root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 195
Historique | Voir | Annoter | Télécharger (63,37 ko)
1 | 115 | storres | r""" |
---|---|---|---|
2 | 115 | storres | Sage core functions needed for the implementation of SLZ. |
3 | 90 | storres | |
4 | 115 | storres | AUTHORS: |
5 | 115 | storres | - S.T. (2013-08): initial version |
6 | 90 | storres | |
7 | 115 | storres | Examples: |
8 | 119 | storres | |
9 | 119 | storres | TODO:: |
10 | 90 | storres | """ |
11 | 87 | storres | print "sageSLZ loading..." |
12 | 115 | storres | # |
13 | 165 | storres | def slz_compute_binade(number): |
14 | 165 | storres | """" |
15 | 165 | storres | For a given number, compute the "binade" that is integer m such that |
16 | 165 | storres | 2^m <= number < 2^(m+1). If number == 0 return None. |
17 | 165 | storres | """ |
18 | 165 | storres | # Checking the parameter. |
19 | 172 | storres | # The exception construction is used to detect if number is a RealNumber |
20 | 165 | storres | # since not all numbers have |
21 | 165 | storres | # the mro() method. sage.rings.real_mpfr.RealNumber do. |
22 | 165 | storres | try: |
23 | 165 | storres | classTree = [number.__class__] + number.mro() |
24 | 172 | storres | # If the number is not a RealNumber (or offspring thereof) try |
25 | 165 | storres | # to transform it. |
26 | 165 | storres | if not sage.rings.real_mpfr.RealNumber in classTree: |
27 | 165 | storres | numberAsRR = RR(number) |
28 | 165 | storres | else: |
29 | 165 | storres | numberAsRR = number |
30 | 165 | storres | except AttributeError: |
31 | 165 | storres | return None |
32 | 165 | storres | # Zero special case. |
33 | 165 | storres | if numberAsRR == 0: |
34 | 165 | storres | return RR(-infinity) |
35 | 165 | storres | else: |
36 | 176 | storres | realField = numberAsRR.parent() |
37 | 176 | storres | numberLog2 = numberAsRR.abs().log2() |
38 | 176 | storres | floorNumberLog2 = floor(numberLog2) |
39 | 176 | storres | ## Do not get caught by rounding of log2() both ways. |
40 | 176 | storres | ## When numberLog2 is an integer, compare numberAsRR |
41 | 176 | storres | # with 2^numberLog2. |
42 | 176 | storres | if floorNumberLog2 == numberLog2: |
43 | 176 | storres | if numberAsRR.abs() < realField(2^floorNumberLog2): |
44 | 176 | storres | return floorNumberLog2 - 1 |
45 | 176 | storres | else: |
46 | 176 | storres | return floorNumberLog2 |
47 | 176 | storres | else: |
48 | 176 | storres | return floorNumberLog2 |
49 | 165 | storres | # End slz_compute_binade |
50 | 165 | storres | |
51 | 115 | storres | # |
52 | 121 | storres | def slz_compute_binade_bounds(number, emin, emax=sys.maxint): |
53 | 119 | storres | """ |
54 | 119 | storres | For given "real number", compute the bounds of the binade it belongs to. |
55 | 121 | storres | |
56 | 121 | storres | NOTE:: |
57 | 121 | storres | When number >= 2^(emax+1), we return the "fake" binade |
58 | 121 | storres | [2^(emax+1), +infinity]. Ditto for number <= -2^(emax+1) |
59 | 125 | storres | with interval [-infinity, -2^(emax+1)]. We want to distinguish |
60 | 125 | storres | this case from that of "really" invalid arguments. |
61 | 121 | storres | |
62 | 119 | storres | """ |
63 | 121 | storres | # Check the parameters. |
64 | 125 | storres | # RealNumbers or RealNumber offspring only. |
65 | 165 | storres | # The exception construction is necessary since not all objects have |
66 | 125 | storres | # the mro() method. sage.rings.real_mpfr.RealNumber do. |
67 | 124 | storres | try: |
68 | 124 | storres | classTree = [number.__class__] + number.mro() |
69 | 124 | storres | if not sage.rings.real_mpfr.RealNumber in classTree: |
70 | 124 | storres | return None |
71 | 124 | storres | except AttributeError: |
72 | 121 | storres | return None |
73 | 121 | storres | # Non zero negative integers only for emin. |
74 | 121 | storres | if emin >= 0 or int(emin) != emin: |
75 | 121 | storres | return None |
76 | 121 | storres | # Non zero positive integers only for emax. |
77 | 121 | storres | if emax <= 0 or int(emax) != emax: |
78 | 121 | storres | return None |
79 | 121 | storres | precision = number.precision() |
80 | 121 | storres | RF = RealField(precision) |
81 | 125 | storres | if number == 0: |
82 | 125 | storres | return (RF(0),RF(2^(emin)) - RF(2^(emin-precision))) |
83 | 121 | storres | # A more precise RealField is needed to avoid unwanted rounding effects |
84 | 121 | storres | # when computing number.log2(). |
85 | 121 | storres | RRF = RealField(max(2048, 2 * precision)) |
86 | 121 | storres | # number = 0 special case, the binade bounds are |
87 | 121 | storres | # [0, 2^emin - 2^(emin-precision)] |
88 | 121 | storres | # Begin general case |
89 | 119 | storres | l2 = RRF(number).abs().log2() |
90 | 121 | storres | # Another special one: beyond largest representable -> "Fake" binade. |
91 | 121 | storres | if l2 >= emax + 1: |
92 | 121 | storres | if number > 0: |
93 | 125 | storres | return (RF(2^(emax+1)), RF(+infinity) ) |
94 | 121 | storres | else: |
95 | 121 | storres | return (RF(-infinity), -RF(2^(emax+1))) |
96 | 165 | storres | # Regular case cont'd. |
97 | 119 | storres | offset = int(l2) |
98 | 121 | storres | # number.abs() >= 1. |
99 | 119 | storres | if l2 >= 0: |
100 | 119 | storres | if number >= 0: |
101 | 119 | storres | lb = RF(2^offset) |
102 | 119 | storres | ub = RF(2^(offset + 1) - 2^(-precision+offset+1)) |
103 | 119 | storres | else: #number < 0 |
104 | 119 | storres | lb = -RF(2^(offset + 1) - 2^(-precision+offset+1)) |
105 | 119 | storres | ub = -RF(2^offset) |
106 | 121 | storres | else: # log2 < 0, number.abs() < 1. |
107 | 119 | storres | if l2 < emin: # Denormal |
108 | 121 | storres | # print "Denormal:", l2 |
109 | 119 | storres | if number >= 0: |
110 | 119 | storres | lb = RF(0) |
111 | 119 | storres | ub = RF(2^(emin)) - RF(2^(emin-precision)) |
112 | 119 | storres | else: # number <= 0 |
113 | 119 | storres | lb = - RF(2^(emin)) + RF(2^(emin-precision)) |
114 | 119 | storres | ub = RF(0) |
115 | 119 | storres | elif l2 > emin: # Normal number other than +/-2^emin. |
116 | 119 | storres | if number >= 0: |
117 | 121 | storres | if int(l2) == l2: |
118 | 121 | storres | lb = RF(2^(offset)) |
119 | 121 | storres | ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
120 | 121 | storres | else: |
121 | 121 | storres | lb = RF(2^(offset-1)) |
122 | 121 | storres | ub = RF(2^(offset)) - RF(2^(-precision+offset)) |
123 | 119 | storres | else: # number < 0 |
124 | 121 | storres | if int(l2) == l2: # Binade limit. |
125 | 121 | storres | lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
126 | 121 | storres | ub = -RF(2^(offset)) |
127 | 121 | storres | else: |
128 | 121 | storres | lb = -RF(2^(offset) - 2^(-precision+offset)) |
129 | 121 | storres | ub = -RF(2^(offset-1)) |
130 | 121 | storres | else: # l2== emin, number == +/-2^emin |
131 | 119 | storres | if number >= 0: |
132 | 119 | storres | lb = RF(2^(offset)) |
133 | 119 | storres | ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
134 | 119 | storres | else: # number < 0 |
135 | 119 | storres | lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
136 | 119 | storres | ub = -RF(2^(offset)) |
137 | 119 | storres | return (lb, ub) |
138 | 119 | storres | # End slz_compute_binade_bounds |
139 | 119 | storres | # |
140 | 123 | storres | def slz_compute_coppersmith_reduced_polynomials(inputPolynomial, |
141 | 123 | storres | alpha, |
142 | 123 | storres | N, |
143 | 123 | storres | iBound, |
144 | 123 | storres | tBound): |
145 | 123 | storres | """ |
146 | 123 | storres | For a given set of arguments (see below), compute a list |
147 | 123 | storres | of "reduced polynomials" that could be used to compute roots |
148 | 123 | storres | of the inputPolynomial. |
149 | 124 | storres | INPUT: |
150 | 124 | storres | |
151 | 124 | storres | - "inputPolynomial" -- (no default) a bivariate integer polynomial; |
152 | 124 | storres | - "alpha" -- the alpha parameter of the Coppersmith algorithm; |
153 | 124 | storres | - "N" -- the modulus; |
154 | 124 | storres | - "iBound" -- the bound on the first variable; |
155 | 124 | storres | - "tBound" -- the bound on the second variable. |
156 | 124 | storres | |
157 | 124 | storres | OUTPUT: |
158 | 124 | storres | |
159 | 124 | storres | A list of bivariate integer polynomial obtained using the Coppersmith |
160 | 124 | storres | algorithm. The polynomials correspond to the rows of the LLL-reduce |
161 | 124 | storres | reduced base that comply with the Coppersmith condition. |
162 | 123 | storres | """ |
163 | 123 | storres | # Arguments check. |
164 | 123 | storres | if iBound == 0 or tBound == 0: |
165 | 179 | storres | return None |
166 | 123 | storres | # End arguments check. |
167 | 123 | storres | nAtAlpha = N^alpha |
168 | 123 | storres | ## Building polynomials for matrix. |
169 | 123 | storres | polyRing = inputPolynomial.parent() |
170 | 123 | storres | # Whatever the 2 variables are actually called, we call them |
171 | 123 | storres | # 'i' and 't' in all the variable names. |
172 | 123 | storres | (iVariable, tVariable) = inputPolynomial.variables()[:2] |
173 | 123 | storres | #print polyVars[0], type(polyVars[0]) |
174 | 123 | storres | initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
175 | 123 | storres | tVariable:tVariable * tBound}) |
176 | 123 | storres | polynomialsList = \ |
177 | 179 | storres | spo_polynomial_to_polynomials_list_8(initialPolynomial, |
178 | 123 | storres | alpha, |
179 | 123 | storres | N, |
180 | 123 | storres | iBound, |
181 | 123 | storres | tBound, |
182 | 123 | storres | 0) |
183 | 123 | storres | #print "Polynomials list:", polynomialsList |
184 | 123 | storres | ## Building the proto matrix. |
185 | 123 | storres | knownMonomials = [] |
186 | 123 | storres | protoMatrix = [] |
187 | 123 | storres | for poly in polynomialsList: |
188 | 123 | storres | spo_add_polynomial_coeffs_to_matrix_row(poly, |
189 | 123 | storres | knownMonomials, |
190 | 123 | storres | protoMatrix, |
191 | 123 | storres | 0) |
192 | 123 | storres | matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
193 | 123 | storres | #print matrixToReduce |
194 | 123 | storres | ## Reduction and checking. |
