root / pobysoPythonSage / src / sageSLZ / sagePolynomialOperations.sage @ 189
Historique | Voir | Annoter | Télécharger (51,59 ko)
1 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageMatrixOperations.sage") |
---|---|
2 |
#load(str('/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageMatrixOperations.sage')) |
3 |
print "sagePolynomialOperations loading..." |
4 |
def spo_add_polynomial_coeffs_to_matrix_row(poly, |
5 |
knownMonomials, |
6 |
protoMatrixRows, |
7 |
columnsWidth=0): |
8 |
""" |
9 |
For a given polynomial , |
10 |
add the coefficients of the protoMatrix (a list of proto matrix rows). |
11 |
Coefficients are added to the protoMatrix row in the order imposed by the |
12 |
monomials discovery list (the knownMonomials list) built as construction |
13 |
goes on. |
14 |
As a bonus, data can be printed out for a visual check. |
15 |
poly : the polynomial; in argument; |
16 |
knownMonomials : the list of the already known monomials; will determine |
17 |
the order of the coefficients appending to a row; in-out |
18 |
argument (new monomials may be discovered and then |
19 |
appended the the knowMonomials list); |
20 |
protoMatrixRows: a list of lists, each one holding the coefficients of the |
21 |
monomials of a polynomial; in-out argument: a new row is |
22 |
added at each call; |
23 |
columnWith : the width, in characters, of the displayed column ; if 0, |
24 |
do not display anything; in argument. |
25 |
""" |
26 |
pMonomials = poly.monomials() |
27 |
pCoefficients = poly.coefficients() |
28 |
# We have started with the smaller degrees in the first variable. |
29 |
pMonomials.reverse() |
30 |
pCoefficients.reverse() |
31 |
# New empty proto matrix row. |
32 |
protoMatrixRowCoefficients = [] |
33 |
# We work according to the order of the already known monomials |
34 |
# No known monomials yet: add the pMonomials to knownMonomials |
35 |
# and add the coefficients to the proto matrix row. |
36 |
if len(knownMonomials) == 0: |
37 |
for pmIdx in xrange(0, len(pMonomials)): |
38 |
knownMonomials.append(pMonomials[pmIdx]) |
39 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
40 |
if columnsWidth != 0: |
41 |
monomialAsString = str(pCoefficients[pmIdx]) + " " + \ |
42 |
str(pMonomials[pmIdx]) |
43 |
print monomialAsString, " " * \ |
44 |
(columnsWidth - len(monomialAsString)), |
45 |
# There are some known monomials. We search for them in pMonomials and |
46 |
# add their coefficients to the proto matrix row. |
47 |
else: |
48 |
for knownMonomialIndex in xrange(0,len(knownMonomials)): |
49 |
# We lazily use an exception here since pMonomials.index() function |
50 |
# may fail throwing the ValueError exception. |
51 |
try: |
52 |
indexInPmonomials = \ |
53 |
pMonomials.index(knownMonomials[knownMonomialIndex]) |
54 |
if columnsWidth != 0: |
55 |
monomialAsString = str(pCoefficients[indexInPmonomials]) + \ |
56 |
" " + str(knownMonomials[knownMonomialIndex]) |
57 |
print monomialAsString, " " * \ |
58 |
(columnsWidth - len(monomialAsString)), |
59 |
# Add the coefficient to the proto matrix row and delete the |
60 |
# known monomial from the current pMonomial list |
61 |
# (and the corresponding coefficient as well). |
62 |
protoMatrixRowCoefficients.append(pCoefficients[indexInPmonomials]) |
63 |
del pMonomials[indexInPmonomials] |
64 |
del pCoefficients[indexInPmonomials] |
65 |
# The knownMonomials element is not in pMonomials |
66 |
except ValueError: |
67 |
protoMatrixRowCoefficients.append(0) |
68 |
if columnsWidth != 0: |
69 |
monomialAsString = "0" + " "+ \ |
70 |
str(knownMonomials[knownMonomialIndex]) |
71 |
print monomialAsString, " " * \ |
72 |
(columnsWidth - len(monomialAsString)), |
73 |
# End for knownMonomialKey loop. |
74 |
# We now append the remaining monomials of pMonomials to knownMonomials |
75 |
# and the corresponding coefficients to proto matrix row. |
76 |
for pmIdx in xrange(0, len(pMonomials)): |
77 |
knownMonomials.append(pMonomials[pmIdx]) |
