root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 189
Historique | Voir | Annoter | Télécharger (63,19 ko)
1 |
r""" |
---|---|
2 |
Sage core functions needed for the implementation of SLZ. |
3 |
|
4 |
AUTHORS: |
5 |
- S.T. (2013-08): initial version |
6 |
|
7 |
Examples: |
8 |
|
9 |
TODO:: |
10 |
""" |
11 |
print "sageSLZ loading..." |
12 |
# |
13 |
def slz_compute_binade(number): |
14 |
"""" |
15 |
For a given number, compute the "binade" that is integer m such that |
16 |
2^m <= number < 2^(m+1). If number == 0 return None. |
17 |
""" |
18 |
# Checking the parameter. |
19 |
# The exception construction is used to detect if number is a RealNumber |
20 |
# since not all numbers have |
21 |
# the mro() method. sage.rings.real_mpfr.RealNumber do. |
22 |
try: |
23 |
classTree = [number.__class__] + number.mro() |
24 |
# If the number is not a RealNumber (or offspring thereof) try |
25 |
# to transform it. |
26 |
if not sage.rings.real_mpfr.RealNumber in classTree: |
27 |
numberAsRR = RR(number) |
28 |
else: |
29 |
numberAsRR = number |
30 |
except AttributeError: |
31 |
return None |
32 |
# Zero special case. |
33 |
if numberAsRR == 0: |
34 |
return RR(-infinity) |
35 |
else: |
36 |
realField = numberAsRR.parent() |
37 |
numberLog2 = numberAsRR.abs().log2() |
38 |
floorNumberLog2 = floor(numberLog2) |
39 |
## Do not get caught by rounding of log2() both ways. |
40 |
## When numberLog2 is an integer, compare numberAsRR |
41 |
# with 2^numberLog2. |
42 |
if floorNumberLog2 == numberLog2: |
43 |
if numberAsRR.abs() < realField(2^floorNumberLog2): |
44 |
return floorNumberLog2 - 1 |
45 |
else: |
46 |
return floorNumberLog2 |
47 |
else: |
48 |
return floorNumberLog2 |
49 |
# End slz_compute_binade |
50 |
|
51 |
# |
52 |
def slz_compute_binade_bounds(number, emin, emax=sys.maxint): |
53 |
""" |
54 |
For given "real number", compute the bounds of the binade it belongs to. |
55 |
|
56 |
NOTE:: |
57 |
When number >= 2^(emax+1), we return the "fake" binade |
58 |
[2^(emax+1), +infinity]. Ditto for number <= -2^(emax+1) |
59 |
with interval [-infinity, -2^(emax+1)]. We want to distinguish |
60 |
this case from that of "really" invalid arguments. |
61 |
|
62 |
""" |
63 |
# Check the parameters. |
64 |
# RealNumbers or RealNumber offspring only. |
65 |
# The exception construction is necessary since not all objects have |
66 |
# the mro() method. sage.rings.real_mpfr.RealNumber do. |
67 |
try: |
68 |
classTree = [number.__class__] + number.mro() |
69 |
if not sage.rings.real_mpfr.RealNumber in classTree: |
70 |
return None |
71 |
except AttributeError: |
72 |
return None |
73 |
# Non zero negative integers only for emin. |
74 |
if emin >= 0 or int(emin) != emin: |
75 |
return None |
76 |
# Non zero positive integers only for emax. |
77 |
if emax <= 0 or int(emax) != emax: |
78 |
return None |
79 |
precision = number.precision() |
80 |
RF = RealField(precision) |
81 |
if number == 0: |
82 |
return (RF(0),RF(2^(emin)) - RF(2^(emin-precision))) |
83 |
# A more precise RealField is needed to avoid unwanted rounding effects |
84 |
# when computing number.log2(). |
85 |
RRF = RealField(max(2048, 2 * precision)) |
86 |
# number = 0 special case, the binade bounds are |
87 |
# [0, 2^emin - 2^(emin-precision)] |
88 |
# Begin general case |
89 |
l2 = RRF(number).abs().log2() |
90 |
# Another special one: beyond largest representable -> "Fake" binade. |
91 |
if l2 >= emax + 1: |
92 |
if number > 0: |
93 |
return (RF(2^(emax+1)), RF(+infinity) ) |
94 |
else: |
95 |
return (RF(-infinity), -RF(2^(emax+1))) |
96 |
# Regular case cont'd. |
97 |
offset = int(l2) |
98 |
# number.abs() >= 1. |
99 |
if l2 >= 0: |
100 |
if number >= 0: |
101 |
lb = RF(2^offset) |
102 |
ub = RF(2^(offset + 1) - 2^(-precision+offset+1)) |
103 |
else: #number < 0 |
104 |
lb = -RF(2^(offset + 1) - 2^(-precision+offset+1)) |
105 |
ub = -RF(2^offset) |
106 |
else: # log2 < 0, number.abs() < 1. |
107 |
if l2 < emin: # Denormal |
108 |
# print "Denormal:", l2 |
109 |
if number >= 0: |
110 |
lb = RF(0) |
111 |
ub = RF(2^(emin)) - RF(2^(emin-precision)) |
112 |
else: # number <= 0 |
113 |
lb = - RF(2^(emin)) + RF(2^(emin-precision)) |
114 |
ub = RF(0) |
115 |
elif l2 > emin: # Normal number other than +/-2^emin. |
116 |
if number >= 0: |
117 |
if int(l2) == l2: |
118 |
lb = RF(2^(offset)) |
119 |
ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
120 |
else: |
121 |
lb = RF(2^(offset-1)) |
122 |
ub = RF(2^(offset)) - RF(2^(-precision+offset)) |
123 |
else: # number < 0 |
124 |
if int(l2) == l2: # Binade limit. |
125 |
lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
126 |
ub = -RF(2^(offset)) |
127 |
else: |
128 |
lb = -RF(2^(offset) - 2^(-precision+offset)) |
129 |
ub = -RF(2^(offset-1)) |
130 |
else: # l2== emin, number == +/-2^emin |
131 |
if number >= 0: |
132 |
lb = RF(2^(offset)) |
133 |
ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
134 |
else: # number < 0 |
135 |
lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
136 |
ub = -RF(2^(offset)) |
137 |
return (lb, ub) |
138 |
# End slz_compute_binade_bounds |
139 |
# |
140 |
def slz_compute_coppersmith_reduced_polynomials(inputPolynomial, |
141 |
alpha, |
142 |
N, |
143 |
iBound, |
144 |
tBound): |
145 |
""" |
146 |
For a given set of arguments (see below), compute a list |
147 |
of "reduced polynomials" that could be used to compute roots |
148 |
of the inputPolynomial. |
149 |
INPUT: |
150 |
|
151 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
152 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
153 |
- "N" -- the modulus; |
154 |
- "iBound" -- the bound on the first variable; |
155 |
- "tBound" -- the bound on the second variable. |
156 |
|
157 |
OUTPUT: |
158 |
|
159 |
A list of bivariate integer polynomial obtained using the Coppersmith |
160 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
161 |
reduced base that comply with the Coppersmith condition. |
162 |
""" |
163 |
# Arguments check. |
164 |
if iBound == 0 or tBound == 0: |
165 |
return None |
166 |
# End arguments check. |
167 |
nAtAlpha = N^alpha |
168 |
## Building polynomials for matrix. |
169 |
polyRing = inputPolynomial.parent() |
170 |
# Whatever the 2 variables are actually called, we call them |
171 |
# 'i' and 't' in all the variable names. |
172 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
173 |
#print polyVars[0], type(polyVars[0]) |
174 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
175 |
tVariable:tVariable * tBound}) |
176 |
polynomialsList = \ |
177 |
spo_polynomial_to_polynomials_list_8(initialPolynomial, |
178 |
alpha, |
179 |
N, |
180 |
iBound, |
181 |
tBound, |
182 |
0) |
183 |
#print "Polynomials list:", polynomialsList |
184 |
## Building the proto matrix. |
185 |
knownMonomials = [] |
186 |
protoMatrix = [] |
187 |
for poly in polynomialsList: |
188 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
189 |
knownMonomials, |
190 |
protoMatrix, |
191 |
0) |
192 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
193 |
#print matrixToReduce |
194 |
## Reduction and checking. |
195 |
## S.T. changed 'fp' to None as of Sage 6.6 complying to |
196 |
# error message issued when previous code was used. |
197 |
#reducedMatrix = matrixToReduce.LLL(fp='fp') |
198 |
reducedMatrix = matrixToReduce.LLL(fp=None) |
199 |
isLLLReduced = reducedMatrix.is_LLL_reduced() |
200 |
if not isLLLReduced: |
201 |
return None |
202 |
monomialsCount = len(knownMonomials) |
203 |
monomialsCountSqrt = sqrt(monomialsCount) |