195 | 163 | storres | ## S.T. changed 'fp' to None as of Sage 6.6 complying to |
196 | 163 | storres | # error message issued when previous code was used. |
197 | 163 | storres | #reducedMatrix = matrixToReduce.LLL(fp='fp') |
198 | 163 | storres | reducedMatrix = matrixToReduce.LLL(fp=None) |
199 | 123 | storres | isLLLReduced = reducedMatrix.is_LLL_reduced() |
200 | 123 | storres | if not isLLLReduced: |
201 | 179 | storres | return None |
202 | 123 | storres | monomialsCount = len(knownMonomials) |
203 | 123 | storres | monomialsCountSqrt = sqrt(monomialsCount) |
204 | 123 | storres | #print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
205 | 123 | storres | #print reducedMatrix |
206 | 123 | storres | ## Check the Coppersmith condition for each row and build the reduced |
207 | 123 | storres | # polynomials. |
208 | 123 | storres | ccReducedPolynomialsList = [] |
209 | 123 | storres | for row in reducedMatrix.rows(): |
210 | 123 | storres | l2Norm = row.norm(2) |
211 | 123 | storres | if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
212 | 123 | storres | #print (l2Norm * monomialsCountSqrt).n() |
213 | 125 | storres | #print l2Norm.n() |
214 | 123 | storres | ccReducedPolynomial = \ |
215 | 123 | storres | slz_compute_reduced_polynomial(row, |
216 | 123 | storres | knownMonomials, |
217 | 123 | storres | iVariable, |
218 | 123 | storres | iBound, |
219 | 123 | storres | tVariable, |
220 | 123 | storres | tBound) |
221 | 123 | storres | if not ccReducedPolynomial is None: |
222 | 123 | storres | ccReducedPolynomialsList.append(ccReducedPolynomial) |
223 | 123 | storres | else: |
224 | 125 | storres | #print l2Norm.n() , ">", nAtAlpha |
225 | 123 | storres | pass |
226 | 123 | storres | if len(ccReducedPolynomialsList) < 2: |
227 | 125 | storres | print "Less than 2 Coppersmith condition compliant vectors." |
228 | 123 | storres | return () |
229 | 125 | storres | #print ccReducedPolynomialsList |
230 | 123 | storres | return ccReducedPolynomialsList |
231 | 123 | storres | # End slz_compute_coppersmith_reduced_polynomials |
232 | 123 | storres | |
233 | 122 | storres | def slz_compute_integer_polynomial_modular_roots(inputPolynomial, |
234 | 122 | storres | alpha, |
235 | 122 | storres | N, |
236 | 122 | storres | iBound, |
237 | 122 | storres | tBound): |
238 | 122 | storres | """ |
239 | 123 | storres | For a given set of arguments (see below), compute the polynomial modular |
240 | 122 | storres | roots, if any. |
241 | 124 | storres | |
242 | 122 | storres | """ |
243 | 123 | storres | # Arguments check. |
244 | 123 | storres | if iBound == 0 or tBound == 0: |
245 | 123 | storres | return set() |
246 | 123 | storres | # End arguments check. |
247 | 122 | storres | nAtAlpha = N^alpha |
248 | 122 | storres | ## Building polynomials for matrix. |
249 | 122 | storres | polyRing = inputPolynomial.parent() |
250 | 122 | storres | # Whatever the 2 variables are actually called, we call them |
251 | 122 | storres | # 'i' and 't' in all the variable names. |
252 | 122 | storres | (iVariable, tVariable) = inputPolynomial.variables()[:2] |
253 | 125 | storres | ccReducedPolynomialsList = \ |
254 | 125 | storres | slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
255 | 125 | storres | alpha, |
256 | 125 | storres | N, |
257 | 125 | storres | iBound, |
258 | 125 | storres | tBound) |
259 | 125 | storres | if len(ccReducedPolynomialsList) == 0: |
260 | 125 | storres | return set() |
261 | 122 | storres | ## Create the valid (poly1 and poly2 are algebraically independent) |
262 | 122 | storres | # resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
263 | 122 | storres | # Try to mix and match all the polynomial pairs built from the |
264 | 122 | storres | # ccReducedPolynomialsList to obtain non zero resultants. |
265 | 122 | storres | resultantsInITuplesList = [] |
266 | 122 | storres | for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
267 | 122 | storres | for polyInnerIndex in xrange(polyOuterIndex+1, |
268 | 122 | storres | len(ccReducedPolynomialsList)): |
269 | 122 | storres | # Compute the resultant in resultants in the |
270 | 122 | storres | # first variable (is it the optimal choice?). |
271 | 122 | storres | resultantInI = \ |
272 | 122 | storres | ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
273 | 122 | storres | ccReducedPolynomialsList[0].parent(str(iVariable))) |
274 | 122 | storres | #print "Resultant", resultantInI |
275 | 122 | storres | # Test algebraic independence. |
276 | 122 | storres | if not resultantInI.is_zero(): |
277 | 122 | storres | resultantsInITuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
278 | 122 | storres | ccReducedPolynomialsList[polyInnerIndex], |
279 | 122 | storres | resultantInI)) |
280 | 122 | storres | # If no non zero resultant was found: we can't get no algebraically |
281 | 122 | storres | # independent polynomials pair. Give up! |
282 | 122 | storres | if len(resultantsInITuplesList) == 0: |
283 | 123 | storres | return set() |
284 | 123 | storres | #print resultantsInITuplesList |
285 | 122 | storres | # Compute the roots. |
286 | 122 | storres | Zi = ZZ[str(iVariable)] |
287 | 122 | storres | Zt = ZZ[str(tVariable)] |
288 | 122 | storres | polynomialRootsSet = set() |
289 | 122 | storres | # First, solve in the second variable since resultants are in the first |
290 | 122 | storres | # variable. |
291 | 122 | storres | for resultantInITuple in resultantsInITuplesList: |
292 | 122 | storres | tRootsList = Zt(resultantInITuple[2]).roots() |
293 | 122 | storres | # For each tRoot, compute the corresponding iRoots and check |
294 | 123 | storres | # them in the input polynomial. |
295 | 122 | storres | for tRoot in tRootsList: |
296 | 123 | storres | #print "tRoot:", tRoot |
297 | 122 | storres | # Roots returned by root() are (value, multiplicity) tuples. |
298 | 122 | storres | iRootsList = \ |
299 | 122 | storres | Zi(resultantInITuple[0].subs({resultantInITuple[0].variables()[1]:tRoot[0]})).roots() |
300 | 123 | storres | print iRootsList |
301 | 122 | storres | # The iRootsList can be empty, hence the test. |
302 | 122 | storres | if len(iRootsList) != 0: |
303 | 122 | storres | for iRoot in iRootsList: |
304 | 122 | storres | polyEvalModN = inputPolynomial(iRoot[0], tRoot[0]) / N |
305 | 122 | storres | # polyEvalModN must be an integer. |
306 | 122 | storres | if polyEvalModN == int(polyEvalModN): |
307 | 122 | storres | polynomialRootsSet.add((iRoot[0],tRoot[0])) |
308 | 122 | storres | return polynomialRootsSet |
309 | 122 | storres | # End slz_compute_integer_polynomial_modular_roots. |
310 | 122 | storres | # |
311 | 125 | storres | def slz_compute_integer_polynomial_modular_roots_2(inputPolynomial, |
312 | 125 | storres | alpha, |
313 | 125 | storres | N, |
314 | 125 | storres | iBound, |
315 | 125 | storres | tBound): |
316 | 125 | storres | """ |
317 | 125 | storres | For a given set of arguments (see below), compute the polynomial modular |
318 | 125 | storres | roots, if any. |
319 | 125 | storres | This version differs in the way resultants are computed. |
320 | 125 | storres | """ |
321 | 125 | storres | # Arguments check. |
322 | 125 | storres | if iBound == 0 or tBound == 0: |
323 | 125 | storres | return set() |
324 | 125 | storres | # End arguments check. |
325 | 125 | storres | nAtAlpha = N^alpha |
326 | 125 | storres | ## Building polynomials for matrix. |
327 | 125 | storres | polyRing = inputPolynomial.parent() |
328 | 125 | storres | # Whatever the 2 variables are actually called, we call them |
329 | 125 | storres | # 'i' and 't' in all the variable names. |
330 | 125 | storres | (iVariable, tVariable) = inputPolynomial.variables()[:2] |
331 | 125 | storres | #print polyVars[0], type(polyVars[0]) |
332 | 125 | storres | ccReducedPolynomialsList = \ |
333 | 125 | storres | slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
334 | 125 | storres | alpha, |
335 | 125 | storres | N, |
336 | 125 | storres | iBound, |
337 | 125 | storres | tBound) |
338 | 125 | storres | if len(ccReducedPolynomialsList) == 0: |
339 | 125 | storres | return set() |
340 | 125 | storres | ## Create the valid (poly1 and poly2 are algebraically independent) |
341 | 125 | storres | # resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
342 | 125 | storres | # Try to mix and match all the polynomial pairs built from the |
343 | 125 | storres | # ccReducedPolynomialsList to obtain non zero resultants. |
344 | 125 | storres | resultantsInTTuplesList = [] |
345 | 125 | storres | for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
346 | 125 | storres | for polyInnerIndex in xrange(polyOuterIndex+1, |
347 | 125 | storres | len(ccReducedPolynomialsList)): |
348 | 125 | storres | # Compute the resultant in resultants in the |
349 | 125 | storres | # first variable (is it the optimal choice?). |
350 | 125 | storres | resultantInT = \ |
351 | 125 | storres | ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
352 | 125 | storres | ccReducedPolynomialsList[0].parent(str(tVariable))) |
353 | 125 | storres | #print "Resultant", resultantInT |
354 | 125 | storres | # Test algebraic independence. |
355 | 125 | storres | if not resultantInT.is_zero(): |
356 | 125 | storres | resultantsInTTuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
357 | 125 | storres | ccReducedPolynomialsList[polyInnerIndex], |
358 | 125 | storres | resultantInT)) |
359 | 125 | storres | # If no non zero resultant was found: we can't get no algebraically |
360 | 125 | storres | # independent polynomials pair. Give up! |
361 | 125 | storres | if len(resultantsInTTuplesList) == 0: |
362 | 125 | storres | return set() |
363 | 125 | storres | #print resultantsInITuplesList |
364 | 125 | storres | # Compute the roots. |
365 | 125 | storres | Zi = ZZ[str(iVariable)] |
366 | 125 | storres | Zt = ZZ[str(tVariable)] |
367 | 125 | storres | polynomialRootsSet = set() |
368 | 125 | storres | # First, solve in the second variable since resultants are in the first |
369 | 125 | storres | # variable. |
370 | 125 | storres | for resultantInTTuple in resultantsInTTuplesList: |
371 | 125 | storres | iRootsList = Zi(resultantInTTuple[2]).roots() |