78 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
79 |
if columnsWidth != 0: |
80 |
monomialAsString = str(pCoefficients[pmIdx]) + " " \ |
81 |
+ str(pMonomials[pmIdx]) |
82 |
print monomialAsString, " " * \ |
83 |
(columnsWidth - len(monomialAsString)), |
84 |
# End for pmIdx loop. |
85 |
# Add the new list row elements to the proto matrix. |
86 |
protoMatrixRows.append(protoMatrixRowCoefficients) |
87 |
if columnsWidth != 0: |
88 |
|
89 |
# End spo_add_polynomial_coeffs_to_matrix_row |
90 |
|
91 |
def spo_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
92 |
""" |
93 |
Create a polynomial over the rationals from a polynomial over |
94 |
a RealField. |
95 |
Important warning: default Sage behavior is to convert coefficients |
96 |
using continued fractions instead of making a simple conversion |
97 |
with a powers of two at denominators (and possible simplification). |
98 |
Hence conversion is not exact but with a relative error around 10^(-521). |
99 |
""" |
100 |
ratPolynomialRing = QQ[str(polyOfFloat.variables()[0])] |
101 |
return(ratPolynomialRing(polyOfFloat)) |
102 |
# End spo_float_poly_of_float_to_rat_poly_of_rat. |
103 |
|
104 |
def spo_float_poly_of_float_to_rat_poly_of_rat_pow_two(polyOfFloat): |
105 |
""" |
106 |
Create a polynomial over the rationals from a polynomial over |
107 |
a RealField where all denominators are |
108 |
powers of two. |
109 |
Allows for exact conversions (and lcm computation of the coefficients |
110 |
denominator). |
111 |
""" |
112 |
polyVariable = polyOfFloat.variables()[0] |
113 |
RPR = QQ[str(polyVariable)] |
114 |
polyCoeffs = polyOfFloat.coefficients() |
115 |
#print polyCoeffs |
116 |
polyExponents = polyOfFloat.exponents() |
117 |
#print polyExponents |
118 |
polyDenomPtwoCoeffs = [] |
119 |
for coeff in polyCoeffs: |
120 |
polyDenomPtwoCoeffs.append(sno_float_to_rat_pow_of_two_denom(coeff)) |
121 |
#print "Converted coefficient:", sno_float_to_rat_pow_of_two_denom(coeff), |
122 |
#print type(sno_float_to_rat_pow_of_two_denom(coeff)) |
123 |
ratPoly = RPR(0) |
124 |
#print type(ratPoly) |
125 |
## !!! CAUTION !!! Do not use the RPR(coeff * polyVariagle^exponent) |
126 |
# construction. |
127 |
# The coefficient becomes plainly wrong when exponent == 0. |
128 |
# No clue as to why. |
129 |
for coeff, exponent in zip(polyDenomPtwoCoeffs, polyExponents): |
130 |
ratPoly += coeff * RPR(polyVariable^exponent) |
131 |
return ratPoly |
132 |
# End slz_float_poly_of_float_to_rat_poly_of_rat. |
133 |
|
134 |
|
135 |
def spo_get_coefficient_for_monomial(monomialsList, coefficientsList, monomial): |
136 |
""" |
137 |
Get, for a polynomial, the coefficient for a given monomial. |
138 |
The polynomial is given as two lists (monomials and coefficients as |
139 |
return by the respective methods ; indexes of the two lists must match). |
140 |
If the monomial is not found, 0 is returned. |
141 |
""" |
142 |
monomialIndex = 0 |
143 |
for mono in monomialsList: |
144 |
if mono == monomial: |
145 |
return coefficientsList[monomialIndex] |
146 |
monomialIndex += 1 |
147 |
return 0 |
148 |
# End spo_get_coefficient_for_monomial. |
149 |
|
150 |
|
151 |
def spo_expression_as_string(powI, boundI, powT, boundT, powP, powN): |
152 |
""" |
153 |
Computes a string version of the i^k + t^l + p^m + N^n expression for |
154 |
output. |
155 |
""" |
156 |
expressionAsString ="" |
157 |
if powI != 0: |
158 |
expressionAsString += str(iBound^powI) + " i^" + str(powI) |
159 |
if powT != 0: |
160 |
if len(expressionAsString) != 0: |
161 |
expressionAsString += " * " |
162 |
expressionAsString += str(tBound^powT) + " t^" + str(powT) |
163 |
if powP != 0: |
164 |
if len(expressionAsString) != 0: |
165 |
expressionAsString += " * " |
166 |
expressionAsString += "p^" + str(powP) |
167 |
if (powN) != 0 : |
168 |
if len(expressionAsString) != 0: |
169 |
expressionAsString += " * " |
170 |
expressionAsString += "N^" + str(powN) |
171 |
return(expressionAsString) |
172 |
# End spo_expression_as_string. |
173 |