204 |
#print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
205 |
#print reducedMatrix |
206 |
## Check the Coppersmith condition for each row and build the reduced |
207 |
# polynomials. |
208 |
ccReducedPolynomialsList = [] |
209 |
for row in reducedMatrix.rows(): |
210 |
l2Norm = row.norm(2) |
211 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
212 |
#print (l2Norm * monomialsCountSqrt).n() |
213 |
#print l2Norm.n() |
214 |
ccReducedPolynomial = \ |
215 |
slz_compute_reduced_polynomial(row, |
216 |
knownMonomials, |
217 |
iVariable, |
218 |
iBound, |
219 |
tVariable, |
220 |
tBound) |
221 |
if not ccReducedPolynomial is None: |
222 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
223 |
else: |
224 |
#print l2Norm.n() , ">", nAtAlpha |
225 |
pass |
226 |
if len(ccReducedPolynomialsList) < 2: |
227 |
print "Less than 2 Coppersmith condition compliant vectors." |
228 |
return () |
229 |
#print ccReducedPolynomialsList |
230 |
return ccReducedPolynomialsList |
231 |
# End slz_compute_coppersmith_reduced_polynomials |
232 |
|
233 |
def slz_compute_integer_polynomial_modular_roots(inputPolynomial, |
234 |
alpha, |
235 |
N, |
236 |
iBound, |
237 |
tBound): |
238 |
""" |
239 |
For a given set of arguments (see below), compute the polynomial modular |
240 |
roots, if any. |
241 |
|
242 |
""" |
243 |
# Arguments check. |
244 |
if iBound == 0 or tBound == 0: |
245 |
return set() |
246 |
# End arguments check. |
247 |
nAtAlpha = N^alpha |
248 |
## Building polynomials for matrix. |
249 |
polyRing = inputPolynomial.parent() |
250 |
# Whatever the 2 variables are actually called, we call them |
251 |
# 'i' and 't' in all the variable names. |
252 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
253 |
ccReducedPolynomialsList = \ |
254 |
slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
255 |
alpha, |
256 |
N, |
257 |
iBound, |
258 |
tBound) |
259 |
if len(ccReducedPolynomialsList) == 0: |
260 |
return set() |
261 |
## Create the valid (poly1 and poly2 are algebraically independent) |
262 |
# resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
263 |
# Try to mix and match all the polynomial pairs built from the |
264 |
# ccReducedPolynomialsList to obtain non zero resultants. |
265 |
resultantsInITuplesList = [] |
266 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
267 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
268 |
len(ccReducedPolynomialsList)): |
269 |
# Compute the resultant in resultants in the |
270 |
# first variable (is it the optimal choice?). |
271 |
resultantInI = \ |
272 |
ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
273 |
ccReducedPolynomialsList[0].parent(str(iVariable))) |
274 |
#print "Resultant", resultantInI |
275 |
# Test algebraic independence. |
276 |
if not resultantInI.is_zero(): |
277 |
resultantsInITuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
278 |
ccReducedPolynomialsList[polyInnerIndex], |
279 |
resultantInI)) |
280 |
# If no non zero resultant was found: we can't get no algebraically |
281 |
# independent polynomials pair. Give up! |
282 |
if len(resultantsInITuplesList) == 0: |
283 |
return set() |
284 |
#print resultantsInITuplesList |
285 |
# Compute the roots. |
286 |
Zi = ZZ[str(iVariable)] |
287 |
Zt = ZZ[str(tVariable)] |
288 |
polynomialRootsSet = set() |
289 |
# First, solve in the second variable since resultants are in the first |
290 |
# variable. |
291 |
for resultantInITuple in resultantsInITuplesList: |
292 |
tRootsList = Zt(resultantInITuple[2]).roots() |
293 |
# For each tRoot, compute the corresponding iRoots and check |
294 |
# them in the input polynomial. |
295 |
for tRoot in tRootsList: |
296 |
#print "tRoot:", tRoot |
297 |
# Roots returned by root() are (value, multiplicity) tuples. |
298 |
iRootsList = \ |
299 |
Zi(resultantInITuple[0].subs({resultantInITuple[0].variables()[1]:tRoot[0]})).roots() |
300 |
print iRootsList |
301 |
# The iRootsList can be empty, hence the test. |
302 |
if len(iRootsList) != 0: |
303 |
for iRoot in iRootsList: |
304 |
polyEvalModN = inputPolynomial(iRoot[0], tRoot[0]) / N |
305 |
# polyEvalModN must be an integer. |
306 |
if polyEvalModN == int(polyEvalModN): |
307 |
polynomialRootsSet.add((iRoot[0],tRoot[0])) |
308 |
return polynomialRootsSet |
309 |
# End slz_compute_integer_polynomial_modular_roots. |
310 |
# |
311 |
def slz_compute_integer_polynomial_modular_roots_2(inputPolynomial, |
312 |
alpha, |
313 |
N, |
314 |
iBound, |
315 |
tBound): |
316 |
""" |
317 |
For a given set of arguments (see below), compute the polynomial modular |
318 |
roots, if any. |
319 |
This version differs in the way resultants are computed. |
320 |
""" |
321 |
# Arguments check. |
322 |
if iBound == 0 or tBound == 0: |
323 |
return set() |
324 |
# End arguments check. |
325 |
nAtAlpha = N^alpha |
326 |
## Building polynomials for matrix. |
327 |
polyRing = inputPolynomial.parent() |
328 |
# Whatever the 2 variables are actually called, we call them |
329 |
# 'i' and 't' in all the variable names. |
330 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
331 |
#print polyVars[0], type(polyVars[0]) |
332 |
ccReducedPolynomialsList = \ |
333 |
slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
334 |
alpha, |
335 |
N, |
336 |
iBound, |
337 |
tBound) |
338 |
if len(ccReducedPolynomialsList) == 0: |
339 |
return set() |
340 |
## Create the valid (poly1 and poly2 are algebraically independent) |
341 |
# resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
342 |
# Try to mix and match all the polynomial pairs built from the |
343 |
# ccReducedPolynomialsList to obtain non zero resultants. |
344 |
resultantsInTTuplesList = [] |
345 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
346 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
347 |
len(ccReducedPolynomialsList)): |
348 |
# Compute the resultant in resultants in the |
349 |
# first variable (is it the optimal choice?). |
350 |
resultantInT = \ |
351 |
ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
352 |
ccReducedPolynomialsList[0].parent(str(tVariable))) |
353 |
#print "Resultant", resultantInT |
354 |
# Test algebraic independence. |
355 |
if not resultantInT.is_zero(): |
356 |
resultantsInTTuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
357 |
ccReducedPolynomialsList[polyInnerIndex], |
358 |
resultantInT)) |
359 |
# If no non zero resultant was found: we can't get no algebraically |
360 |
# independent polynomials pair. Give up! |
361 |
if len(resultantsInTTuplesList) == 0: |
362 |
return set() |
363 |
#print resultantsInITuplesList |
364 |
# Compute the roots. |
365 |
Zi = ZZ[str(iVariable)] |
366 |
Zt = ZZ[str(tVariable)] |
367 |
polynomialRootsSet = set() |
368 |
# First, solve in the second variable since resultants are in the first |
369 |
# variable. |
370 |
for resultantInTTuple in resultantsInTTuplesList: |
371 |
iRootsList = Zi(resultantInTTuple[2]).roots() |
372 |
# For each iRoot, compute the corresponding tRoots and check |
373 |
# them in the input polynomial. |
374 |
for iRoot in iRootsList: |
375 |
#print "iRoot:", iRoot |
376 |
# Roots returned by root() are (value, multiplicity) tuples. |
377 |
tRootsList = \ |
378 |
Zt(resultantInTTuple[0].subs({resultantInTTuple[0].variables()[0]:iRoot[0]})).roots() |
379 |
print tRootsList |
380 |
# The tRootsList can be empty, hence the test. |
381 |
if len(tRootsList) != 0: |
382 |
for tRoot in tRootsList: |
383 |
polyEvalModN = inputPolynomial(iRoot[0],tRoot[0]) / N |