372 | 125 | storres | # For each iRoot, compute the corresponding tRoots and check |
373 | 125 | storres | # them in the input polynomial. |
374 | 125 | storres | for iRoot in iRootsList: |
375 | 125 | storres | #print "iRoot:", iRoot |
376 | 125 | storres | # Roots returned by root() are (value, multiplicity) tuples. |
377 | 125 | storres | tRootsList = \ |
378 | 125 | storres | Zt(resultantInTTuple[0].subs({resultantInTTuple[0].variables()[0]:iRoot[0]})).roots() |
379 | 125 | storres | print tRootsList |
380 | 125 | storres | # The tRootsList can be empty, hence the test. |
381 | 125 | storres | if len(tRootsList) != 0: |
382 | 125 | storres | for tRoot in tRootsList: |
383 | 125 | storres | polyEvalModN = inputPolynomial(iRoot[0],tRoot[0]) / N |
384 | 125 | storres | # polyEvalModN must be an integer. |
385 | 125 | storres | if polyEvalModN == int(polyEvalModN): |
386 | 125 | storres | polynomialRootsSet.add((iRoot[0],tRoot[0])) |
387 | 125 | storres | return polynomialRootsSet |
388 | 125 | storres | # End slz_compute_integer_polynomial_modular_roots_2. |
389 | 125 | storres | # |
390 | 61 | storres | def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
391 | 61 | storres | upperBoundSa, approxPrecSa, |
392 | 61 | storres | sollyaPrecSa=None): |
393 | 61 | storres | """ |
394 | 61 | storres | Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
395 | 61 | storres | a polynomial that approximates the function on a an interval starting |
396 | 61 | storres | at lowerBoundSa and finishing at a value that guarantees that the polynomial |
397 | 61 | storres | approximates with the expected precision. |
398 | 61 | storres | The interval upper bound is lowered until the expected approximation |
399 | 61 | storres | precision is reached. |
400 | 61 | storres | The polynomial, the bounds, the center of the interval and the error |
401 | 61 | storres | are returned. |
402 | 156 | storres | OUTPUT: |
403 | 124 | storres | A tuple made of 4 Sollya objects: |
404 | 124 | storres | - a polynomial; |
405 | 124 | storres | - an range (an interval, not in the sense of number given as an interval); |
406 | 124 | storres | - the center of the interval; |
407 | 124 | storres | - the maximum error in the approximation of the input functionSo by the |
408 | 124 | storres | output polynomial ; this error <= approxPrecSaS. |
409 | 124 | storres | |
410 | 61 | storres | """ |
411 | 166 | storres | ## Superficial argument check. |
412 | 166 | storres | if lowerBoundSa > upperBoundSa: |
413 | 166 | storres | return None |
414 | 61 | storres | RRR = lowerBoundSa.parent() |
415 | 176 | storres | intervalShrinkConstFactorSa = RRR('0.9') |
416 | 61 | storres | absoluteErrorTypeSo = pobyso_absolute_so_so() |
417 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
418 | 61 | storres | currentUpperBoundSa = upperBoundSa |
419 | 61 | storres | currentLowerBoundSa = lowerBoundSa |
420 | 61 | storres | # What we want here is the polynomial without the variable change, |
421 | 61 | storres | # since our actual variable will be x-intervalCenter defined over the |
422 | 61 | storres | # domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
423 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
424 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
425 | 61 | storres | currentRangeSo, |
426 | 61 | storres | absoluteErrorTypeSo) |
427 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
428 | 61 | storres | while maxErrorSa > approxPrecSa: |
429 | 181 | storres | print "++Approximation error:", maxErrorSa.n() |
430 | 81 | storres | sollya_lib_clear_obj(polySo) |
431 | 81 | storres | sollya_lib_clear_obj(intervalCenterSo) |
432 | 120 | storres | sollya_lib_clear_obj(maxErrorSo) |
433 | 181 | storres | # Very empirical shrinking factor. |
434 | 176 | storres | shrinkFactorSa = 1 / (maxErrorSa/approxPrecSa).log2().abs() |
435 | 181 | storres | print "Shrink factor:", \ |
436 | 181 | storres | shrinkFactorSa.n(), \ |
437 | 181 | storres | intervalShrinkConstFactorSa |
438 | 182 | storres | |
439 | 81 | storres | #errorRatioSa = approxPrecSa/maxErrorSa |
440 | 61 | storres | #print "Error ratio: ", errorRatioSa |
441 | 181 | storres | # Make sure interval shrinks. |
442 | 81 | storres | if shrinkFactorSa > intervalShrinkConstFactorSa: |
443 | 81 | storres | actualShrinkFactorSa = intervalShrinkConstFactorSa |
444 | 81 | storres | #print "Fixed" |
445 | 61 | storres | else: |
446 | 81 | storres | actualShrinkFactorSa = shrinkFactorSa |
447 | 81 | storres | #print "Computed",shrinkFactorSa,maxErrorSa |
448 | 81 | storres | #print shrinkFactorSa, maxErrorSa |
449 | 101 | storres | #print "Shrink factor", actualShrinkFactorSa |
450 | 81 | storres | currentUpperBoundSa = currentLowerBoundSa + \ |
451 | 181 | storres | (currentUpperBoundSa - currentLowerBoundSa) * \ |
452 | 181 | storres | actualShrinkFactorSa |
453 | 71 | storres | #print "Current upper bound:", currentUpperBoundSa |
454 | 61 | storres | sollya_lib_clear_obj(currentRangeSo) |
455 | 181 | storres | # Check what is left with the bounds. |
456 | 101 | storres | if currentUpperBoundSa <= currentLowerBoundSa or \ |
457 | 101 | storres | currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
458 | 86 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
459 | 86 | storres | print "Can't find an interval." |
460 | 86 | storres | print "Use either or both a higher polynomial degree or a higher", |
461 | 86 | storres | print "internal precision." |
462 | 86 | storres | print "Aborting!" |
463 | 86 | storres | return (None, None, None, None) |
464 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
465 | 61 | storres | currentUpperBoundSa) |
466 | 86 | storres | # print "New interval:", |
467 | 86 | storres | # pobyso_autoprint(currentRangeSo) |
468 | 120 | storres | #print "Second Taylor expansion call." |
469 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
470 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
471 | 61 | storres | currentRangeSo, |
472 | 61 | storres | absoluteErrorTypeSo) |
473 | 61 | storres | #maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
474 | 85 | storres | #print "Max errorSo:", |
475 | 85 | storres | #pobyso_autoprint(maxErrorSo) |
476 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
477 | 85 | storres | #print "Max errorSa:", maxErrorSa |
478 | 85 | storres | #print "Sollya prec:", |
479 | 85 | storres | #pobyso_autoprint(sollya_lib_get_prec(None)) |
480 | 61 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
481 | 176 | storres | return (polySo, currentRangeSo, intervalCenterSo, maxErrorSo) |
482 | 81 | storres | # End slz_compute_polynomial_and_interval |
483 | 61 | storres | |
484 | 122 | storres | def slz_compute_reduced_polynomial(matrixRow, |
485 | 98 | storres | knownMonomials, |
486 | 106 | storres | var1, |
487 | 98 | storres | var1Bound, |
488 | 106 | storres | var2, |
489 | 99 | storres | var2Bound): |
490 | 98 | storres | """ |
491 | 125 | storres | Compute a polynomial from a single reduced matrix row. |
492 | 122 | storres | This function was introduced in order to avoid the computation of the |
493 | 125 | storres | all the polynomials from the full matrix (even those built from rows |
494 | 125 | storres | that do no verify the Coppersmith condition) as this may involves |
495 | 152 | storres | expensive operations over (large) integers. |
496 | 122 | storres | """ |
497 | 122 | storres | ## Check arguments. |
498 | 122 | storres | if len(knownMonomials) == 0: |
499 | 122 | storres | return None |
500 | 122 | storres | # varNounds can be zero since 0^0 returns 1. |
501 | 122 | storres | if (var1Bound < 0) or (var2Bound < 0): |
502 | 122 | storres | return None |
503 | 122 | storres | ## Initialisations. |
504 | 122 | storres | polynomialRing = knownMonomials[0].parent() |
505 | 122 | storres | currentPolynomial = polynomialRing(0) |
506 | 123 | storres | # TODO: use zip instead of indices. |
507 | 122 | storres | for colIndex in xrange(0, len(knownMonomials)): |
508 | 122 | storres | currentCoefficient = matrixRow[colIndex] |
509 | 122 | storres | if currentCoefficient != 0: |
510 | 122 | storres | #print "Current coefficient:", currentCoefficient |
511 | 122 | storres | currentMonomial = knownMonomials[colIndex] |
512 | 122 | storres | #print "Monomial as multivariate polynomial:", \ |
513 | 122 | storres | #currentMonomial, type(currentMonomial) |
514 | 122 | storres | degreeInVar1 = currentMonomial.degree(var1) |
515 | 123 | storres | #print "Degree in var1", var1, ":", degreeInVar1 |
516 | 122 | storres | degreeInVar2 = currentMonomial.degree(var2) |
517 | 123 | storres | #print "Degree in var2", var2, ":", degreeInVar2 |
518 | 122 | storres | if degreeInVar1 > 0: |
519 | 122 | storres | currentCoefficient = \ |
520 | 123 | storres | currentCoefficient / (var1Bound^degreeInVar1) |
521 | 122 | storres | #print "varBound1 in degree:", var1Bound^degreeInVar1 |
522 | 122 | storres | #print "Current coefficient(1)", currentCoefficient |
523 | 122 | storres | if degreeInVar2 > 0: |
524 | 122 | storres | currentCoefficient = \ |
525 | 123 | storres | currentCoefficient / (var2Bound^degreeInVar2) |
526 | 122 | storres | #print "Current coefficient(2)", currentCoefficient |
527 | 122 | storres | #print "Current reduced monomial:", (currentCoefficient * \ |
528 | 122 | storres | # currentMonomial) |
529 | 122 | storres | currentPolynomial += (currentCoefficient * currentMonomial) |
530 | 122 | storres | #print "Current polynomial:", currentPolynomial |
531 | 122 | storres | # End if |
532 | 122 | storres | # End for colIndex. |
533 | 122 | storres | #print "Type of the current polynomial:", type(currentPolynomial) |
534 | 122 | storres | return(currentPolynomial) |
535 | 122 | storres | # End slz_compute_reduced_polynomial |
536 | 122 | storres | # |
537 | 122 | storres | def slz_compute_reduced_polynomials(reducedMatrix, |
538 | 122 | storres | knownMonomials, |
539 | 122 | storres | var1, |
540 | 122 | storres | var1Bound, |
541 | 122 | storres | var2, |
542 | 122 | storres | var2Bound): |
543 | 122 | storres | """ |
544 | 122 | storres | Legacy function, use slz_compute_reduced_polynomials_list |
545 | 122 | storres | """ |