|
174 |
def spo_norm(poly, p=2): |
175 |
""" |
176 |
Behaves more or less (no infinity defined) as the norm for the |
177 |
univariate polynomials. |
178 |
Quoting Sage documentation: |
179 |
"Definition: For integer p, the p-norm of a polynomial is the pth root of |
180 |
the sum of the pth powers of the absolute values of the coefficients of |
181 |
the polynomial." |
182 |
|
183 |
""" |
184 |
# TODO: check the arguments (for p see below).. |
185 |
norm = 0 |
186 |
# For infinity norm. |
187 |
if p == Infinity: |
188 |
for coefficient in poly.coefficients(): |
189 |
coefficientAbs = coefficient.abs() |
190 |
if coefficientAbs > norm: |
191 |
norm = coefficientAbs |
192 |
return norm |
193 |
# TODO: check here the value of p |
194 |
# p must be a positive integer >= 1. |
195 |
if p < 1 or (not p in ZZ): |
196 |
return None |
197 |
# For 1 norm. |
198 |
if p == 1: |
199 |
for coefficient in poly.coefficients(): |
200 |
norm += coefficient.abs() |
201 |
return norm |
202 |
# For other norms |
203 |
for coefficient in poly.coefficients(): |
204 |
norm += coefficient.abs()^p |
205 |
return pow(norm, 1/p) |
206 |
# end spo_norm |
207 |
|
208 |
def spo_polynomial_to_proto_matrix(p, alpha, N, columnsWidth=0): |
209 |
""" |
210 |
From a (bivariate) polynomial and some other parameters build a proto |
211 |
matrix (an array of "rows") to be converted into a "true" matrix and |
212 |
eventually by reduced by fpLLL. |
213 |
The matrix is such as those found in Boneh-Durphee and Stehlé. |
214 |
|
215 |
Parameters |
216 |
---------- |
217 |
p: the (bivariate) polynomial; |
218 |
pRing: the ring over which p is defined; |
219 |
alpha: |
220 |
N: |
221 |
columsWidth: if == 0, no information is displayed, otherwise data is |
222 |
printed in colums of columnsWitdth width. |
223 |
""" |
224 |
pRing = p.parent() |
225 |
knownMonomials = [] |
226 |
protoMatrixRows = [] |
227 |
polynomialsList = [] |
228 |
pVariables = p.variables() |
229 |
#print "In spo...", p, p.variables() |
230 |
iVariable = pVariables[0] |
231 |
tVariable = pVariables[1] |
232 |
polynomialAtPower = pRing(1) |
233 |
currentPolynomial = pRing(1) |
234 |
pIdegree = p.degree(pVariables[0]) |
235 |
pTdegree = p.degree(pVariables[1]) |
236 |
currentIdegree = currentPolynomial.degree(iVariable) |
237 |
nAtAlpha = N^alpha |
238 |
nAtPower = nAtAlpha |
239 |
polExpStr = "" |
240 |
# We work from p^0 * N^alpha to p^alpha * N^0 |
241 |
for pPower in xrange(0, alpha + 1): |
242 |
# pPower == 0 is a special case. We introduce all the monomials but one |
243 |
# in i and those in t necessary to be able to introduce |
244 |
# p. We arbitrary choose to introduce the highest degree monomial in i |
245 |
# with p. We also introduce all the mixed i^k * t^l monomials with |
246 |
# k < p.degree(i) and l <= p.degree(t). |
247 |
# Mixed terms introduction is necessary here before we start "i shifts" |
248 |
# in the next iteration. |
249 |
if pPower == 0: |
250 |
# Notice that i^pIdegree is excluded as the bound of the xrange is |
251 |
# pIdegree |
252 |
for iPower in xrange(0, pIdegree): |
253 |
for tPower in xrange(0, pTdegree + 1): |
254 |
if columnsWidth != 0: |
255 |
polExpStr = spo_expression_as_string(iPower, |
256 |
tPower, |
257 |
pPower, |
258 |
alpha-pPower) |
259 |
print "->", polExpStr |
260 |
currentExpression = iVariable^iPower * \ |
261 |
tVariable^tPower * nAtAlpha |
262 |
# polynomialAtPower == 1 here. Next line should be commented |
263 |
# out but it does not work! Some conversion problem? |
264 |
currentPolynomial = pRing(currentExpression) |
265 |
polynomialsList.append(currentPolynomial) |
266 |
pMonomials = currentPolynomial.monomials() |
267 |
pCoefficients = currentPolynomial.coefficients() |
268 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
269 |
pCoefficients, |
270 |
knownMonomials, |
271 |
protoMatrixRows, |
272 |
columnsWidth) |
273 |
# End tPower. |
274 |
# End for iPower. |
275 |
else: # pPower > 0: (p^1..p^alpha) |