384 |
# polyEvalModN must be an integer. |
385 |
if polyEvalModN == int(polyEvalModN): |
386 |
polynomialRootsSet.add((iRoot[0],tRoot[0])) |
387 |
return polynomialRootsSet |
388 |
# End slz_compute_integer_polynomial_modular_roots_2. |
389 |
# |
390 |
def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
391 |
upperBoundSa, approxPrecSa, |
392 |
sollyaPrecSa=None): |
393 |
""" |
394 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
395 |
a polynomial that approximates the function on a an interval starting |
396 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
397 |
approximates with the expected precision. |
398 |
The interval upper bound is lowered until the expected approximation |
399 |
precision is reached. |
400 |
The polynomial, the bounds, the center of the interval and the error |
401 |
are returned. |
402 |
OUTPUT: |
403 |
A tuple made of 4 Sollya objects: |
404 |
- a polynomial; |
405 |
- an range (an interval, not in the sense of number given as an interval); |
406 |
- the center of the interval; |
407 |
- the maximum error in the approximation of the input functionSo by the |
408 |
output polynomial ; this error <= approxPrecSaS. |
409 |
|
410 |
""" |
411 |
## Superficial argument check. |
412 |
if lowerBoundSa > upperBoundSa: |
413 |
return None |
414 |
RRR = lowerBoundSa.parent() |
415 |
intervalShrinkConstFactorSa = RRR('0.9') |
416 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
417 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
418 |
currentUpperBoundSa = upperBoundSa |
419 |
currentLowerBoundSa = lowerBoundSa |
420 |
# What we want here is the polynomial without the variable change, |
421 |
# since our actual variable will be x-intervalCenter defined over the |
422 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
423 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
424 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
425 |
currentRangeSo, |
426 |
absoluteErrorTypeSo) |
427 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
428 |
while maxErrorSa > approxPrecSa: |
429 |
print "++Approximation error:", maxErrorSa.n() |
430 |
sollya_lib_clear_obj(polySo) |
431 |
sollya_lib_clear_obj(intervalCenterSo) |
432 |
sollya_lib_clear_obj(maxErrorSo) |
433 |
# Very empirical shrinking factor. |
434 |
shrinkFactorSa = 1 / (maxErrorSa/approxPrecSa).log2().abs() |
435 |
print "Shrink factor:", \ |
436 |
shrinkFactorSa.n(), \ |
437 |
intervalShrinkConstFactorSa |
438 |
|
439 |
#errorRatioSa = approxPrecSa/maxErrorSa |
440 |
#print "Error ratio: ", errorRatioSa |
441 |
# Make sure interval shrinks. |
442 |
if shrinkFactorSa > intervalShrinkConstFactorSa: |
443 |
actualShrinkFactorSa = intervalShrinkConstFactorSa |
444 |
#print "Fixed" |
445 |
else: |
446 |
actualShrinkFactorSa = shrinkFactorSa |
447 |
#print "Computed",shrinkFactorSa,maxErrorSa |
448 |
#print shrinkFactorSa, maxErrorSa |
449 |
#print "Shrink factor", actualShrinkFactorSa |
450 |
currentUpperBoundSa = currentLowerBoundSa + \ |
451 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
452 |
actualShrinkFactorSa |
453 |
#print "Current upper bound:", currentUpperBoundSa |
454 |
sollya_lib_clear_obj(currentRangeSo) |
455 |
# Check what is left with the bounds. |
456 |
if currentUpperBoundSa <= currentLowerBoundSa or \ |
457 |
currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
458 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
459 |
print "Can't find an interval." |
460 |
print "Use either or both a higher polynomial degree or a higher", |
461 |
print "internal precision." |
462 |
print "Aborting!" |
463 |
return (None, None, None, None) |
464 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
465 |
currentUpperBoundSa) |
466 |
# print "New interval:", |
467 |
# pobyso_autoprint(currentRangeSo) |
468 |
#print "Second Taylor expansion call." |
469 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
470 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
471 |
currentRangeSo, |
472 |
absoluteErrorTypeSo) |
473 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
474 |
#print "Max errorSo:", |
475 |
#pobyso_autoprint(maxErrorSo) |
476 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
477 |
#print "Max errorSa:", maxErrorSa |
478 |
#print "Sollya prec:", |
479 |
#pobyso_autoprint(sollya_lib_get_prec(None)) |
480 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
481 |
return (polySo, currentRangeSo, intervalCenterSo, maxErrorSo) |
482 |
# End slz_compute_polynomial_and_interval |
483 |
|
484 |
def slz_compute_reduced_polynomial(matrixRow, |
485 |
knownMonomials, |
486 |
var1, |
487 |
var1Bound, |
488 |
var2, |
489 |
var2Bound): |
490 |
""" |
491 |
Compute a polynomial from a single reduced matrix row. |
492 |
This function was introduced in order to avoid the computation of the |
493 |
all the polynomials from the full matrix (even those built from rows |
494 |
that do no verify the Coppersmith condition) as this may involves |
495 |
expensive operations over (large) integers. |
496 |
""" |
497 |
## Check arguments. |
498 |
if len(knownMonomials) == 0: |
499 |
return None |
500 |
# varNounds can be zero since 0^0 returns 1. |
501 |
if (var1Bound < 0) or (var2Bound < 0): |
502 |
return None |
503 |
## Initialisations. |
504 |
polynomialRing = knownMonomials[0].parent() |
505 |
currentPolynomial = polynomialRing(0) |
506 |
# TODO: use zip instead of indices. |
507 |
for colIndex in xrange(0, len(knownMonomials)): |
508 |
currentCoefficient = matrixRow[colIndex] |
509 |
if currentCoefficient != 0: |
510 |
#print "Current coefficient:", currentCoefficient |
511 |
currentMonomial = knownMonomials[colIndex] |
512 |
#print "Monomial as multivariate polynomial:", \ |
513 |
#currentMonomial, type(currentMonomial) |
514 |
degreeInVar1 = currentMonomial.degree(var1) |
515 |
#print "Degree in var1", var1, ":", degreeInVar1 |
516 |
degreeInVar2 = currentMonomial.degree(var2) |
517 |
#print "Degree in var2", var2, ":", degreeInVar2 |
518 |
if degreeInVar1 > 0: |
519 |
currentCoefficient = \ |
520 |
currentCoefficient / (var1Bound^degreeInVar1) |
521 |
#print "varBound1 in degree:", var1Bound^degreeInVar1 |
522 |
#print "Current coefficient(1)", currentCoefficient |
523 |
if degreeInVar2 > 0: |
524 |
currentCoefficient = \ |
525 |
currentCoefficient / (var2Bound^degreeInVar2) |
526 |
#print "Current coefficient(2)", currentCoefficient |
527 |
#print "Current reduced monomial:", (currentCoefficient * \ |
528 |
# currentMonomial) |
529 |
currentPolynomial += (currentCoefficient * currentMonomial) |
530 |
#print "Current polynomial:", currentPolynomial |
531 |
# End if |
532 |
# End for colIndex. |
533 |
#print "Type of the current polynomial:", type(currentPolynomial) |
534 |
return(currentPolynomial) |
535 |
# End slz_compute_reduced_polynomial |
536 |
# |
537 |
def slz_compute_reduced_polynomials(reducedMatrix, |
538 |
knownMonomials, |
539 |
var1, |
540 |
var1Bound, |
541 |
var2, |
542 |
var2Bound): |
543 |
""" |
544 |
Legacy function, use slz_compute_reduced_polynomials_list |
545 |
""" |
546 |
return(slz_compute_reduced_polynomials_list(reducedMatrix, |
547 |
knownMonomials, |
548 |
var1, |
549 |
var1Bound, |
550 |
var2, |
551 |
var2Bound) |
552 |
) |
553 |
# |
554 |
def slz_compute_reduced_polynomials_list(reducedMatrix, |
555 |
knownMonomials, |
556 |
var1, |
557 |
var1Bound, |
558 |
var2, |
559 |
var2Bound): |
560 |
""" |
561 |
From a reduced matrix, holding the coefficients, from a monomials list, |