546 | 122 | storres | return(slz_compute_reduced_polynomials_list(reducedMatrix, |
547 | 122 | storres | knownMonomials, |
548 | 122 | storres | var1, |
549 | 122 | storres | var1Bound, |
550 | 122 | storres | var2, |
551 | 122 | storres | var2Bound) |
552 | 122 | storres | ) |
553 | 177 | storres | # |
554 | 122 | storres | def slz_compute_reduced_polynomials_list(reducedMatrix, |
555 | 152 | storres | knownMonomials, |
556 | 152 | storres | var1, |
557 | 152 | storres | var1Bound, |
558 | 152 | storres | var2, |
559 | 152 | storres | var2Bound): |
560 | 122 | storres | """ |
561 | 98 | storres | From a reduced matrix, holding the coefficients, from a monomials list, |
562 | 98 | storres | from the bounds of each variable, compute the corresponding polynomials |
563 | 98 | storres | scaled back by dividing by the "right" powers of the variables bounds. |
564 | 99 | storres | |
565 | 99 | storres | The elements in knownMonomials must be of the "right" polynomial type. |
566 | 172 | storres | They set the polynomial type of the output polynomials in list. |
567 | 152 | storres | @param reducedMatrix: the reduced matrix as output from LLL; |
568 | 152 | storres | @param kwnonMonomials: the ordered list of the monomials used to |
569 | 152 | storres | build the polynomials; |
570 | 152 | storres | @param var1: the first variable (of the "right" type); |
571 | 152 | storres | @param var1Bound: the first variable bound; |
572 | 152 | storres | @param var2: the second variable (of the "right" type); |
573 | 152 | storres | @param var2Bound: the second variable bound. |
574 | 152 | storres | @return: a list of polynomials obtained with the reduced coefficients |
575 | 152 | storres | and scaled down with the bounds |
576 | 98 | storres | """ |
577 | 99 | storres | |
578 | 98 | storres | # TODO: check input arguments. |
579 | 98 | storres | reducedPolynomials = [] |
580 | 106 | storres | #print "type var1:", type(var1), " - type var2:", type(var2) |
581 | 98 | storres | for matrixRow in reducedMatrix.rows(): |
582 | 102 | storres | currentPolynomial = 0 |
583 | 98 | storres | for colIndex in xrange(0, len(knownMonomials)): |
584 | 98 | storres | currentCoefficient = matrixRow[colIndex] |
585 | 106 | storres | if currentCoefficient != 0: |
586 | 106 | storres | #print "Current coefficient:", currentCoefficient |
587 | 106 | storres | currentMonomial = knownMonomials[colIndex] |
588 | 106 | storres | parentRing = currentMonomial.parent() |
589 | 106 | storres | #print "Monomial as multivariate polynomial:", \ |
590 | 106 | storres | #currentMonomial, type(currentMonomial) |
591 | 106 | storres | degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
592 | 106 | storres | #print "Degree in var", var1, ":", degreeInVar1 |
593 | 106 | storres | degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
594 | 106 | storres | #print "Degree in var", var2, ":", degreeInVar2 |
595 | 106 | storres | if degreeInVar1 > 0: |
596 | 167 | storres | currentCoefficient /= var1Bound^degreeInVar1 |
597 | 106 | storres | #print "varBound1 in degree:", var1Bound^degreeInVar1 |
598 | 106 | storres | #print "Current coefficient(1)", currentCoefficient |
599 | 106 | storres | if degreeInVar2 > 0: |
600 | 167 | storres | currentCoefficient /= var2Bound^degreeInVar2 |
601 | 106 | storres | #print "Current coefficient(2)", currentCoefficient |
602 | 106 | storres | #print "Current reduced monomial:", (currentCoefficient * \ |
603 | 106 | storres | # currentMonomial) |
604 | 106 | storres | currentPolynomial += (currentCoefficient * currentMonomial) |
605 | 168 | storres | #if degreeInVar1 == 0 and degreeInVar2 == 0: |
606 | 168 | storres | #print "!!!! constant term !!!!" |
607 | 106 | storres | #print "Current polynomial:", currentPolynomial |
608 | 106 | storres | # End if |
609 | 106 | storres | # End for colIndex. |
610 | 99 | storres | #print "Type of the current polynomial:", type(currentPolynomial) |
611 | 99 | storres | reducedPolynomials.append(currentPolynomial) |
612 | 98 | storres | return reducedPolynomials |
613 | 177 | storres | # End slz_compute_reduced_polynomials_list. |
614 | 98 | storres | |
615 | 177 | storres | def slz_compute_reduced_polynomials_list_from_rows(rowsList, |
616 | 177 | storres | knownMonomials, |
617 | 177 | storres | var1, |
618 | 177 | storres | var1Bound, |
619 | 177 | storres | var2, |
620 | 177 | storres | var2Bound): |
621 | 177 | storres | """ |
622 | 177 | storres | From a list of rows, holding the coefficients, from a monomials list, |
623 | 177 | storres | from the bounds of each variable, compute the corresponding polynomials |
624 | 177 | storres | scaled back by dividing by the "right" powers of the variables bounds. |
625 | 177 | storres | |
626 | 177 | storres | The elements in knownMonomials must be of the "right" polynomial type. |
627 | 177 | storres | They set the polynomial type of the output polynomials in list. |
628 | 177 | storres | @param rowsList: the reduced matrix as output from LLL; |
629 | 177 | storres | @param kwnonMonomials: the ordered list of the monomials used to |
630 | 177 | storres | build the polynomials; |
631 | 177 | storres | @param var1: the first variable (of the "right" type); |
632 | 177 | storres | @param var1Bound: the first variable bound; |
633 | 177 | storres | @param var2: the second variable (of the "right" type); |
634 | 177 | storres | @param var2Bound: the second variable bound. |
635 | 177 | storres | @return: a list of polynomials obtained with the reduced coefficients |
636 | 177 | storres | and scaled down with the bounds |
637 | 177 | storres | """ |
638 | 177 | storres | |
639 | 177 | storres | # TODO: check input arguments. |
640 | 177 | storres | reducedPolynomials = [] |
641 | 177 | storres | #print "type var1:", type(var1), " - type var2:", type(var2) |
642 | 177 | storres | for matrixRow in rowsList: |
643 | 177 | storres | currentPolynomial = 0 |
644 | 177 | storres | for colIndex in xrange(0, len(knownMonomials)): |
645 | 177 | storres | currentCoefficient = matrixRow[colIndex] |
646 | 177 | storres | if currentCoefficient != 0: |
647 | 177 | storres | #print "Current coefficient:", currentCoefficient |
648 | 177 | storres | currentMonomial = knownMonomials[colIndex] |
649 | 177 | storres | parentRing = currentMonomial.parent() |
650 | 177 | storres | #print "Monomial as multivariate polynomial:", \ |
651 | 177 | storres | #currentMonomial, type(currentMonomial) |
652 | 177 | storres | degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
653 | 177 | storres | #print "Degree in var", var1, ":", degreeInVar1 |
654 | 177 | storres | degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
655 | 177 | storres | #print "Degree in var", var2, ":", degreeInVar2 |
656 | 177 | storres | if degreeInVar1 > 0: |
657 | 177 | storres | currentCoefficient /= var1Bound^degreeInVar1 |
658 | 177 | storres | #print "varBound1 in degree:", var1Bound^degreeInVar1 |
659 | 177 | storres | #print "Current coefficient(1)", currentCoefficient |
660 | 177 | storres | if degreeInVar2 > 0: |
661 | 177 | storres | currentCoefficient /= var2Bound^degreeInVar2 |
662 | 177 | storres | #print "Current coefficient(2)", currentCoefficient |
663 | 177 | storres | #print "Current reduced monomial:", (currentCoefficient * \ |
664 | 177 | storres | # currentMonomial) |
665 | 177 | storres | currentPolynomial += (currentCoefficient * currentMonomial) |
666 | 177 | storres | #if degreeInVar1 == 0 and degreeInVar2 == 0: |
667 | 177 | storres | #print "!!!! constant term !!!!" |
668 | 177 | storres | #print "Current polynomial:", currentPolynomial |
669 | 177 | storres | # End if |
670 | 177 | storres | # End for colIndex. |
671 | 177 | storres | #print "Type of the current polynomial:", type(currentPolynomial) |
672 | 177 | storres | reducedPolynomials.append(currentPolynomial) |
673 | 177 | storres | return reducedPolynomials |
674 | 177 | storres | # End slz_compute_reduced_polynomials_list_from_rows. |
675 | 177 | storres | # |
676 | 114 | storres | def slz_compute_scaled_function(functionSa, |
677 | 114 | storres | lowerBoundSa, |
678 | 114 | storres | upperBoundSa, |
679 | 156 | storres | floatingPointPrecSa, |
680 | 156 | storres | debug=False): |
681 | 72 | storres | """ |
682 | 72 | storres | From a function, compute the scaled function whose domain |
683 | 72 | storres | is included in [1, 2) and whose image is also included in [1,2). |
684 | 72 | storres | Return a tuple: |
685 | 72 | storres | [0]: the scaled function |
686 | 72 | storres | [1]: the scaled domain lower bound |
687 | 72 | storres | [2]: the scaled domain upper bound |
688 | 72 | storres | [3]: the scaled image lower bound |
689 | 72 | storres | [4]: the scaled image upper bound |
690 | 72 | storres | """ |
691 | 177 | storres | ## The variable can be called anything. |
692 | 80 | storres | x = functionSa.variables()[0] |
693 | 72 | storres | # Scalling the domain -> [1,2[. |
694 | 72 | storres | boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
695 | 72 | storres | domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
696 | 166 | storres | (invDomainScalingExpressionSa, domainScalingExpressionSa) = \ |
697 | 80 | storres | slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
698 | 156 | storres | if debug: |
699 | 156 | storres | print "domainScalingExpression for argument :", \ |
700 | 156 | storres | invDomainScalingExpressionSa |
701 | 190 | storres | print "function: ", functionSa |
702 | 190 | storres | ff = functionSa.subs({x : domainScalingExpressionSa}) |
703 | 190 | storres | ## Bless expression as a function. |
704 | 190 | storres | ff = ff.function(x) |
705 | 72 | storres | #ff = f.subs_expr(x==domainScalingExpressionSa) |
706 | 177 | storres | #domainScalingFunction(x) = invDomainScalingExpressionSa |
707 | 177 | storres | domainScalingFunction = invDomainScalingExpressionSa.function(x) |
708 | 151 | storres | scaledLowerBoundSa = \ |
709 | 151 | storres | domainScalingFunction(lowerBoundSa).n(prec=floatingPointPrecSa) |
710 | 151 | storres | scaledUpperBoundSa = \ |
711 | 151 | storres | domainScalingFunction(upperBoundSa).n(prec=floatingPointPrecSa) |
712 | 156 | storres | if debug: |