276 |
# This where we introduce the p^pPower * N^(alpha-pPower) |
277 |
# polynomial. |
278 |
# This step could technically be fused as the first iteration |
279 |
# of the next loop (with iPower starting at 0). |
280 |
# We set it apart for clarity. |
281 |
if columnsWidth != 0: |
282 |
polExpStr = spo_expression_as_string(0, 0, pPower, alpha-pPower) |
283 |
print "->", polExpStr |
284 |
currentPolynomial = polynomialAtPower * nAtPower |
285 |
polynomialsList.append(currentPolynomial) |
286 |
pMonomials = currentPolynomial.monomials() |
287 |
pCoefficients = currentPolynomial.coefficients() |
288 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
289 |
pCoefficients, |
290 |
knownMonomials, |
291 |
protoMatrixRows, |
292 |
columnsWidth) |
293 |
|
294 |
# The i^iPower * p^pPower polynomials: they add i^k monomials to |
295 |
# p^pPower up to k < pIdegree * pPower. This only introduces i^k |
296 |
# monomials since mixed terms (that were introduced at a previous |
297 |
# stage) are only shifted to already existing |
298 |
# ones. p^pPower is "shifted" to higher degrees in i as far as |
299 |
# possible, one step short of the degree in i of p^(pPower+1) . |
300 |
# These "pure" i^k monomials can only show up with i multiplications. |
301 |
for iPower in xrange(1, pIdegree): |
302 |
if columnsWidth != 0: |
303 |
polExpStr = spo_expression_as_string(iPower, \ |
304 |
0, \ |
305 |
pPower, \ |
306 |
alpha) |
307 |
print "->", polExpStr |
308 |
currentExpression = i^iPower * nAtPower |
309 |
currentPolynomial = pRing(currentExpression) * polynomialAtPower |
310 |
polynomialsList.append(currentPolynomial) |
311 |
pMonomials = currentPolynomial.monomials() |
312 |
pCoefficients = currentPolynomial.coefficients() |
313 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, \ |
314 |
pCoefficients, \ |
315 |
knownMonomials, \ |
316 |
protoMatrixRows, \ |
317 |
columnsWidth) |
318 |
# End for iPower |
319 |
# We want now to introduce a t * p^pPower polynomial. But before |
320 |
# that we must introduce some mixed monomials. |
321 |
# This loop is no triggered before pPower == 2. |
322 |
# It introduces a first set of high i degree mixed monomials. |
323 |
for iPower in xrange(1, pPower): |
324 |
tPower = pPower - iPower + 1 |
325 |
if columnsWidth != 0: |
326 |
polExpStr = spo_expression_as_string(iPower * pIdegree, |
327 |
tPower, |
328 |
0, |
329 |
alpha) |
330 |
print "->", polExpStr |
331 |
currentExpression = i^(iPower * pIdegree) * t^tPower * nAtAlpha |
332 |
currentPolynomial = pRing(currentExpression) |
333 |
polynomialsList.append(currentPolynomial) |
334 |
pMonomials = currentPolynomial.monomials() |
335 |
pCoefficients = currentPolynomial.coefficients() |
336 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
337 |
pCoefficients, |
338 |
knownMonomials, |
339 |
protoMatrixRows, |
340 |
columnsWidth) |
341 |
# End for iPower |
342 |
# |
343 |
# This is the mixed monomials main loop. It introduces: |
344 |
# - the missing mixed monomials needed before the |
345 |
# t^l * p^pPower * N^(alpha-pPower) polynomial; |
346 |
# - the t^l * p^pPower * N^(alpha-pPower) itself; |
347 |
# - for each of i^k * t^l * p^pPower * N^(alpha-pPower) polynomials: |
348 |
# - the the missing mixed monomials needed polynomials, |
349 |
# - the i^k * t^l * p^pPower * N^(alpha-pPower) itself. |
350 |
# The t^l * p^pPower * N^(alpha-pPower) is introduced when |
351 |
# |
352 |
for iShift in xrange(0, pIdegree): |
353 |
# When pTdegree == 1, the following loop only introduces |
354 |
# a single new monomial. |
355 |
#print "++++++++++" |
356 |
for outerTpower in xrange(1, pTdegree + 1): |
357 |
# First one high i degree mixed monomial. |
358 |
iPower = iShift + pPower * pIdegree |
359 |
if columnsWidth != 0: |
360 |
polExpStr = spo_expression_as_string(iPower, |
361 |
outerTpower, |
362 |
0, |
363 |
alpha) |
364 |
print "->", polExpStr |
365 |
currentExpression = i^iPower * t^outerTpower * nAtAlpha |
366 |