562 |
from the bounds of each variable, compute the corresponding polynomials |
563 |
scaled back by dividing by the "right" powers of the variables bounds. |
564 |
|
565 |
The elements in knownMonomials must be of the "right" polynomial type. |
566 |
They set the polynomial type of the output polynomials in list. |
567 |
@param reducedMatrix: the reduced matrix as output from LLL; |
568 |
@param kwnonMonomials: the ordered list of the monomials used to |
569 |
build the polynomials; |
570 |
@param var1: the first variable (of the "right" type); |
571 |
@param var1Bound: the first variable bound; |
572 |
@param var2: the second variable (of the "right" type); |
573 |
@param var2Bound: the second variable bound. |
574 |
@return: a list of polynomials obtained with the reduced coefficients |
575 |
and scaled down with the bounds |
576 |
""" |
577 |
|
578 |
# TODO: check input arguments. |
579 |
reducedPolynomials = [] |
580 |
#print "type var1:", type(var1), " - type var2:", type(var2) |
581 |
for matrixRow in reducedMatrix.rows(): |
582 |
currentPolynomial = 0 |
583 |
for colIndex in xrange(0, len(knownMonomials)): |
584 |
currentCoefficient = matrixRow[colIndex] |
585 |
if currentCoefficient != 0: |
586 |
#print "Current coefficient:", currentCoefficient |
587 |
currentMonomial = knownMonomials[colIndex] |
588 |
parentRing = currentMonomial.parent() |
589 |
#print "Monomial as multivariate polynomial:", \ |
590 |
#currentMonomial, type(currentMonomial) |
591 |
degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
592 |
#print "Degree in var", var1, ":", degreeInVar1 |
593 |
degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
594 |
#print "Degree in var", var2, ":", degreeInVar2 |
595 |
if degreeInVar1 > 0: |
596 |
currentCoefficient /= var1Bound^degreeInVar1 |
597 |
#print "varBound1 in degree:", var1Bound^degreeInVar1 |
598 |
#print "Current coefficient(1)", currentCoefficient |
599 |
if degreeInVar2 > 0: |
600 |
currentCoefficient /= var2Bound^degreeInVar2 |
601 |
#print "Current coefficient(2)", currentCoefficient |
602 |
#print "Current reduced monomial:", (currentCoefficient * \ |
603 |
# currentMonomial) |
604 |
currentPolynomial += (currentCoefficient * currentMonomial) |
605 |
#if degreeInVar1 == 0 and degreeInVar2 == 0: |
606 |
#print "!!!! constant term !!!!" |
607 |
#print "Current polynomial:", currentPolynomial |
608 |
# End if |
609 |
# End for colIndex. |
610 |
#print "Type of the current polynomial:", type(currentPolynomial) |
611 |
reducedPolynomials.append(currentPolynomial) |
612 |
return reducedPolynomials |
613 |
# End slz_compute_reduced_polynomials_list. |
614 |
|
615 |
def slz_compute_reduced_polynomials_list_from_rows(rowsList, |
616 |
knownMonomials, |
617 |
var1, |
618 |
var1Bound, |
619 |
var2, |
620 |
var2Bound): |
621 |
""" |
622 |
From a list of rows, holding the coefficients, from a monomials list, |
623 |
from the bounds of each variable, compute the corresponding polynomials |
624 |
scaled back by dividing by the "right" powers of the variables bounds. |
625 |
|
626 |
The elements in knownMonomials must be of the "right" polynomial type. |
627 |
They set the polynomial type of the output polynomials in list. |
628 |
@param rowsList: the reduced matrix as output from LLL; |
629 |
@param kwnonMonomials: the ordered list of the monomials used to |
630 |
build the polynomials; |
631 |
@param var1: the first variable (of the "right" type); |
632 |
@param var1Bound: the first variable bound; |
633 |
@param var2: the second variable (of the "right" type); |
634 |
@param var2Bound: the second variable bound. |
635 |
@return: a list of polynomials obtained with the reduced coefficients |
636 |
and scaled down with the bounds |
637 |
""" |
638 |
|
639 |
# TODO: check input arguments. |
640 |
reducedPolynomials = [] |
641 |
#print "type var1:", type(var1), " - type var2:", type(var2) |
642 |
for matrixRow in rowsList: |
643 |
currentPolynomial = 0 |
644 |
for colIndex in xrange(0, len(knownMonomials)): |
645 |
currentCoefficient = matrixRow[colIndex] |
646 |
if currentCoefficient != 0: |
647 |
#print "Current coefficient:", currentCoefficient |
648 |
currentMonomial = knownMonomials[colIndex] |
649 |
parentRing = currentMonomial.parent() |
650 |
#print "Monomial as multivariate polynomial:", \ |
651 |
#currentMonomial, type(currentMonomial) |
652 |
degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
653 |
#print "Degree in var", var1, ":", degreeInVar1 |
654 |
degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
655 |
#print "Degree in var", var2, ":", degreeInVar2 |
656 |
if degreeInVar1 > 0: |
657 |
currentCoefficient /= var1Bound^degreeInVar1 |
658 |
#print "varBound1 in degree:", var1Bound^degreeInVar1 |
659 |
#print "Current coefficient(1)", currentCoefficient |
660 |
if degreeInVar2 > 0: |
661 |
currentCoefficient /= var2Bound^degreeInVar2 |
662 |
#print "Current coefficient(2)", currentCoefficient |
663 |
#print "Current reduced monomial:", (currentCoefficient * \ |
664 |
# currentMonomial) |
665 |
currentPolynomial += (currentCoefficient * currentMonomial) |
666 |
#if degreeInVar1 == 0 and degreeInVar2 == 0: |
667 |
#print "!!!! constant term !!!!" |
668 |
#print "Current polynomial:", currentPolynomial |
669 |
# End if |
670 |
# End for colIndex. |
671 |
#print "Type of the current polynomial:", type(currentPolynomial) |
672 |
reducedPolynomials.append(currentPolynomial) |
673 |
return reducedPolynomials |
674 |
# End slz_compute_reduced_polynomials_list_from_rows. |
675 |
# |
676 |
def slz_compute_scaled_function(functionSa, |
677 |
lowerBoundSa, |
678 |
upperBoundSa, |
679 |
floatingPointPrecSa, |
680 |
debug=False): |
681 |
""" |
682 |
From a function, compute the scaled function whose domain |
683 |
is included in [1, 2) and whose image is also included in [1,2). |
684 |
Return a tuple: |
685 |
[0]: the scaled function |
686 |
[1]: the scaled domain lower bound |
687 |
[2]: the scaled domain upper bound |
688 |
[3]: the scaled image lower bound |
689 |
[4]: the scaled image upper bound |
690 |
""" |
691 |
## The variable can be called anything. |
692 |
x = functionSa.variables()[0] |
693 |
# Scalling the domain -> [1,2[. |
694 |
boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
695 |
domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
696 |
(invDomainScalingExpressionSa, domainScalingExpressionSa) = \ |
697 |
slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
698 |
if debug: |
699 |
print "domainScalingExpression for argument :", \ |
700 |
invDomainScalingExpressionSa |
701 |
print "f: ", f |
702 |
ff = f.subs({x : domainScalingExpressionSa}) |
703 |
#ff = f.subs_expr(x==domainScalingExpressionSa) |
704 |
#domainScalingFunction(x) = invDomainScalingExpressionSa |
705 |
domainScalingFunction = invDomainScalingExpressionSa.function(x) |
706 |
scaledLowerBoundSa = \ |
707 |
domainScalingFunction(lowerBoundSa).n(prec=floatingPointPrecSa) |
708 |
scaledUpperBoundSa = \ |
709 |
domainScalingFunction(upperBoundSa).n(prec=floatingPointPrecSa) |
710 |
if debug: |
711 |
print 'ff:', ff, "- Domain:", scaledLowerBoundSa, \ |
712 |
scaledUpperBoundSa |
713 |
# |
714 |
# Scalling the image -> [1,2[. |
715 |
flbSa = ff(scaledLowerBoundSa).n(prec=floatingPointPrecSa) |
716 |
fubSa = ff(scaledUpperBoundSa).n(prec=floatingPointPrecSa) |
717 |
if flbSa <= fubSa: # Increasing |
718 |
imageBinadeBottomSa = floor(flbSa.log2()) |
719 |
else: # Decreasing |
720 |
imageBinadeBottomSa = floor(fubSa.log2()) |
