullTime |
907 |
if reductionsCount != 0: |
908 |
print "Average reduction CPU time:", \ |
909 |
reductionsFullTime/reductionsCount |
910 |
print "Number of resultants computation rounds:", \ |
911 |
resultantsComputationsCount |
912 |
print "Total CPU time spent in resultants computation rounds:", \ |
913 |
resultantsComputationsFullTime |
914 |
if resultantsComputationsCount != 0: |
915 |
print "Average resultants computation round CPU time:", \ |
916 |
resultantsComputationsFullTime/resultantsComputationsCount |
917 |
print "Number of root finding rounds:", rootsComputationsCount |
918 |
print "Total CPU time spent in roots finding rounds:", \ |
919 |
rootsComputationsFullTime |
920 |
if rootsComputationsCount != 0: |
921 |
print "Average roots finding round CPU time:", \ |
922 |
rootsComputationsFullTime/rootsComputationsCount |
923 |
print "Global Wall time:", globalWallTime |
924 |
print "Global CPU time:", globalCpuTime |
925 |
## Output counters |
926 |
# End srs_runSLZ-v02 |
927 |
|