currentPolynomial = pRing(currentExpression) |
367 |
polynomialsList.append(currentPolynomial) |
368 |
pMonomials = currentPolynomial.monomials() |
369 |
pCoefficients = currentPolynomial.coefficients() |
370 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
371 |
pCoefficients, |
372 |
knownMonomials, |
373 |
protoMatrixRows, |
374 |
columnsWidth) |
375 |
#print "+++++" |
376 |
# At iShift == 0, the following innerTpower loop adds |
377 |
# duplicate monomials, since no extra i^l * t^k is needed |
378 |
# before introducing the |
379 |
# i^iShift * t^outerPpower * p^pPower * N^(alpha-pPower) |
380 |
# polynomial. |
381 |
# It introduces smaller i degree monomials than the |
382 |
# one(s) added previously (no pPower multiplication). |
383 |
# Here the exponent of t decreases as that of i increases. |
384 |
# This conditional is not entered before pPower == 1. |
385 |
# The innerTpower loop does not produce anything before |
386 |
# pPower == 2. We keep it anyway for other configuration of |
387 |
# p. |
388 |
if iShift > 0: |
389 |
iPower = pIdegree + iShift |
390 |
for innerTpower in xrange(pPower, 1, -1): |
391 |
if columnsWidth != 0: |
392 |
polExpStr = spo_expression_as_string(iPower, |
393 |
innerTpower, |
394 |
0, |
395 |
alpha) |
396 |
currentExpression = \ |
397 |
i^(iPower) * t^(innerTpower) * nAtAlpha |
398 |
currentPolynomial = pRing(currentExpression) |
399 |
polynomialsList.append(currentPolynomial) |
400 |
pMonomials = currentPolynomial.monomials() |
401 |
pCoefficients = currentPolynomial.coefficients() |
402 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
403 |
pCoefficients, |
404 |
knownMonomials, |
405 |
protoMatrixRows, |
406 |
columnsWidth) |
407 |
iPower += pIdegree |
408 |
# End for innerTpower |
409 |
# End of if iShift > 0 |
410 |
# When iShift == 0, just after each of the |
411 |
# p^pPower * N^(alpha-pPower) polynomials has |
412 |
# been introduced (followed by a string of |
413 |
# i^k * p^pPower * N^(alpha-pPower) polynomials) a |
414 |
# t^l * p^pPower * N^(alpha-pPower) is introduced here. |
415 |
# |
416 |
# Eventually, the following section introduces the |
417 |
# i^iShift * t^outerTpower * p^iPower * N^(alpha-pPower) |
418 |
# polynomials. |
419 |
if columnsWidth != 0: |
420 |
polExpStr = spo_expression_as_string(iShift, |
421 |
outerTpower, |
422 |
pPower, |
423 |
alpha-pPower) |
424 |
print "->", polExpStr |
425 |
currentExpression = i^iShift * t^outerTpower * nAtPower |
426 |
currentPolynomial = pRing(currentExpression) * \ |
427 |
polynomialAtPower |
428 |
polynomialsList.append(currentPolynomial) |
429 |
pMonomials = currentPolynomial.monomials() |
430 |
pCoefficients = currentPolynomial.coefficients() |
431 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
432 |
pCoefficients, |
433 |
knownMonomials, |
434 |
protoMatrixRows, |
435 |
columnsWidth) |
436 |
# End for outerTpower |
437 |
#print "++++++++++" |
438 |
# End for iShift |
439 |
polynomialAtPower *= p |
440 |
nAtPower /= N |
441 |
# End for pPower loop |
442 |
return ((protoMatrixRows, knownMonomials, polynomialsList)) |
443 |
# End spo_polynomial_to_proto_matrix |
444 |
|
445 |
def spo_polynomial_to_polynomials_list_2(p, alpha, N, iBound, tBound, |
446 |
columnsWidth=0): |
447 |
""" |
448 |
Badly out of sync code: check with versions 3 or 4. |
449 |
|
450 |
From p, alpha, N build a list of polynomials... |
451 |
TODO: clean up the comments below! |
452 |
|
453 |
From a (bivariate) polynomial and some other parameters build a proto |
454 |
matrix (an array of "rows") to be converted into a "true" matrix and |
455 |
eventually by reduced by fpLLL. |
456 |
The matrix is based on a list of polynomials that are built in a way |
457 |
that one and only monomial is added at each new polynomial. Among the many |
458 |
possible ways to build this list we pick one strongly dependent on the |
459 |
structure of the polynomial and of the problem. |
460 |
We consider here the polynomials of the form: |
461 |