713 | 156 | storres | print 'ff:', ff, "- Domain:", scaledLowerBoundSa, \ |
714 | 156 | storres | scaledUpperBoundSa |
715 | 72 | storres | # |
716 | 72 | storres | # Scalling the image -> [1,2[. |
717 | 151 | storres | flbSa = ff(scaledLowerBoundSa).n(prec=floatingPointPrecSa) |
718 | 151 | storres | fubSa = ff(scaledUpperBoundSa).n(prec=floatingPointPrecSa) |
719 | 72 | storres | if flbSa <= fubSa: # Increasing |
720 | 72 | storres | imageBinadeBottomSa = floor(flbSa.log2()) |
721 | 72 | storres | else: # Decreasing |
722 | 72 | storres | imageBinadeBottomSa = floor(fubSa.log2()) |
723 | 156 | storres | if debug: |
724 | 156 | storres | print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
725 | 72 | storres | imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
726 | 166 | storres | (invImageScalingExpressionSa,imageScalingExpressionSa) = \ |
727 | 80 | storres | slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
728 | 156 | storres | if debug: |
729 | 156 | storres | print "imageScalingExpression for argument :", \ |
730 | 156 | storres | invImageScalingExpressionSa |
731 | 72 | storres | iis = invImageScalingExpressionSa.function(x) |
732 | 72 | storres | fff = iis.subs({x:ff}) |
733 | 156 | storres | if debug: |
734 | 156 | storres | print "fff:", fff, |
735 | 156 | storres | print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
736 | 72 | storres | return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
737 | 72 | storres | fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
738 | 151 | storres | # End slz_compute_scaled_function |
739 | 72 | storres | |
740 | 179 | storres | def slz_fix_bounds_for_binades(lowerBound, |
741 | 179 | storres | upperBound, |
742 | 190 | storres | func = None, |
743 | 179 | storres | domainDirection = -1, |
744 | 179 | storres | imageDirection = -1): |
745 | 179 | storres | """ |
746 | 179 | storres | Assuming the function is increasing or decreasing over the |
747 | 179 | storres | [lowerBound, upperBound] interval, return a lower bound lb and |
748 | 179 | storres | an upper bound ub such that: |
749 | 179 | storres | - lb and ub belong to the same binade; |
750 | 179 | storres | - func(lb) and func(ub) belong to the same binade. |
751 | 179 | storres | domainDirection indicate how bounds move to fit into the same binade: |
752 | 179 | storres | - a negative value move the upper bound down; |
753 | 179 | storres | - a positive value move the lower bound up. |
754 | 179 | storres | imageDirection indicate how bounds move in order to have their image |
755 | 179 | storres | fit into the same binade, variation of the function is also condidered. |
756 | 179 | storres | For an increasing function: |
757 | 179 | storres | - negative value moves the upper bound down (and its image value as well); |
758 | 179 | storres | - a positive values moves the lower bound up (and its image value as well); |
759 | 179 | storres | For a decreasing function it is the other way round. |
760 | 179 | storres | """ |
761 | 179 | storres | ## Arguments check |
762 | 179 | storres | if lowerBound > upperBound: |
763 | 179 | storres | return None |
764 | 190 | storres | if lowerBound == upperBound: |
765 | 190 | storres | return (lowerBound, upperBound) |
766 | 179 | storres | if func is None: |
767 | 179 | storres | return None |
768 | 179 | storres | # |
769 | 179 | storres | #varFunc = func.variables()[0] |
770 | 179 | storres | lb = lowerBound |
771 | 179 | storres | ub = upperBound |
772 | 179 | storres | lbBinade = slz_compute_binade(lb) |
773 | 179 | storres | ubBinade = slz_compute_binade(ub) |
774 | 179 | storres | ## Domain binade. |
775 | 179 | storres | while lbBinade != ubBinade: |
776 | 179 | storres | newIntervalWidth = (ub - lb) / 2 |
777 | 179 | storres | if domainDirection < 0: |
778 | 179 | storres | ub = lb + newIntervalWidth |
779 | 179 | storres | ubBinade = slz_compute_binade(ub) |
780 | 179 | storres | else: |
781 | 179 | storres | lb = lb + newIntervalWidth |
782 | 179 | storres | lbBinade = slz_compute_binade(lb) |
783 | 179 | storres | ## Image binade. |
784 | 179 | storres | if lb == ub: |
785 | 179 | storres | return (lb, ub) |
786 | 179 | storres | lbImg = func(lb) |
787 | 179 | storres | ubImg = func(ub) |
788 | 179 | storres | funcIsInc = (ubImg >= lbImg) |
789 | 179 | storres | lbImgBinade = slz_compute_binade(lbImg) |
790 | 179 | storres | ubImgBinade = slz_compute_binade(ubImg) |
791 | 179 | storres | while lbImgBinade != ubImgBinade: |
792 | 179 | storres | newIntervalWidth = (ub - lb) / 2 |
793 | 179 | storres | if imageDirection < 0: |
794 | 179 | storres | if funcIsInc: |
795 | 179 | storres | ub = lb + newIntervalWidth |
796 | 179 | storres | ubImgBinade = slz_compute_binade(func(ub)) |
797 | 179 | storres | #print ubImgBinade |
798 | 179 | storres | else: |
799 | 179 | storres | lb = lb + newIntervalWidth |
800 | 179 | storres | lbImgBinade = slz_compute_binade(func(lb)) |
801 | 179 | storres | #print lbImgBinade |
802 | 179 | storres | else: |
803 | 179 | storres | if funcIsInc: |
804 | 179 | storres | lb = lb + newIntervalWidth |
805 | 179 | storres | lbImgBinade = slz_compute_binade(func(lb)) |
806 | 179 | storres | #print lbImgBinade |
807 | 179 | storres | else: |
808 | 179 | storres | ub = lb + newIntervalWidth |
809 | 179 | storres | ubImgBinade = slz_compute_binade(func(ub)) |
810 | 179 | storres | #print ubImgBinade |
811 | 179 | storres | # End while lbImgBinade != ubImgBinade: |
812 | 179 | storres | return (lb, ub) |
813 | 179 | storres | # End slz_fix_bounds_for_binades. |
814 | 179 | storres | |
815 | 79 | storres | def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
816 | 79 | storres | # Create a polynomial over the rationals. |
817 | 179 | storres | ratPolynomialRing = QQ[str(polyOfFloat.variables()[0])] |
818 | 179 | storres | return(ratPolynomialRing(polyOfFloat)) |
819 | 86 | storres | # End slz_float_poly_of_float_to_rat_poly_of_rat. |
820 | 81 | storres | |
821 | 188 | storres | def slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(polyOfFloat): |
822 | 188 | storres | """ |
823 | 188 | storres | Create a polynomial over the rationals where all denominators are |
824 | 188 | storres | powers of two. |
825 | 188 | storres | """ |
826 | 188 | storres | polyVariable = polyOfFloat.variables()[0] |
827 | 188 | storres | RPR = QQ[str(polyVariable)] |
828 | 188 | storres | polyCoeffs = polyOfFloat.coefficients() |
829 | 188 | storres | #print polyCoeffs |
830 | 188 | storres | polyExponents = polyOfFloat.exponents() |
831 | 188 | storres | #print polyExponents |
832 | 188 | storres | polyDenomPtwoCoeffs = [] |
833 | 188 | storres | for coeff in polyCoeffs: |
834 | 188 | storres | polyDenomPtwoCoeffs.append(sno_float_to_rat_pow_of_two_denom(coeff)) |
835 | 188 | storres | #print "Converted coefficient:", sno_float_to_rat_pow_of_two_denom(coeff), |
836 | 188 | storres | #print type(sno_float_to_rat_pow_of_two_denom(coeff)) |
837 | 188 | storres | ratPoly = RPR(0) |
838 | 188 | storres | #print type(ratPoly) |
839 | 188 | storres | ## !!! CAUTION !!! Do not use the RPR(coeff * polyVariagle^exponent) |
840 | 188 | storres | # The coefficient becomes plainly wrong when exponent == 0. |
841 | 188 | storres | # No clue as to why. |
842 | 188 | storres | for coeff, exponent in zip(polyDenomPtwoCoeffs, polyExponents): |
843 | 188 | storres | ratPoly += coeff * RPR(polyVariable^exponent) |
844 | 188 | storres | return ratPoly |
845 | 188 | storres | # End slz_float_poly_of_float_to_rat_poly_of_rat. |
846 | 188 | storres | |
847 | 80 | storres | def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
848 | 63 | storres | lowerBoundSa, |
849 | 60 | storres | upperBoundSa, floatingPointPrecSa, |
850 | 64 | storres | internalSollyaPrecSa, approxPrecSa): |
851 | 60 | storres | """ |
852 | 60 | storres | Under the assumption that: |
853 | 60 | storres | - functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
854 | 60 | storres | - lowerBound and upperBound belong to the same binade. |
855 | 60 | storres | from a: |
856 | 60 | storres | - function; |
857 | 60 | storres | - a degree |
858 | 60 | storres | - a pair of bounds; |
859 | 60 | storres | - the floating-point precision we work on; |
860 | 60 | storres | - the internal Sollya precision; |
861 | 64 | storres | - the requested approximation error |
862 | 61 | storres | The initial interval is, possibly, splitted into smaller intervals. |
863 | 61 | storres | It return a list of tuples, each made of: |
864 | 72 | storres | - a first polynomial (without the changed variable f(x) = p(x-x0)); |
865 | 79 | storres | - a second polynomial (with a changed variable f(x) = q(x)) |
866 | 61 | storres | - the approximation interval; |
867 | 72 | storres | - the center, x0, of the interval; |
868 | 61 | storres | - the corresponding approximation error. |
869 | 100 | storres | TODO: fix endless looping for some parameters sets. |
870 | 60 | storres | """ |
871 | 120 | storres | resultArray = [] |
872 | 101 | storres | # Set Sollya to the necessary internal precision. |
873 | 120 | storres | precChangedSa = False |
874 | 85 | storres | currentSollyaPrecSo = pobyso_get_prec_so() |
875 | 85 | storres | currentSollyaPrecSa = pobyso_constant_from_int_so_sa(currentSollyaPrecSo) |
876 | 85 | storres | if internalSollyaPrecSa > currentSollyaPrecSa: |
877 | 85 | storres | pobyso_set_prec_sa_so(internalSollyaPrecSa) |
878 | 120 | storres | precChangedSa = True |
879 | 101 | storres | # |
880 | 80 | storres | x = functionSa.variables()[0] # Actual variable name can be anything. |
881 | 101 | storres | # Scaled function: [1=,2] -> [1,2]. |
882 | 115 | storres | (fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
883 | 115 | storres | scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
884 | 115 | storres | slz_compute_scaled_function(functionSa, \ |
885 | 115 | storres | lowerBoundSa, \ |
886 | 115 | storres | upperBoundSa, \ |
887 | 80 | storres | floatingPointPrecSa) |
888 | 166 | storres | # In case bounds were in the negative real one may need to |
889 | 166 | storres | # switch scaled bounds. |
890 | 166 | storres | if scaledLowerBoundSa > scaledUpperBoundSa: |
891 | 166 | storres | scaledLowerBoundSa, scaledUpperBoundSa = \ |