721 |
if debug: |
722 |
print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
723 |
imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
724 |
(invImageScalingExpressionSa,imageScalingExpressionSa) = \ |
725 |
slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
726 |
if debug: |
727 |
print "imageScalingExpression for argument :", \ |
728 |
invImageScalingExpressionSa |
729 |
iis = invImageScalingExpressionSa.function(x) |
730 |
fff = iis.subs({x:ff}) |
731 |
if debug: |
732 |
print "fff:", fff, |
733 |
print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
734 |
return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
735 |
fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
736 |
# End slz_compute_scaled_function |
737 |
|
738 |
def slz_fix_bounds_for_binades(lowerBound, |
739 |
upperBound, |
740 |
func=None, |
741 |
domainDirection = -1, |
742 |
imageDirection = -1): |
743 |
""" |
744 |
Assuming the function is increasing or decreasing over the |
745 |
[lowerBound, upperBound] interval, return a lower bound lb and |
746 |
an upper bound ub such that: |
747 |
- lb and ub belong to the same binade; |
748 |
- func(lb) and func(ub) belong to the same binade. |
749 |
domainDirection indicate how bounds move to fit into the same binade: |
750 |
- a negative value move the upper bound down; |
751 |
- a positive value move the lower bound up. |
752 |
imageDirection indicate how bounds move in order to have their image |
753 |
fit into the same binade, variation of the function is also condidered. |
754 |
For an increasing function: |
755 |
- negative value moves the upper bound down (and its image value as well); |
756 |
- a positive values moves the lower bound up (and its image value as well); |
757 |
For a decreasing function it is the other way round. |
758 |
""" |
759 |
## Arguments check |
760 |
if lowerBound > upperBound: |
761 |
return None |
762 |
if func is None: |
763 |
return None |
764 |
# |
765 |
#varFunc = func.variables()[0] |
766 |
lb = lowerBound |
767 |
ub = upperBound |
768 |
lbBinade = slz_compute_binade(lb) |
769 |
ubBinade = slz_compute_binade(ub) |
770 |
## Domain binade. |
771 |
while lbBinade != ubBinade: |
772 |
newIntervalWidth = (ub - lb) / 2 |
773 |
if domainDirection < 0: |
774 |
ub = lb + newIntervalWidth |
775 |
ubBinade = slz_compute_binade(ub) |
776 |
else: |
777 |
lb = lb + newIntervalWidth |
778 |
lbBinade = slz_compute_binade(lb) |
779 |
## Image binade. |
780 |
if lb == ub: |
781 |
return (lb, ub) |
782 |
lbImg = func(lb) |
783 |
ubImg = func(ub) |
784 |
funcIsInc = (ubImg >= lbImg) |
785 |
lbImgBinade = slz_compute_binade(lbImg) |
786 |
ubImgBinade = slz_compute_binade(ubImg) |
787 |
while lbImgBinade != ubImgBinade: |
788 |
newIntervalWidth = (ub - lb) / 2 |
789 |
if imageDirection < 0: |
790 |
if funcIsInc: |
791 |
ub = lb + newIntervalWidth |
792 |
ubImgBinade = slz_compute_binade(func(ub)) |
793 |
#print ubImgBinade |
794 |
else: |
795 |
lb = lb + newIntervalWidth |
796 |
lbImgBinade = slz_compute_binade(func(lb)) |
797 |
#print lbImgBinade |
798 |
else: |
799 |
if funcIsInc: |
800 |
lb = lb + newIntervalWidth |
801 |
lbImgBinade = slz_compute_binade(func(lb)) |
802 |
#print lbImgBinade |
803 |
else: |
804 |
ub = lb + newIntervalWidth |
805 |
ubImgBinade = slz_compute_binade(func(ub)) |
806 |
#print ubImgBinade |
807 |
# End while lbImgBinade != ubImgBinade: |
808 |
return (lb, ub) |
809 |
# End slz_fix_bounds_for_binades. |
810 |
|
811 |
def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
812 |
# Create a polynomial over the rationals. |
813 |
ratPolynomialRing = QQ[str(polyOfFloat.variables()[0])] |
814 |
return(ratPolynomialRing(polyOfFloat)) |
815 |
# End slz_float_poly_of_float_to_rat_poly_of_rat. |
816 |
|
817 |
def slz_float_poly_of_float_to_rat_poly_of_rat_pow_two(polyOfFloat): |
818 |
""" |
819 |
Create a polynomial over the rationals where all denominators are |
820 |
powers of two. |
821 |
""" |
822 |
polyVariable = polyOfFloat.variables()[0] |
823 |
RPR = QQ[str(polyVariable)] |
824 |
polyCoeffs = polyOfFloat.coefficients() |
825 |
#print polyCoeffs |
826 |
polyExponents = polyOfFloat.exponents() |
827 |
#print polyExponents |
828 |
polyDenomPtwoCoeffs = [] |
829 |
for coeff in polyCoeffs: |
830 |
polyDenomPtwoCoeffs.append(sno_float_to_rat_pow_of_two_denom(coeff)) |
831 |
#print "Converted coefficient:", sno_float_to_rat_pow_of_two_denom(coeff), |
832 |
#print type(sno_float_to_rat_pow_of_two_denom(coeff)) |
833 |
ratPoly = RPR(0) |
834 |
#print type(ratPoly) |
835 |
## !!! CAUTION !!! Do not use the RPR(coeff * polyVariagle^exponent) |
836 |
# The coefficient becomes plainly wrong when exponent == 0. |
837 |
# No clue as to why. |
838 |
for coeff, exponent in zip(polyDenomPtwoCoeffs, polyExponents): |
839 |
ratPoly += coeff * RPR(polyVariable^exponent) |
840 |
return ratPoly |
841 |
# End slz_float_poly_of_float_to_rat_poly_of_rat. |
842 |
|
843 |
def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
844 |
lowerBoundSa, |
845 |
upperBoundSa, floatingPointPrecSa, |
846 |
internalSollyaPrecSa, approxPrecSa): |
847 |
""" |
848 |
Under the assumption that: |
849 |
- functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
850 |
- lowerBound and upperBound belong to the same binade. |
851 |
from a: |
852 |
- function; |
853 |
- a degree |
854 |
- a pair of bounds; |
855 |
- the floating-point precision we work on; |
856 |
- the internal Sollya precision; |
857 |
- the requested approximation error |
858 |
The initial interval is, possibly, splitted into smaller intervals. |
859 |
It return a list of tuples, each made of: |
860 |
- a first polynomial (without the changed variable f(x) = p(x-x0)); |
861 |
- a second polynomial (with a changed variable f(x) = q(x)) |
862 |
- the approximation interval; |
863 |
- the center, x0, of the interval; |
864 |
- the corresponding approximation error. |
865 |
TODO: fix endless looping for some parameters sets. |
866 |
""" |
867 |
resultArray = [] |
868 |
# Set Sollya to the necessary internal precision. |
869 |
precChangedSa = False |
870 |
currentSollyaPrecSo = pobyso_get_prec_so() |
871 |
currentSollyaPrecSa = pobyso_constant_from_int_so_sa(currentSollyaPrecSo) |
872 |
if internalSollyaPrecSa > currentSollyaPrecSa: |
873 |
pobyso_set_prec_sa_so(internalSollyaPrecSa) |
874 |
precChangedSa = True |
875 |
# |
876 |
x = functionSa.variables()[0] # Actual variable name can be anything. |
877 |
# Scaled function: [1=,2] -> [1,2]. |
878 |
(fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
879 |
scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
880 |
slz_compute_scaled_function(functionSa, \ |
881 |
lowerBoundSa, \ |
882 |
upperBoundSa, \ |
883 |
floatingPointPrecSa) |
884 |
# In case bounds were in the negative real one may need to |
885 |
# switch scaled bounds. |
886 |
if scaledLowerBoundSa > scaledUpperBoundSa: |
887 |
scaledLowerBoundSa, scaledUpperBoundSa = \ |
888 |
scaledUpperBoundSa, scaledLowerBoundSa |
889 |
#print "Switching!" |
890 |
print "Approximation precision: ", RR(approxPrecSa) |
891 |
# Prepare the arguments for the Taylor expansion computation with Sollya. |
892 |
functionSo = \ |
893 |
pobyso_parse_string_sa_so(fff._assume_str().replace('_SAGE_VAR_', '')) |
894 |
degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
895 |
scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
896 |
scaledUpperBoundSa) |
897 |
|
898 |
realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