a_k*i^k + a_(k-1)*i^(k-1) + ... + a_1*i + a_0 - t |
462 |
The values of i and t are bounded and we eventually look for (i_0,t_0) |
463 |
pairs such that: |
464 |
a_k*i_0^k + a_(k-1)*i_0^(k-1) + ... + a_1*i_0 + a_0 = t_0 |
465 |
Hence, departing from the procedure in described in Boneh-Durfee, we will |
466 |
not use "t-shifts" but only "i-shifts". |
467 |
|
468 |
Parameters |
469 |
---------- |
470 |
p: the (bivariate) polynomial; |
471 |
pRing: the ring over which p is defined; |
472 |
alpha: |
473 |
N: |
474 |
columsWidth: if == 0, no information is displayed, otherwise data is |
475 |
printed in colums of columnsWitdth width. |
476 |
""" |
477 |
pRing = p.parent() |
478 |
polynomialsList = [] |
479 |
pVariables = p.variables() |
480 |
iVariable = pVariables[0] |
481 |
tVariable = pVariables[1] |
482 |
polynomialAtPower = pRing(1) |
483 |
currentPolynomial = pRing(1) |
484 |
pIdegree = p.degree(iVariable) |
485 |
pTdegree = p.degree(tVariable) |
486 |
currentIdegree = currentPolynomial.degree(iVariable) |
487 |
nAtAlpha = N^alpha |
488 |
nAtPower = nAtAlpha |
489 |
polExpStr = "" |
490 |
# We work from p^0 * N^alpha to p^alpha * N^0 |
491 |
for pPower in xrange(0, alpha + 1): |
492 |
# pPower == 0 is a special case. We introduce all the monomials in i |
493 |
# up to i^pIdegree. |
494 |
if pPower == 0: |
495 |
# Notice who iPower runs up to i^pIdegree. |
496 |
for iPower in xrange(0, pIdegree + 1): |
497 |
# No t power is taken into account as we limit our selves to |
498 |
# degree 1 in t and make no "t-shifts". |
499 |
if columnsWidth != 0: |
500 |
polExpStr = spo_expression_as_string(iPower, |
501 |
iBound, |
502 |
0, |
503 |
tBound, |
504 |
0, |
505 |
alpha) |
506 |
print "->", polExpStr |
507 |
currentExpression = iVariable^iPower * nAtAlpha * iBound^iPower |
508 |
# polynomialAtPower == 1 here. Next line should be commented |
509 |
# out but it does not work! Some conversion problem? |
510 |
currentPolynomial = pRing(currentExpression) |
511 |
polynomialsList.append(currentPolynomial) |
512 |
# End for iPower. |
513 |
else: # pPower > 0: (p^1..p^alpha) |
514 |
# This where we introduce the p^pPower * N^(alpha-pPower) |
515 |
# polynomial. This is also where the t^pPower monomials shows up for |
516 |
# the first time. |
517 |
if columnsWidth != 0: |
518 |
polExpStr = spo_expression_as_string(0, iBound, 0, tBound, \ |
519 |
pPower, alpha-pPower) |
520 |
print "->", polExpStr |
521 |
currentPolynomial = polynomialAtPower * nAtPower |
522 |
polynomialsList.append(currentPolynomial) |
523 |
# Exit when pPower == alpha |
524 |
if pPower == alpha: |
525 |
return polynomialsList |
526 |
# This is where the "i-shifts" take place. Mixed terms, i^k * t^l |
527 |
# (that were introduced at a previous |
528 |
# stage or are introduced now) are only shifted to already existing |
529 |
# ones with the notable exception of i^iPower * t^pPower, which |
530 |
# must be manually introduced. |
531 |
# p^pPower is "shifted" to higher degrees in i as far as |
532 |
# possible, up to of the degree in i of p^(pPower+1). |
533 |
# These "pure" i^k monomials can only show up with i multiplications. |
534 |
for iPower in xrange(1, pIdegree + 1): |
535 |
# The i^iPower * t^pPower monomial. Notice the alpha exponent |
536 |
# for N. |
537 |
internalIpower = iPower |
538 |
for tPower in xrange(pPower,0,-1): |
539 |
if columnsWidth != 0: |
540 |
polExpStr = spo_expression_as_string(internalIpower, |
541 |
iBound, |
542 |
tPower, |
543 |
tBound, |
544 |
0, |
545 |
alpha) |
546 |
print "->", polExpStr |
547 |
currentExpression = i^internalIpower * t^tPower * \ |
548 |
nAtAlpha * iBound^internalIpower * \ |
549 |
tBound^tPower |
550 |
|
551 |
currentPolynomial = pRing(currentExpression) |
552 |
polynomialsList.append(currentPolynomial) |
553 |
internalIpower += pIdegree |
554 |
# End for tPower |
555 |
# The i^iPower * p^pPower * N^(alpha-pPower) i-shift. |
556 |
if columnsWidth != 0: |
557 |
polExpStr = spo_expression_as_string(iPower, |