892 | 166 | storres | scaledUpperBoundSa, scaledLowerBoundSa |
893 | 166 | storres | #print "Switching!" |
894 | 60 | storres | print "Approximation precision: ", RR(approxPrecSa) |
895 | 61 | storres | # Prepare the arguments for the Taylor expansion computation with Sollya. |
896 | 159 | storres | functionSo = \ |
897 | 159 | storres | pobyso_parse_string_sa_so(fff._assume_str().replace('_SAGE_VAR_', '')) |
898 | 60 | storres | degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
899 | 61 | storres | scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
900 | 61 | storres | scaledUpperBoundSa) |
901 | 176 | storres | |
902 | 60 | storres | realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
903 | 60 | storres | upperBoundSa.parent().precision())) |
904 | 176 | storres | currentScaledLowerBoundSa = scaledLowerBoundSa |
905 | 176 | storres | currentScaledUpperBoundSa = scaledUpperBoundSa |
906 | 176 | storres | while True: |
907 | 176 | storres | ## Compute the first Taylor expansion. |
908 | 176 | storres | print "Computing a Taylor expansion..." |
909 | 176 | storres | (polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
910 | 176 | storres | slz_compute_polynomial_and_interval(functionSo, degreeSo, |
911 | 176 | storres | currentScaledLowerBoundSa, |
912 | 176 | storres | currentScaledUpperBoundSa, |
913 | 176 | storres | approxPrecSa, internalSollyaPrecSa) |
914 | 176 | storres | print "...done." |
915 | 176 | storres | ## If slz_compute_polynomial_and_interval fails, it returns None. |
916 | 176 | storres | # This value goes to the first variable: polySo. Other variables are |
917 | 176 | storres | # not assigned and should not be tested. |
918 | 176 | storres | if polySo is None: |
919 | 176 | storres | print "slz_get_intervals_and_polynomials: Aborting and returning None!" |
920 | 176 | storres | if precChangedSa: |
921 | 176 | storres | pobyso_set_prec_so_so(currentSollyaPrecSo) |
922 | 176 | storres | sollya_lib_clear_obj(currentSollyaPrecSo) |
923 | 176 | storres | sollya_lib_clear_obj(functionSo) |
924 | 176 | storres | sollya_lib_clear_obj(degreeSo) |
925 | 176 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
926 | 176 | storres | return None |
927 | 176 | storres | ## Add to the result array. |
928 | 176 | storres | ### Change variable stuff in Sollya x -> x0-x. |
929 | 176 | storres | changeVarExpressionSo = \ |
930 | 176 | storres | sollya_lib_build_function_sub( \ |
931 | 176 | storres | sollya_lib_build_function_free_variable(), |
932 | 101 | storres | sollya_lib_copy_obj(intervalCenterSo)) |
933 | 176 | storres | polyVarChangedSo = \ |
934 | 176 | storres | sollya_lib_evaluate(polySo, changeVarExpressionSo) |
935 | 176 | storres | #### Get rid of the variable change Sollya stuff. |
936 | 115 | storres | sollya_lib_clear_obj(changeVarExpressionSo) |
937 | 176 | storres | resultArray.append((polySo, polyVarChangedSo, boundsSo, |
938 | 101 | storres | intervalCenterSo, maxErrorSo)) |
939 | 176 | storres | boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
940 | 101 | storres | errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
941 | 176 | storres | print "Computed approximation error:", errorSa.n(digits=10) |
942 | 176 | storres | # If the error and interval are OK a the first try, just return. |
943 | 176 | storres | if (boundsSa.endpoints()[1] >= scaledUpperBoundSa) and \ |
944 | 176 | storres | (errorSa <= approxPrecSa): |
945 | 176 | storres | if precChangedSa: |
946 | 176 | storres | pobyso_set_prec_sa_so(currentSollyaPrecSa) |
947 | 176 | storres | sollya_lib_clear_obj(currentSollyaPrecSo) |
948 | 176 | storres | sollya_lib_clear_obj(functionSo) |
949 | 176 | storres | sollya_lib_clear_obj(degreeSo) |
950 | 176 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
951 | 101 | storres | #print "Approximation error:", errorSa |
952 | 176 | storres | return resultArray |
953 | 176 | storres | ## The returned interval upper bound does not reach the requested upper |
954 | 176 | storres | # upper bound: compute the next upper bound. |
955 | 176 | storres | ## The following ratio is always >= 1. If errorSa, we may want to |
956 | 176 | storres | # enlarge the interval |
957 | 81 | storres | currentErrorRatio = approxPrecSa / errorSa |
958 | 176 | storres | ## --|--------------------------------------------------------------|-- |
959 | 176 | storres | # --|--------------------|-------------------------------------------- |
960 | 176 | storres | # --|----------------------------|------------------------------------ |
961 | 176 | storres | ## Starting point for the next upper bound. |
962 | 101 | storres | boundsWidthSa = boundsSa.endpoints()[1] - boundsSa.endpoints()[0] |
963 | 101 | storres | # Compute the increment. |
964 | 176 | storres | newBoundsWidthSa = \ |
965 | 176 | storres | ((currentErrorRatio.log() / 10) + 1) * boundsWidthSa |
966 | 176 | storres | currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
967 | 176 | storres | currentScaledUpperBoundSa = boundsSa.endpoints()[1] + newBoundsWidthSa |
968 | 176 | storres | # Take into account the original interval upper bound. |
969 | 176 | storres | if currentScaledUpperBoundSa > scaledUpperBoundSa: |
970 | 176 | storres | currentScaledUpperBoundSa = scaledUpperBoundSa |
971 | 176 | storres | if currentScaledUpperBoundSa == currentScaledLowerBoundSa: |
972 | 85 | storres | print "Can't shrink the interval anymore!" |
973 | 85 | storres | print "You should consider increasing the Sollya internal precision" |
974 | 85 | storres | print "or the polynomial degree." |
975 | 85 | storres | print "Giving up!" |
976 | 176 | storres | if precChangedSa: |
977 | 101 | storres | pobyso_set_prec_sa_so(currentSollyaPrecSa) |
978 | 115 | storres | sollya_lib_clear_obj(currentSollyaPrecSo) |
979 | 85 | storres | sollya_lib_clear_obj(functionSo) |
980 | 85 | storres | sollya_lib_clear_obj(degreeSo) |
981 | 85 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
982 | 85 | storres | return None |
983 | 176 | storres | # Compute the other expansions. |
984 | 176 | storres | # Test for insufficient precision. |
985 | 81 | storres | # End slz_get_intervals_and_polynomials |
986 | 60 | storres | |
987 | 80 | storres | def slz_interval_scaling_expression(boundsInterval, expVar): |
988 | 61 | storres | """ |
989 | 151 | storres | Compute the scaling expression to map an interval that spans at most |
990 | 166 | storres | a single binade into [1, 2) and the inverse expression as well. |
991 | 165 | storres | If the interval spans more than one binade, result is wrong since |
992 | 165 | storres | scaling is only based on the lower bound. |
993 | 62 | storres | Not very sure that the transformation makes sense for negative numbers. |
994 | 61 | storres | """ |
995 | 165 | storres | # The "one of the bounds is 0" special case. Here we consider |
996 | 165 | storres | # the interval as the subnormals binade. |
997 | 165 | storres | if boundsInterval.endpoints()[0] == 0 or boundsInterval.endpoints()[1] == 0: |
998 | 165 | storres | # The upper bound is (or should be) positive. |
999 | 165 | storres | if boundsInterval.endpoints()[0] == 0: |
1000 | 165 | storres | if boundsInterval.endpoints()[1] == 0: |
1001 | 165 | storres | return None |
1002 | 165 | storres | binade = slz_compute_binade(boundsInterval.endpoints()[1]) |
1003 | 165 | storres | l2 = boundsInterval.endpoints()[1].abs().log2() |
1004 | 165 | storres | # The upper bound is a power of two |
1005 | 165 | storres | if binade == l2: |
1006 | 165 | storres | scalingCoeff = 2^(-binade) |
1007 | 165 | storres | invScalingCoeff = 2^(binade) |
1008 | 165 | storres | scalingOffset = 1 |
1009 | 179 | storres | return \ |
1010 | 179 | storres | ((scalingCoeff * expVar + scalingOffset).function(expVar), |
1011 | 179 | storres | ((expVar - scalingOffset) * invScalingCoeff).function(expVar)) |
1012 | 165 | storres | else: |
1013 | 165 | storres | scalingCoeff = 2^(-binade-1) |
1014 | 165 | storres | invScalingCoeff = 2^(binade+1) |
1015 | 165 | storres | scalingOffset = 1 |
1016 | 165 | storres | return((scalingCoeff * expVar + scalingOffset),\ |
1017 | 165 | storres | ((expVar - scalingOffset) * invScalingCoeff)) |
1018 | 165 | storres | # The lower bound is (or should be) negative. |
1019 | 165 | storres | if boundsInterval.endpoints()[1] == 0: |
1020 | 165 | storres | if boundsInterval.endpoints()[0] == 0: |
1021 | 165 | storres | return None |
1022 | 165 | storres | binade = slz_compute_binade(boundsInterval.endpoints()[0]) |
1023 | 165 | storres | l2 = boundsInterval.endpoints()[0].abs().log2() |
1024 | 165 | storres | # The upper bound is a power of two |
1025 | 165 | storres | if binade == l2: |
1026 | 165 | storres | scalingCoeff = -2^(-binade) |
1027 | 165 | storres | invScalingCoeff = -2^(binade) |
1028 | 165 | storres | scalingOffset = 1 |
1029 | 165 | storres | return((scalingCoeff * expVar + scalingOffset),\ |
1030 | 165 | storres | ((expVar - scalingOffset) * invScalingCoeff)) |
1031 | 165 | storres | else: |
1032 | 165 | storres | scalingCoeff = -2^(-binade-1) |
1033 | 165 | storres | invScalingCoeff = -2^(binade+1) |
1034 | 165 | storres | scalingOffset = 1 |
1035 | 165 | storres | return((scalingCoeff * expVar + scalingOffset),\ |
1036 | 165 | storres | ((expVar - scalingOffset) * invScalingCoeff)) |
1037 | 165 | storres | # General case |
1038 | 165 | storres | lbBinade = slz_compute_binade(boundsInterval.endpoints()[0]) |
1039 | 165 | storres | ubBinade = slz_compute_binade(boundsInterval.endpoints()[1]) |
1040 | 165 | storres | # We allow for a single exception in binade spanning is when the |
1041 | 165 | storres | # "outward bound" is a power of 2 and its binade is that of the |
1042 | 165 | storres | # "inner bound" + 1. |
1043 | 165 | storres | if boundsInterval.endpoints()[0] > 0: |
1044 | 165 | storres | ubL2 = boundsInterval.endpoints()[1].abs().log2() |
1045 | 165 | storres | if lbBinade != ubBinade: |
1046 | 165 | storres | print "Different binades." |
1047 | 165 | storres | if ubL2 != ubBinade: |
1048 | 165 | storres | print "Not a power of 2." |
1049 | 165 | storres | return None |
1050 | 165 | storres | elif abs(ubBinade - lbBinade) > 1: |