899 |
upperBoundSa.parent().precision())) |
900 |
currentScaledLowerBoundSa = scaledLowerBoundSa |
901 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
902 |
while True: |
903 |
## Compute the first Taylor expansion. |
904 |
print "Computing a Taylor expansion..." |
905 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
906 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
907 |
currentScaledLowerBoundSa, |
908 |
currentScaledUpperBoundSa, |
909 |
approxPrecSa, internalSollyaPrecSa) |
910 |
print "...done." |
911 |
## If slz_compute_polynomial_and_interval fails, it returns None. |
912 |
# This value goes to the first variable: polySo. Other variables are |
913 |
# not assigned and should not be tested. |
914 |
if polySo is None: |
915 |
print "slz_get_intervals_and_polynomials: Aborting and returning None!" |
916 |
if precChangedSa: |
917 |
pobyso_set_prec_so_so(currentSollyaPrecSo) |
918 |
sollya_lib_clear_obj(currentSollyaPrecSo) |
919 |
sollya_lib_clear_obj(functionSo) |
920 |
sollya_lib_clear_obj(degreeSo) |
921 |
sollya_lib_clear_obj(scaledBoundsSo) |
922 |
return None |
923 |
## Add to the result array. |
924 |
### Change variable stuff in Sollya x -> x0-x. |
925 |
changeVarExpressionSo = \ |
926 |
sollya_lib_build_function_sub( \ |
927 |
sollya_lib_build_function_free_variable(), |
928 |
sollya_lib_copy_obj(intervalCenterSo)) |
929 |
polyVarChangedSo = \ |
930 |
sollya_lib_evaluate(polySo, changeVarExpressionSo) |
931 |
#### Get rid of the variable change Sollya stuff. |
932 |
sollya_lib_clear_obj(changeVarExpressionSo) |
933 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, |
934 |
intervalCenterSo, maxErrorSo)) |
935 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
936 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
937 |
print "Computed approximation error:", errorSa.n(digits=10) |
938 |
# If the error and interval are OK a the first try, just return. |
939 |
if (boundsSa.endpoints()[1] >= scaledUpperBoundSa) and \ |
940 |
(errorSa <= approxPrecSa): |
941 |
if precChangedSa: |
942 |
pobyso_set_prec_sa_so(currentSollyaPrecSa) |
943 |
sollya_lib_clear_obj(currentSollyaPrecSo) |
944 |
sollya_lib_clear_obj(functionSo) |
945 |
sollya_lib_clear_obj(degreeSo) |
946 |
sollya_lib_clear_obj(scaledBoundsSo) |
947 |
#print "Approximation error:", errorSa |
948 |
return resultArray |
949 |
## The returned interval upper bound does not reach the requested upper |
950 |
# upper bound: compute the next upper bound. |
951 |
## The following ratio is always >= 1. If errorSa, we may want to |
952 |
# enlarge the interval |
953 |
currentErrorRatio = approxPrecSa / errorSa |
954 |
## --|--------------------------------------------------------------|-- |
955 |
# --|--------------------|-------------------------------------------- |
956 |
# --|----------------------------|------------------------------------ |
957 |
## Starting point for the next upper bound. |
958 |
boundsWidthSa = boundsSa.endpoints()[1] - boundsSa.endpoints()[0] |
959 |
# Compute the increment. |
960 |
newBoundsWidthSa = \ |
961 |
((currentErrorRatio.log() / 10) + 1) * boundsWidthSa |
962 |
currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
963 |
currentScaledUpperBoundSa = boundsSa.endpoints()[1] + newBoundsWidthSa |
964 |
# Take into account the original interval upper bound. |
965 |
if currentScaledUpperBoundSa > scaledUpperBoundSa: |
966 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
967 |
if currentScaledUpperBoundSa == currentScaledLowerBoundSa: |
968 |
print "Can't shrink the interval anymore!" |
969 |
print "You should consider increasing the Sollya internal precision" |
970 |
print "or the polynomial degree." |
971 |
print "Giving up!" |
972 |
if precChangedSa: |
973 |
pobyso_set_prec_sa_so(currentSollyaPrecSa) |
974 |
sollya_lib_clear_obj(currentSollyaPrecSo) |
975 |
sollya_lib_clear_obj(functionSo) |
976 |
sollya_lib_clear_obj(degreeSo) |
977 |
sollya_lib_clear_obj(scaledBoundsSo) |
978 |
return None |
979 |
# Compute the other expansions. |
980 |
# Test for insufficient precision. |
981 |
# End slz_get_intervals_and_polynomials |
982 |
|
983 |
def slz_interval_scaling_expression(boundsInterval, expVar): |
984 |
""" |
985 |
Compute the scaling expression to map an interval that spans at most |
986 |
a single binade into [1, 2) and the inverse expression as well. |
987 |
If the interval spans more than one binade, result is wrong since |
988 |
scaling is only based on the lower bound. |
989 |
Not very sure that the transformation makes sense for negative numbers. |
990 |
""" |
991 |
# The "one of the bounds is 0" special case. Here we consider |
992 |
# the interval as the subnormals binade. |
993 |
if boundsInterval.endpoints()[0] == 0 or boundsInterval.endpoints()[1] == 0: |
994 |
# The upper bound is (or should be) positive. |
995 |
if boundsInterval.endpoints()[0] == 0: |
996 |
if boundsInterval.endpoints()[1] == 0: |
997 |
return None |
998 |
binade = slz_compute_binade(boundsInterval.endpoints()[1]) |
999 |
l2 = boundsInterval.endpoints()[1].abs().log2() |
1000 |
# The upper bound is a power of two |
1001 |
if binade == l2: |
1002 |
scalingCoeff = 2^(-binade) |
1003 |
invScalingCoeff = 2^(binade) |
1004 |
scalingOffset = 1 |
1005 |
return \ |
1006 |
((scalingCoeff * expVar + scalingOffset).function(expVar), |
1007 |
((expVar - scalingOffset) * invScalingCoeff).function(expVar)) |
1008 |
else: |
1009 |
scalingCoeff = 2^(-binade-1) |
1010 |
invScalingCoeff = 2^(binade+1) |
1011 |
scalingOffset = 1 |
1012 |
return((scalingCoeff * expVar + scalingOffset),\ |
1013 |
((expVar - scalingOffset) * invScalingCoeff)) |
1014 |
# The lower bound is (or should be) negative. |
1015 |
if boundsInterval.endpoints()[1] == 0: |
1016 |
if boundsInterval.endpoints()[0] == 0: |
1017 |
return None |
1018 |
binade = slz_compute_binade(boundsInterval.endpoints()[0]) |
1019 |
l2 = boundsInterval.endpoints()[0].abs().log2() |
1020 |
# The upper bound is a power of two |
1021 |
if binade == l2: |
1022 |
scalingCoeff = -2^(-binade) |
1023 |
invScalingCoeff = -2^(binade) |
1024 |
scalingOffset = 1 |
1025 |
return((scalingCoeff * expVar + scalingOffset),\ |
1026 |
((expVar - scalingOffset) * invScalingCoeff)) |
1027 |
else: |
1028 |
scalingCoeff = -2^(-binade-1) |
1029 |
invScalingCoeff = -2^(binade+1) |
1030 |
scalingOffset = 1 |
1031 |
return((scalingCoeff * expVar + scalingOffset),\ |
1032 |
((expVar - scalingOffset) * invScalingCoeff)) |
1033 |
# General case |
1034 |
lbBinade = slz_compute_binade(boundsInterval.endpoints()[0]) |
1035 |
ubBinade = slz_compute_binade(boundsInterval.endpoints()[1]) |
1036 |
# We allow for a single exception in binade spanning is when the |
1037 |
# "outward bound" is a power of 2 and its binade is that of the |
1038 |
# "inner bound" + 1. |
1039 |
if boundsInterval.endpoints()[0] > 0: |
1040 |
ubL2 = boundsInterval.endpoints()[1].abs().log2() |
1041 |
if lbBinade != ubBinade: |
1042 |
print "Different binades." |
1043 |
if ubL2 != ubBinade: |
1044 |
print "Not a power of 2." |
1045 |
return None |
1046 |
elif abs(ubBinade - lbBinade) > 1: |
1047 |
print "Too large span:", abs(ubBinade - lbBinade) |
1048 |
return None |
1049 |
else: |
1050 |
lbL2 = boundsInterval.endpoints()[0].abs().log2() |
1051 |
if lbBinade != ubBinade: |
1052 |
print "Different binades." |
1053 |
if lbL2 != lbBinade: |
1054 |
print "Not a power of 2." |
1055 |
return None |
1056 |
elif abs(ubBinade - lbBinade) > 1: |
1057 |