558 |
iBound, |
559 |
0, |
560 |
tBound, |
561 |
pPower, |
562 |
alpha-pPower) |
563 |
print "->", polExpStr |
564 |
currentExpression = i^iPower * nAtPower * iBound^iPower |
565 |
currentPolynomial = pRing(currentExpression) * polynomialAtPower |
566 |
polynomialsList.append(currentPolynomial) |
567 |
# End for iPower |
568 |
polynomialAtPower *= p |
569 |
nAtPower /= N |
570 |
# End for pPower loop |
571 |
return polynomialsList |
572 |
# End spo_polynomial_to_proto_matrix_2 |
573 |
|
574 |
def spo_polynomial_to_polynomials_list_3(p, alpha, N, iBound, tBound, |
575 |
columnsWidth=0): |
576 |
""" |
577 |
From p, alpha, N build a list of polynomials... |
578 |
TODO: more in depth rationale... |
579 |
|
580 |
Our goal is to introduce each monomial with the smallest coefficient. |
581 |
|
582 |
|
583 |
|
584 |
Parameters |
585 |
---------- |
586 |
p: the (bivariate) polynomial; |
587 |
pRing: the ring over which p is defined; |
588 |
alpha: |
589 |
N: |
590 |
columsWidth: if == 0, no information is displayed, otherwise data is |
591 |
printed in colums of columnsWitdth width. |
592 |
""" |
593 |
pRing = p.parent() |
594 |
polynomialsList = [] |
595 |
pVariables = p.variables() |
596 |
iVariable = pVariables[0] |
597 |
tVariable = pVariables[1] |
598 |
polynomialAtPower = pRing(1) |
599 |
currentPolynomial = pRing(1) |
600 |
pIdegree = p.degree(iVariable) |
601 |
pTdegree = p.degree(tVariable) |
602 |
currentIdegree = currentPolynomial.degree(iVariable) |
603 |
nAtAlpha = N^alpha |
604 |
nAtPower = nAtAlpha |
605 |
polExpStr = "" |
606 |
# We work from p^0 * N^alpha to p^alpha * N^0 |
607 |
for pPower in xrange(0, alpha + 1): |
608 |
# pPower == 0 is a special case. We introduce all the monomials in i |
609 |
# up to i^pIdegree. |
610 |
if pPower == 0: |
611 |
# Notice who iPower runs up to i^pIdegree. |
612 |
for iPower in xrange(0, pIdegree + 1): |
613 |
# No t power is taken into account as we limit our selves to |
614 |
# degree 1 in t and make no "t-shifts". |
615 |
if columnsWidth != 0: |
616 |
polExpStr = spo_expression_as_string(iPower, |
617 |
iBound, |
618 |
0, |
619 |
tBound, |
620 |
0, |
621 |
alpha) |
622 |
print "->", polExpStr |
623 |
currentExpression = iVariable^iPower * nAtAlpha * iBound^iPower |
624 |
# polynomialAtPower == 1 here. Next line should be commented |
625 |
# out but it does not work! Some conversion problem? |
626 |
currentPolynomial = pRing(currentExpression) |
627 |
polynomialsList.append(currentPolynomial) |
628 |
# End for iPower. |
629 |
else: # pPower > 0: (p^1..p^alpha) |
630 |
# This where we introduce the p^pPower * N^(alpha-pPower) |
631 |
# polynomial. This is also where the t^pPower monomials shows up for |
632 |
# the first time. It app |
633 |
if columnsWidth != 0: |
634 |
polExpStr = spo_expression_as_string(0, iBound, |
635 |
0, tBound, |
636 |
pPower, alpha-pPower) |
637 |
print "->", polExpStr |
638 |
currentPolynomial = polynomialAtPower * nAtPower |
639 |
polynomialsList.append(currentPolynomial) |
640 |
# Exit when pPower == alpha |
641 |
if pPower == alpha: |
642 |
return polynomialsList |
643 |
# This is where the "i-shifts" take place. Mixed terms, i^k * t^l |
644 |
# (that were introduced at a previous |
645 |
# stage or are introduced now) are only shifted to already existing |
646 |
# ones with the notable exception of i^iPower * t^pPower, which |
647 |
# must be manually introduced. |
648 |
# p^pPower is "shifted" to higher degrees in i as far as |
649 |
# possible, up to of the degree in i of p^(pPower+1). |
650 |
# These "pure" i^k monomials can only show up with i multiplications. |
651 |
for iPower in xrange(1, pIdegree + 1): |
652 |
# The i^iPower * t^pPower monomial. Notice the alpha exponent |
653 |
# for N. |
654 |
internalIpower = iPower |
655 |
for tPower in xrange(pPower,0,-1): |
656 |
if columnsWidth != 0: |
657 |
polExpStr = spo_expression_as_string(internalIpower, |
658 |
iBound, |
659 |
tPower, |
660 |
tBound, |