1051 | 165 | storres | print "Too large span:", abs(ubBinade - lbBinade) |
1052 | 165 | storres | return None |
1053 | 165 | storres | else: |
1054 | 165 | storres | lbL2 = boundsInterval.endpoints()[0].abs().log2() |
1055 | 165 | storres | if lbBinade != ubBinade: |
1056 | 165 | storres | print "Different binades." |
1057 | 165 | storres | if lbL2 != lbBinade: |
1058 | 165 | storres | print "Not a power of 2." |
1059 | 165 | storres | return None |
1060 | 165 | storres | elif abs(ubBinade - lbBinade) > 1: |
1061 | 165 | storres | print "Too large span:", abs(ubBinade - lbBinade) |
1062 | 165 | storres | return None |
1063 | 165 | storres | #print "Lower bound binade:", binade |
1064 | 165 | storres | if boundsInterval.endpoints()[0] > 0: |
1065 | 179 | storres | return \ |
1066 | 179 | storres | ((2^(-lbBinade) * expVar).function(expVar), |
1067 | 179 | storres | (2^(lbBinade) * expVar).function(expVar)) |
1068 | 165 | storres | else: |
1069 | 179 | storres | return \ |
1070 | 179 | storres | ((-(2^(-ubBinade)) * expVar).function(expVar), |
1071 | 179 | storres | (-(2^(ubBinade)) * expVar).function(expVar)) |
1072 | 165 | storres | """ |
1073 | 165 | storres | # Code sent to attic. Should be the base for a |
1074 | 165 | storres | # "slz_interval_translate_expression" rather than scale. |
1075 | 165 | storres | # Extra control and special cases code added in |
1076 | 165 | storres | # slz_interval_scaling_expression could (should ?) be added to |
1077 | 165 | storres | # this new function. |
1078 | 62 | storres | # The scaling offset is only used for negative numbers. |
1079 | 151 | storres | # When the absolute value of the lower bound is < 0. |
1080 | 61 | storres | if abs(boundsInterval.endpoints()[0]) < 1: |
1081 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
1082 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
1083 | 62 | storres | invScalingCoeff = 1/scalingCoeff |
1084 | 80 | storres | return((scalingCoeff * expVar, |
1085 | 80 | storres | invScalingCoeff * expVar)) |
1086 | 60 | storres | else: |
1087 | 62 | storres | scalingCoeff = \ |
1088 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
1089 | 62 | storres | scalingOffset = -3 * scalingCoeff |
1090 | 80 | storres | return((scalingCoeff * expVar + scalingOffset, |
1091 | 80 | storres | 1/scalingCoeff * expVar + 3)) |
1092 | 61 | storres | else: |
1093 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
1094 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
1095 | 61 | storres | scalingOffset = 0 |
1096 | 80 | storres | return((scalingCoeff * expVar, |
1097 | 80 | storres | 1/scalingCoeff * expVar)) |
1098 | 61 | storres | else: |
1099 | 62 | storres | scalingCoeff = \ |
1100 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[1]).log2())) |
1101 | 62 | storres | scalingOffset = -3 * scalingCoeff |
1102 | 62 | storres | #scalingOffset = 0 |
1103 | 80 | storres | return((scalingCoeff * expVar + scalingOffset, |
1104 | 80 | storres | 1/scalingCoeff * expVar + 3)) |
1105 | 165 | storres | """ |
1106 | 151 | storres | # End slz_interval_scaling_expression |
1107 | 61 | storres | |
1108 | 83 | storres | def slz_interval_and_polynomial_to_sage(polyRangeCenterErrorSo): |
1109 | 72 | storres | """ |
1110 | 72 | storres | Compute the Sage version of the Taylor polynomial and it's |
1111 | 72 | storres | companion data (interval, center...) |
1112 | 72 | storres | The input parameter is a five elements tuple: |
1113 | 79 | storres | - [0]: the polyomial (without variable change), as polynomial over a |
1114 | 79 | storres | real ring; |
1115 | 79 | storres | - [1]: the polyomial (with variable change done in Sollya), as polynomial |
1116 | 79 | storres | over a real ring; |
1117 | 72 | storres | - [2]: the interval (as Sollya range); |
1118 | 72 | storres | - [3]: the interval center; |
1119 | 72 | storres | - [4]: the approximation error. |
1120 | 72 | storres | |
1121 | 72 | storres | The function return a 5 elements tuple: formed with all the |
1122 | 72 | storres | input elements converted into their Sollya counterpart. |
1123 | 72 | storres | """ |
1124 | 60 | storres | polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
1125 | 64 | storres | polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
1126 | 60 | storres | intervalSa = \ |
1127 | 64 | storres | pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
1128 | 60 | storres | centerSa = \ |
1129 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
1130 | 60 | storres | errorSa = \ |
1131 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
1132 | 64 | storres | return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
1133 | 83 | storres | # End slz_interval_and_polynomial_to_sage |
1134 | 62 | storres | |
1135 | 172 | storres | def slz_is_htrn(argument, function, targetAccuracy, targetRF = None, |
1136 | 172 | storres | targetPlusOnePrecRF = None, quasiExactRF = None): |
1137 | 172 | storres | """ |
1138 | 172 | storres | Check if an element (argument) of the domain of function (function) |
1139 | 172 | storres | yields a HTRN case (rounding to next) for the target precision |
1140 | 183 | storres | (as impersonated by targetRF) for a given accuracy (targetAccuracy). |
1141 | 172 | storres | """ |
1142 | 183 | storres | ## Arguments filtering. |
1143 | 183 | storres | ## TODO: filter the first argument for consistence. |
1144 | 172 | storres | if targetRF is None: |
1145 | 172 | storres | targetRF = argument.parent() |
1146 | 172 | storres | ## Ditto for the real field holding the midpoints. |
1147 | 172 | storres | if targetPlusOnePrecRF is None: |
1148 | 172 | storres | targetPlusOnePrecRF = RealField(targetRF.prec()+1) |
1149 | 183 | storres | ## If no quasiExactField is provided, create a high accuracy RealField. |
1150 | 172 | storres | if quasiExactRF is None: |
1151 | 172 | storres | quasiExactRF = RealField(1536) |
1152 | 195 | storres | function = function.function(function.variables()[0]) |
1153 | 172 | storres | exactArgument = quasiExactRF(argument) |
1154 | 172 | storres | quasiExactValue = function(exactArgument) |
1155 | 172 | storres | roundedValue = targetRF(quasiExactValue) |
1156 | 172 | storres | roundedValuePrecPlusOne = targetPlusOnePrecRF(roundedValue) |
1157 | 172 | storres | # Upper midpoint. |
1158 | 172 | storres | roundedValuePrecPlusOneNext = roundedValuePrecPlusOne.nextabove() |
1159 | 172 | storres | # Lower midpoint. |
1160 | 172 | storres | roundedValuePrecPlusOnePrev = roundedValuePrecPlusOne.nextbelow() |
1161 | 172 | storres | binade = slz_compute_binade(roundedValue) |
1162 | 172 | storres | binadeCorrectedTargetAccuracy = targetAccuracy * 2^binade |
1163 | 172 | storres | #print "Argument:", argument |
1164 | 172 | storres | #print "f(x):", roundedValue, binade, floor(binade), ceil(binade) |
1165 | 174 | storres | #print "Binade:", binade |
1166 | 172 | storres | #print "binadeCorrectedTargetAccuracy:", \ |
1167 | 174 | storres | #binadeCorrectedTargetAccuracy.n(prec=100) |
1168 | 172 | storres | #print "binadeCorrectedTargetAccuracy:", \ |
1169 | 172 | storres | # binadeCorrectedTargetAccuracy.n(prec=100).str(base=2) |
1170 | 172 | storres | #print "Upper midpoint:", \ |
1171 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1172 | 172 | storres | #print "Rounded value :", \ |
1173 | 172 | storres | # roundedValuePrecPlusOne.n(prec=targetPlusOnePrecRF.prec()).str(base=2), \ |
1174 | 172 | storres | # roundedValuePrecPlusOne.ulp().n(prec=2).str(base=2) |
1175 | 172 | storres | #print "QuasiEx value :", quasiExactValue.n(prec=250).str(base=2) |
1176 | 172 | storres | #print "Lower midpoint:", \ |
1177 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1178 | 172 | storres | ## Begining of the general case : check with the midpoint with |
1179 | 172 | storres | # greatest absolute value. |
1180 | 172 | storres | if quasiExactValue > 0: |
1181 | 172 | storres | if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) <\ |
1182 | 172 | storres | binadeCorrectedTargetAccuracy: |
1183 | 183 | storres | #print "Too close to the upper midpoint: ", \ |
1184 | 174 | storres | #abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100) |
1185 | 172 | storres | #print argument.n().str(base=16, \ |
1186 | 172 | storres | # no_sci=False) |
1187 | 172 | storres | #print "Lower midpoint:", \ |
1188 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1189 | 172 | storres | #print "Value :", \ |
1190 | 183 | storres | # quasiExactValue.n(prec=200).str(base=2) |
1191 | 172 | storres | #print "Upper midpoint:", \ |
1192 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1193 | 172 | storres | return True |
1194 | 172 | storres | else: |
1195 | 172 | storres | if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) < \ |
1196 | 172 | storres | binadeCorrectedTargetAccuracy: |
1197 | 172 | storres | #print "Too close to the upper midpoint: ", \ |
1198 | 172 | storres | # abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100) |
1199 | 172 | storres | #print argument.n().str(base=16, \ |
1200 | 172 | storres | # no_sci=False) |
1201 | 172 | storres | #print "Lower midpoint:", \ |
1202 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1203 | 172 | storres | #print "Value :", \ |
1204 | 172 | storres | # quasiExactValue.n(prec=200).str(base=2) |
1205 | 172 | storres | #print "Upper midpoint:", \ |
1206 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1207 | 172 | storres | |
1208 | 172 | storres | return True |
1209 | 172 | storres | #2345678901234567890123456789012345678901234567890123456789012345678901234567890 |
1210 | 172 | storres | ## For the midpoint of smaller absolute value, |
1211 | 172 | storres | # split cases with the powers of 2. |
1212 | 172 | storres | if sno_abs_is_power_of_two(roundedValue): |
1213 | 172 | storres | if quasiExactValue > 0: |
1214 | 172 | storres | if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) <\ |
1215 | 172 | storres | binadeCorrectedTargetAccuracy / 2: |
1216 | 172 | storres | #print "Lower midpoint:", \ |
1217 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1218 | 172 | storres | #print "Value :", \ |
1219 | 172 | storres | # quasiExactValue.n(prec=200).str(base=2) |