print "Too large span:", abs(ubBinade - lbBinade) |
1058 |
return None |
1059 |
#print "Lower bound binade:", binade |
1060 |
if boundsInterval.endpoints()[0] > 0: |
1061 |
return \ |
1062 |
((2^(-lbBinade) * expVar).function(expVar), |
1063 |
(2^(lbBinade) * expVar).function(expVar)) |
1064 |
else: |
1065 |
return \ |
1066 |
((-(2^(-ubBinade)) * expVar).function(expVar), |
1067 |
(-(2^(ubBinade)) * expVar).function(expVar)) |
1068 |
""" |
1069 |
# Code sent to attic. Should be the base for a |
1070 |
# "slz_interval_translate_expression" rather than scale. |
1071 |
# Extra control and special cases code added in |
1072 |
# slz_interval_scaling_expression could (should ?) be added to |
1073 |
# this new function. |
1074 |
# The scaling offset is only used for negative numbers. |
1075 |
# When the absolute value of the lower bound is < 0. |
1076 |
if abs(boundsInterval.endpoints()[0]) < 1: |
1077 |
if boundsInterval.endpoints()[0] >= 0: |
1078 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
1079 |
invScalingCoeff = 1/scalingCoeff |
1080 |
return((scalingCoeff * expVar, |
1081 |
invScalingCoeff * expVar)) |
1082 |
else: |
1083 |
scalingCoeff = \ |
1084 |
2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
1085 |
scalingOffset = -3 * scalingCoeff |
1086 |
return((scalingCoeff * expVar + scalingOffset, |
1087 |
1/scalingCoeff * expVar + 3)) |
1088 |
else: |
1089 |
if boundsInterval.endpoints()[0] >= 0: |
1090 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
1091 |
scalingOffset = 0 |
1092 |
return((scalingCoeff * expVar, |
1093 |
1/scalingCoeff * expVar)) |
1094 |
else: |
1095 |
scalingCoeff = \ |
1096 |
2^(floor((-boundsInterval.endpoints()[1]).log2())) |
1097 |
scalingOffset = -3 * scalingCoeff |
1098 |
#scalingOffset = 0 |
1099 |
return((scalingCoeff * expVar + scalingOffset, |
1100 |
1/scalingCoeff * expVar + 3)) |
1101 |
""" |
1102 |
# End slz_interval_scaling_expression |
1103 |
|
1104 |
def slz_interval_and_polynomial_to_sage(polyRangeCenterErrorSo): |
1105 |
""" |
1106 |
Compute the Sage version of the Taylor polynomial and it's |
1107 |
companion data (interval, center...) |
1108 |
The input parameter is a five elements tuple: |
1109 |
- [0]: the polyomial (without variable change), as polynomial over a |
1110 |
real ring; |
1111 |
- [1]: the polyomial (with variable change done in Sollya), as polynomial |
1112 |
over a real ring; |
1113 |
- [2]: the interval (as Sollya range); |
1114 |
- [3]: the interval center; |
1115 |
- [4]: the approximation error. |
1116 |
|
1117 |
The function return a 5 elements tuple: formed with all the |
1118 |
input elements converted into their Sollya counterpart. |
1119 |
""" |
1120 |
polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
1121 |
polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
1122 |
intervalSa = \ |
1123 |
pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
1124 |
centerSa = \ |
1125 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
1126 |
errorSa = \ |
1127 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
1128 |
return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
1129 |
# End slz_interval_and_polynomial_to_sage |
1130 |
|
1131 |
def slz_is_htrn(argument, function, targetAccuracy, targetRF = None, |
1132 |
targetPlusOnePrecRF = None, quasiExactRF = None): |
1133 |
""" |
1134 |
Check if an element (argument) of the domain of function (function) |
1135 |
yields a HTRN case (rounding to next) for the target precision |
1136 |
(as impersonated by targetRF) for a given accuracy (targetAccuracy). |
1137 |
""" |
1138 |
## Arguments filtering. |
1139 |
## TODO: filter the first argument for consistence. |
1140 |
if targetRF is None: |
1141 |
targetRF = argument.parent() |
1142 |
## Ditto for the real field holding the midpoints. |
1143 |
if targetPlusOnePrecRF is None: |
1144 |
targetPlusOnePrecRF = RealField(targetRF.prec()+1) |
1145 |
## If no quasiExactField is provided, create a high accuracy RealField. |
1146 |
if quasiExactRF is None: |
1147 |
quasiExactRF = RealField(1536) |
1148 |
#functionVariable = function.variables()[0] |
1149 |
exactArgument = quasiExactRF(argument) |
1150 |
quasiExactValue = function(exactArgument) |
1151 |
roundedValue = targetRF(quasiExactValue) |
1152 |
roundedValuePrecPlusOne = targetPlusOnePrecRF(roundedValue) |
1153 |
# Upper midpoint. |
1154 |
roundedValuePrecPlusOneNext = roundedValuePrecPlusOne.nextabove() |
1155 |
# Lower midpoint. |
1156 |
roundedValuePrecPlusOnePrev = roundedValuePrecPlusOne.nextbelow() |
1157 |
binade = slz_compute_binade(roundedValue) |
1158 |
binadeCorrectedTargetAccuracy = targetAccuracy * 2^binade |
1159 |
#print "Argument:", argument |
1160 |
#print "f(x):", roundedValue, binade, floor(binade), ceil(binade) |
1161 |
#print "Binade:", binade |
1162 |
#print "binadeCorrectedTargetAccuracy:", \ |
1163 |
#binadeCorrectedTargetAccuracy.n(prec=100) |
1164 |
#print "binadeCorrectedTargetAccuracy:", \ |
1165 |
# binadeCorrectedTargetAccuracy.n(prec=100).str(base=2) |
1166 |
#print "Upper midpoint:", \ |
1167 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1168 |
#print "Rounded value :", \ |
1169 |
# roundedValuePrecPlusOne.n(prec=targetPlusOnePrecRF.prec()).str(base=2), \ |
1170 |
# roundedValuePrecPlusOne.ulp().n(prec=2).str(base=2) |
1171 |
#print "QuasiEx value :", quasiExactValue.n(prec=250).str(base=2) |
1172 |
#print "Lower midpoint:", \ |
1173 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1174 |
## Begining of the general case : check with the midpoint with |
1175 |
# greatest absolute value. |
1176 |
if quasiExactValue > 0: |
1177 |
if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) <\ |
1178 |
binadeCorrectedTargetAccuracy: |
1179 |
#print "Too close to the upper midpoint: ", \ |
1180 |
#abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100) |
1181 |
#print argument.n().str(base=16, \ |
1182 |
# no_sci=False) |
1183 |
#print "Lower midpoint:", \ |
1184 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1185 |
#print "Value :", \ |
1186 |
# quasiExactValue.n(prec=200).str(base=2) |
1187 |
#print "Upper midpoint:", \ |
1188 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1189 |
return True |
1190 |
else: |
1191 |
if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) < \ |
1192 |
binadeCorrectedTargetAccuracy: |
1193 |
#print "Too close to the upper midpoint: ", \ |
1194 |
# abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100) |
1195 |
#print argument.n().str(base=16, \ |
1196 |
# no_sci=False) |
1197 |
#print "Lower midpoint:", \ |
1198 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1199 |
#print "Value :", \ |
1200 |
# quasiExactValue.n(prec=200).str(base=2) |
1201 |
#print "Upper midpoint:", \ |
1202 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1203 |
|
1204 |
return True |
1205 |
#2345678901234567890123456789012345678901234567890123456789012345678901234567890 |
1206 |
## For the midpoint of smaller absolute value, |
1207 |
# split cases with the powers of 2. |
1208 |
if sno_abs_is_power_of_two(roundedValue): |
1209 |
if quasiExactValue > 0: |
1210 |
if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) <\ |
1211 |
binadeCorrectedTargetAccuracy / 2: |
1212 |
#print "Lower midpoint:", \ |
1213 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1214 |
#print "Value :", \ |
1215 |
# quasiExactValue.n(prec=200).str(base=2) |
1216 |
#print "Upper midpoint:", \ |
1217 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1218 |