1220 | 172 | storres | #print "Upper midpoint:", \ |
1221 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1222 | 172 | storres | |
1223 | 172 | storres | return True |
1224 | 172 | storres | else: |
1225 | 172 | storres | if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) < \ |
1226 | 172 | storres | binadeCorrectedTargetAccuracy / 2: |
1227 | 172 | storres | #print "Lower midpoint:", \ |
1228 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1229 | 172 | storres | #print "Value :", |
1230 | 172 | storres | # quasiExactValue.n(prec=200).str(base=2) |
1231 | 172 | storres | #print "Upper midpoint:", |
1232 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1233 | 172 | storres | |
1234 | 172 | storres | return True |
1235 | 172 | storres | #2345678901234567890123456789012345678901234567890123456789012345678901234567890 |
1236 | 172 | storres | else: ## Not a power of 2, regular comparison with the midpoint of |
1237 | 172 | storres | # smaller absolute value. |
1238 | 172 | storres | if quasiExactValue > 0: |
1239 | 172 | storres | if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) < \ |
1240 | 172 | storres | binadeCorrectedTargetAccuracy: |
1241 | 172 | storres | #print "Lower midpoint:", \ |
1242 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1243 | 172 | storres | #print "Value :", \ |
1244 | 172 | storres | # quasiExactValue.n(prec=200).str(base=2) |
1245 | 172 | storres | #print "Upper midpoint:", \ |
1246 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1247 | 172 | storres | |
1248 | 172 | storres | return True |
1249 | 172 | storres | else: # quasiExactValue <= 0 |
1250 | 172 | storres | if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) < \ |
1251 | 172 | storres | binadeCorrectedTargetAccuracy: |
1252 | 172 | storres | #print "Lower midpoint:", \ |
1253 | 172 | storres | # roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1254 | 172 | storres | #print "Value :", \ |
1255 | 172 | storres | # quasiExactValue.n(prec=200).str(base=2) |
1256 | 172 | storres | #print "Upper midpoint:", \ |
1257 | 172 | storres | # roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1258 | 172 | storres | |
1259 | 172 | storres | return True |
1260 | 172 | storres | #print "distance to the upper midpoint:", \ |
1261 | 172 | storres | # abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100).str(base=2) |
1262 | 172 | storres | #print "distance to the lower midpoint:", \ |
1263 | 172 | storres | # abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue).n(prec=100).str(base=2) |
1264 | 172 | storres | return False |
1265 | 172 | storres | # End slz_is_htrn |
1266 | 172 | storres | |
1267 | 80 | storres | def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
1268 | 80 | storres | precision, |
1269 | 80 | storres | targetHardnessToRound, |
1270 | 80 | storres | variable1, |
1271 | 80 | storres | variable2): |
1272 | 80 | storres | """ |
1273 | 90 | storres | Creates a new multivariate polynomial with integer coefficients for use |
1274 | 90 | storres | with the Coppersmith method. |
1275 | 80 | storres | A the same time it computes : |
1276 | 80 | storres | - 2^K (N); |
1277 | 90 | storres | - 2^k (bound on the second variable) |
1278 | 80 | storres | - lcm |
1279 | 90 | storres | |
1280 | 90 | storres | :param ratPolyOfInt: a polynomial with rational coefficients and integer |
1281 | 90 | storres | variables. |
1282 | 90 | storres | :param precision: the precision of the floating-point coefficients. |
1283 | 90 | storres | :param targetHardnessToRound: the hardness to round we want to check. |
1284 | 90 | storres | :param variable1: the first variable of the polynomial (an expression). |
1285 | 90 | storres | :param variable2: the second variable of the polynomial (an expression). |
1286 | 90 | storres | |
1287 | 90 | storres | :returns: a 4 elements tuple: |
1288 | 90 | storres | - the polynomial; |
1289 | 91 | storres | - the modulus (N); |
1290 | 91 | storres | - the t bound; |
1291 | 90 | storres | - the lcm used to compute the integral coefficients and the |
1292 | 90 | storres | module. |
1293 | 80 | storres | """ |
1294 | 80 | storres | # Create a new integer polynomial ring. |
1295 | 80 | storres | IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
1296 | 80 | storres | # Coefficients are issued in the increasing power order. |
1297 | 80 | storres | ratPolyCoefficients = ratPolyOfInt.coefficients() |
1298 | 91 | storres | # Print the reversed list for debugging. |
1299 | 179 | storres | |
1300 | 179 | storres | #print "Rational polynomial coefficients:", ratPolyCoefficients[::-1] |
1301 | 94 | storres | # Build the list of number we compute the lcm of. |
1302 | 80 | storres | coefficientDenominators = sro_denominators(ratPolyCoefficients) |
1303 | 179 | storres | #print "Coefficient denominators:", coefficientDenominators |
1304 | 80 | storres | coefficientDenominators.append(2^precision) |
1305 | 170 | storres | coefficientDenominators.append(2^(targetHardnessToRound)) |
1306 | 87 | storres | leastCommonMultiple = lcm(coefficientDenominators) |
1307 | 80 | storres | # Compute the expression corresponding to the new polynomial |
1308 | 80 | storres | coefficientNumerators = sro_numerators(ratPolyCoefficients) |
1309 | 91 | storres | #print coefficientNumerators |
1310 | 80 | storres | polynomialExpression = 0 |
1311 | 80 | storres | power = 0 |
1312 | 170 | storres | # Iterate over two lists at the same time, stop when the shorter |
1313 | 170 | storres | # (is this case coefficientsNumerators) is |
1314 | 170 | storres | # exhausted. Both lists are ordered in the order of increasing powers |
1315 | 170 | storres | # of variable1. |
1316 | 80 | storres | for numerator, denominator in \ |
1317 | 94 | storres | zip(coefficientNumerators, coefficientDenominators): |
1318 | 80 | storres | multiplicator = leastCommonMultiple / denominator |
1319 | 80 | storres | newCoefficient = numerator * multiplicator |
1320 | 80 | storres | polynomialExpression += newCoefficient * variable1^power |
1321 | 80 | storres | power +=1 |
1322 | 80 | storres | polynomialExpression += - variable2 |
1323 | 80 | storres | return (IP(polynomialExpression), |
1324 | 170 | storres | leastCommonMultiple / 2^precision, # 2^K aka N. |
1325 | 170 | storres | #leastCommonMultiple / 2^(targetHardnessToRound + 1), # tBound |
1326 | 170 | storres | leastCommonMultiple / 2^(targetHardnessToRound), # tBound |
1327 | 91 | storres | leastCommonMultiple) # If we want to make test computations. |
1328 | 80 | storres | |
1329 | 170 | storres | # End slz_rat_poly_of_int_to_poly_for_coppersmith |
1330 | 79 | storres | |
1331 | 79 | storres | def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
1332 | 79 | storres | precision): |
1333 | 79 | storres | """ |
1334 | 79 | storres | Makes a variable substitution into the input polynomial so that the output |
1335 | 79 | storres | polynomial can take integer arguments. |
1336 | 79 | storres | All variables of the input polynomial "have precision p". That is to say |
1337 | 103 | storres | that they are rationals with denominator == 2^(precision - 1): |
1338 | 103 | storres | x = y/2^(precision - 1). |
1339 | 79 | storres | We "incorporate" these denominators into the coefficients with, |
1340 | 79 | storres | respectively, the "right" power. |
1341 | 79 | storres | """ |
1342 | 79 | storres | polynomialField = ratPolyOfRat.parent() |
1343 | 91 | storres | polynomialVariable = ratPolyOfRat.variables()[0] |
1344 | 91 | storres | #print "The polynomial field is:", polynomialField |
1345 | 79 | storres | return \ |
1346 | 91 | storres | polynomialField(ratPolyOfRat.subs({polynomialVariable : \ |
1347 | 79 | storres | polynomialVariable/2^(precision-1)})) |
1348 | 79 | storres | |
1349 | 79 | storres | # End slz_rat_poly_of_rat_to_rat_poly_of_int |
1350 | 79 | storres | |
1351 | 177 | storres | def slz_reduce_and_test_base(matrixToReduce, |
1352 | 177 | storres | nAtAlpha, |
1353 | 177 | storres | monomialsCountSqrt): |
1354 | 177 | storres | """ |
1355 | 177 | storres | Reduces the basis, tests the Coppersmith condition and returns |
1356 | 177 | storres | a list of rows that comply with the condition. |
1357 | 177 | storres | """ |
1358 | 177 | storres | ccComplientRowsList = [] |
1359 | 177 | storres | reducedMatrix = matrixToReduce.LLL(None) |
1360 | 177 | storres | if not reducedMatrix.is_LLL_reduced(): |
1361 | 177 | storres | raise Exception("reducedMatrix is not actually reduced. Aborting!") |
1362 | 177 | storres | else: |
1363 | 177 | storres | print "reducedMatrix is actually reduced." |
1364 | 177 | storres | print "N^alpha:", nAtAlpha.n() |
1365 | 177 | storres | rowIndex = 0 |
1366 | 177 | storres | for row in reducedMatrix.rows(): |
1367 | 177 | storres | l2Norm = row.norm(2) |
1368 | 177 | storres | print "L_2 norm for vector # ", rowIndex, "= ", RR(l2Norm), "*", \ |
1369 | 177 | storres | monomialsCountSqrt.n(), ". Is vector OK?", |
1370 | 177 | storres | if (l2Norm * monomialsCountSqrt < nAtAlpha): |
1371 | 177 | storres | ccComplientRowsList.append(row) |
1372 | 177 | storres | print "True" |
1373 | 177 | storres | else: |
1374 | 177 | storres | print "False" |
1375 | 177 | storres | # End for |
1376 | 177 | storres | return ccComplientRowsList |
1377 | 177 | storres | # End slz_reduce_and_test_base |
1378 | 115 | storres | |
1379 | 177 | storres | def slz_resultant_tuple(poly1, poly2, elimVar): |
1380 | 179 | storres | """ |
1381 | 179 | storres | Compute the resultant for two polynomials for a given variable |
1382 | 179 | storres | and return the (poly1, poly2, resultant) if the resultant |
1383 | 180 | storres | is not 0. |
1384 | 179 | storres | Return () otherwise. |
1385 | 179 | storres | """ |
1386 | 181 | storres | polynomialRing0 = poly1.parent() |
1387 | 177 | storres | resultantInElimVar = poly1.resultant(poly2,polynomialRing0(elimVar)) |
1388 | 180 | storres | if resultantInElimVar.is_zero(): |
1389 | 177 | storres | return () |
1390 | 177 | storres | else: |
1391 | 177 | storres | return (poly1, poly2, resultantInElimVar) |
1392 | 177 | storres | # End slz_resultant_tuple. |
1393 | 177 | storres | # |
1394 | 87 | storres | print "\t...sageSLZ loaded" |