|
1219 |
return True |
1220 |
else: |
1221 |
if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) < \ |
1222 |
binadeCorrectedTargetAccuracy / 2: |
1223 |
#print "Lower midpoint:", \ |
1224 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1225 |
#print "Value :", |
1226 |
# quasiExactValue.n(prec=200).str(base=2) |
1227 |
#print "Upper midpoint:", |
1228 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1229 |
|
1230 |
return True |
1231 |
#2345678901234567890123456789012345678901234567890123456789012345678901234567890 |
1232 |
else: ## Not a power of 2, regular comparison with the midpoint of |
1233 |
# smaller absolute value. |
1234 |
if quasiExactValue > 0: |
1235 |
if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) < \ |
1236 |
binadeCorrectedTargetAccuracy: |
1237 |
#print "Lower midpoint:", \ |
1238 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1239 |
#print "Value :", \ |
1240 |
# quasiExactValue.n(prec=200).str(base=2) |
1241 |
#print "Upper midpoint:", \ |
1242 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1243 |
|
1244 |
return True |
1245 |
else: # quasiExactValue <= 0 |
1246 |
if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) < \ |
1247 |
binadeCorrectedTargetAccuracy: |
1248 |
#print "Lower midpoint:", \ |
1249 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1250 |
#print "Value :", \ |
1251 |
# quasiExactValue.n(prec=200).str(base=2) |
1252 |
#print "Upper midpoint:", \ |
1253 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1254 |
|
1255 |
return True |
1256 |
#print "distance to the upper midpoint:", \ |
1257 |
# abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100).str(base=2) |
1258 |
#print "distance to the lower midpoint:", \ |
1259 |
# abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue).n(prec=100).str(base=2) |
1260 |
return False |
1261 |
# End slz_is_htrn |
1262 |
|
1263 |
def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
1264 |
precision, |
1265 |
targetHardnessToRound, |
1266 |
variable1, |
1267 |
variable2): |
1268 |
""" |
1269 |
Creates a new multivariate polynomial with integer coefficients for use |
1270 |
with the Coppersmith method. |
1271 |
A the same time it computes : |
1272 |
- 2^K (N); |
1273 |
- 2^k (bound on the second variable) |
1274 |
- lcm |
1275 |
|
1276 |
:param ratPolyOfInt: a polynomial with rational coefficients and integer |
1277 |
variables. |
1278 |
:param precision: the precision of the floating-point coefficients. |
1279 |
:param targetHardnessToRound: the hardness to round we want to check. |
1280 |
:param variable1: the first variable of the polynomial (an expression). |
1281 |
:param variable2: the second variable of the polynomial (an expression). |
1282 |
|
1283 |
:returns: a 4 elements tuple: |
1284 |
- the polynomial; |
1285 |
- the modulus (N); |
1286 |
- the t bound; |
1287 |
- the lcm used to compute the integral coefficients and the |
1288 |
module. |
1289 |
""" |
1290 |
# Create a new integer polynomial ring. |
1291 |
IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
1292 |
# Coefficients are issued in the increasing power order. |
1293 |
ratPolyCoefficients = ratPolyOfInt.coefficients() |
1294 |
# Print the reversed list for debugging. |
1295 |
|
1296 |
#print "Rational polynomial coefficients:", ratPolyCoefficients[::-1] |
1297 |
# Build the list of number we compute the lcm of. |
1298 |
coefficientDenominators = sro_denominators(ratPolyCoefficients) |
1299 |
#print "Coefficient denominators:", coefficientDenominators |
1300 |
coefficientDenominators.append(2^precision) |
1301 |
coefficientDenominators.append(2^(targetHardnessToRound)) |
1302 |
leastCommonMultiple = lcm(coefficientDenominators) |
1303 |
# Compute the expression corresponding to the new polynomial |
1304 |
coefficientNumerators = sro_numerators(ratPolyCoefficients) |
1305 |
#print coefficientNumerators |
1306 |
polynomialExpression = 0 |
1307 |
power = 0 |
1308 |
# Iterate over two lists at the same time, stop when the shorter |
1309 |
# (is this case coefficientsNumerators) is |
1310 |
# exhausted. Both lists are ordered in the order of increasing powers |
1311 |
# of variable1. |
1312 |
for numerator, denominator in \ |
1313 |
zip(coefficientNumerators, coefficientDenominators): |
1314 |
multiplicator = leastCommonMultiple / denominator |
1315 |
newCoefficient = numerator * multiplicator |
1316 |
polynomialExpression += newCoefficient * variable1^power |
1317 |
power +=1 |
1318 |
polynomialExpression += - variable2 |
1319 |
return (IP(polynomialExpression), |
1320 |
leastCommonMultiple / 2^precision, # 2^K aka N. |
1321 |
#leastCommonMultiple / 2^(targetHardnessToRound + 1), # tBound |
1322 |
leastCommonMultiple / 2^(targetHardnessToRound), # tBound |
1323 |
leastCommonMultiple) # If we want to make test computations. |
1324 |
|
1325 |
# End slz_rat_poly_of_int_to_poly_for_coppersmith |
1326 |
|
1327 |
def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
1328 |
precision): |
1329 |
""" |
1330 |
Makes a variable substitution into the input polynomial so that the output |
1331 |
polynomial can take integer arguments. |
1332 |
All variables of the input polynomial "have precision p". That is to say |
1333 |
that they are rationals with denominator == 2^(precision - 1): |
1334 |
x = y/2^(precision - 1). |
1335 |
We "incorporate" these denominators into the coefficients with, |
1336 |
respectively, the "right" power. |
1337 |
""" |
1338 |
polynomialField = ratPolyOfRat.parent() |
1339 |
polynomialVariable = ratPolyOfRat.variables()[0] |
1340 |
#print "The polynomial field is:", polynomialField |
1341 |
return \ |
1342 |
polynomialField(ratPolyOfRat.subs({polynomialVariable : \ |
1343 |
polynomialVariable/2^(precision-1)})) |
1344 |
|
1345 |
# End slz_rat_poly_of_rat_to_rat_poly_of_int |
1346 |
|
1347 |
def slz_reduce_and_test_base(matrixToReduce, |
1348 |
nAtAlpha, |
1349 |
monomialsCountSqrt): |
1350 |
""" |
1351 |
Reduces the basis, tests the Coppersmith condition and returns |
1352 |
a list of rows that comply with the condition. |
1353 |
""" |
1354 |
ccComplientRowsList = [] |
1355 |
reducedMatrix = matrixToReduce.LLL(None) |
1356 |
if not reducedMatrix.is_LLL_reduced(): |
1357 |
raise Exception("reducedMatrix is not actually reduced. Aborting!") |
1358 |
else: |
1359 |
print "reducedMatrix is actually reduced." |
1360 |
print "N^alpha:", nAtAlpha.n() |
1361 |
rowIndex = 0 |
1362 |
for row in reducedMatrix.rows(): |
1363 |
l2Norm = row.norm(2) |
1364 |
print "L_2 norm for vector # ", rowIndex, "= ", RR(l2Norm), "*", \ |
1365 |
monomialsCountSqrt.n(), ". Is vector OK?", |
1366 |
if (l2Norm * monomialsCountSqrt < nAtAlpha): |
1367 |
ccComplientRowsList.append(row) |
1368 |
print "True" |
1369 |
else: |
1370 |
print "False" |
1371 |
# End for |
1372 |
return ccComplientRowsList |
1373 |
# End slz_reduce_and_test_base |
1374 |
|
1375 |
def slz_resultant_tuple(poly1, poly2, elimVar): |
1376 |
""" |
1377 |
Compute the resultant for two polynomials for a given variable |
1378 |
and return the (poly1, poly2, resultant) if the resultant |
1379 |
is not 0. |
1380 |
Return () otherwise. |
1381 |
""" |
1382 |
polynomialRing0 = poly1.parent() |
1383 |
resultantInElimVar = poly1.resultant(poly2,polynomialRing0(elimVar)) |
1384 |
if resultantInElimVar.is_zero(): |
1385 |
return () |
1386 |
else: |
1387 |
return (poly1, poly2, resultantInElimVar) |
1388 |
# End slz_resultant_tuple. |
1389 |
# |
1390 |
print "\t...sageSLZ loaded" |