661 |
0, |
662 |
alpha) |
663 |
print "->", polExpStr |
664 |
currentExpression = i^internalIpower * t^tPower * nAtAlpha * \ |
665 |
iBound^internalIpower * tBound^tPower |
666 |
currentPolynomial = pRing(currentExpression) |
667 |
polynomialsList.append(currentPolynomial) |
668 |
internalIpower += pIdegree |
669 |
# End for tPower |
670 |
# Here we have to choose between a |
671 |
# i^iPower * p^pPower * N^(alpha-pPower) i-shift and |
672 |
# i^iPower * i^(d_i(p) * pPower) * N^alpha, depending on which |
673 |
# coefficient is smallest. |
674 |
IcurrentExponent = iPower + \ |
675 |
(pPower * polynomialAtPower.degree(iVariable)) |
676 |
currentMonomial = pRing(iVariable^IcurrentExponent) |
677 |
currentPolynomial = pRing(iVariable^iPower * nAtPower * \ |
678 |
iBound^iPower) * \ |
679 |
polynomialAtPower |
680 |
currMonomials = currentPolynomial.monomials() |
681 |
currCoefficients = currentPolynomial.coefficients() |
682 |
currentCoefficient = spo_get_coefficient_for_monomial( \ |
683 |
currMonomials, |
684 |
currCoefficients, |
685 |
currentMonomial) |
686 |
print "Current coefficient:", currentCoefficient |
687 |
alterCoefficient = iBound^IcurrentExponent * nAtAlpha |
688 |
print "N^alpha * ibound^", IcurrentExponent, ":", \ |
689 |
alterCoefficient |
690 |
if currentCoefficient > alterCoefficient : |
691 |
if columnsWidth != 0: |
692 |
polExpStr = spo_expression_as_string(IcurrentExponent, |
693 |
iBound, |
694 |
0, |
695 |
tBound, |
696 |
0, |
697 |
alpha) |
698 |
print "->", polExpStr |
699 |
polynomialsList.append(currentMonomial * \ |
700 |
alterCoefficient) |
701 |
else: |
702 |
if columnsWidth != 0: |
703 |
polExpStr = spo_expression_as_string(iPower, iBound, |
704 |
0, tBound, |
705 |
pPower, |
706 |
alpha-pPower) |
707 |
print "->", polExpStr |
708 |
polynomialsList.append(currentPolynomial) |
709 |
# End for iPower |
710 |
polynomialAtPower *= p |
711 |
nAtPower /= N |
712 |
# End for pPower loop |
713 |
return polynomialsList |
714 |
# End spo_polynomial_to_proto_matrix_3 |
715 |
|
716 |
def spo_polynomial_to_polynomials_list_4(p, alpha, N, iBound, tBound, |
717 |
columnsWidth=0): |
718 |
""" |
719 |
From p, alpha, N build a list of polynomials... |
720 |
TODO: more in depth rationale... |
721 |
|
722 |
Our goal is to introduce each monomial with the smallest coefficient. |
723 |
|
724 |
|
725 |
|
726 |
Parameters |
727 |
---------- |
728 |
p: the (bivariate) polynomial; |
729 |
pRing: the ring over which p is defined; |
730 |
alpha: |
731 |
N: |
732 |
columsWidth: if == 0, no information is displayed, otherwise data is |
733 |
printed in colums of columnsWitdth width. |
734 |
""" |
735 |
pRing = p.parent() |
736 |
polynomialsList = [] |
737 |
pVariables = p.variables() |
738 |
iVariable = pVariables[0] |
739 |
tVariable = pVariables[1] |
740 |
polynomialAtPower = copy(p) |
741 |
currentPolynomial = pRing(1) |
742 |
pIdegree = p.degree(iVariable) |
743 |
pTdegree = p.degree(tVariable) |
744 |
maxIdegree = pIdegree * alpha |
745 |
currentIdegree = currentPolynomial.degree(iVariable) |
746 |
nAtAlpha = N^alpha |
747 |
nAtPower = nAtAlpha |
748 |
polExpStr = "" |
749 |
# We first introduce all the monomials in i alone multiplied by N^alpha. |
750 |
for iPower in xrange(0, maxIdegree + 1): |
751 |
if columnsWidth !=0: |
752 |
polExpStr = spo_expression_as_string(iPower, iBound, |
753 |
0, tBound, |
754 |
0, alpha) |
755 |
print "->", polExpStr |
756 |
currentExpression = iVariable^iPower * nAtAlpha * iBound^iPower |
757 |
currentPolynomial = pRing(currentExpression) |
758 |
polynomialsList.append(currentPolynomial) |
759 |
# End for iPower |
760 |
# We work from p^1 * N^alpha-1 to p^alpha * N^0 |
761 |
for pPower in xrange(1, alpha + 1): |
762 |
# First of all the p^pPower * N^(alpha-pPower) polynomial. |
763 |
nAtPower /= N |
764 |
if columnsWidth !=0: |
765 |
polExpStr = spo_expression_as_string(0, iBound, |
766 |
0, tBound, |
767 |
pPower, alpha-pPower) |
768 |
print "->", polExpStr |
769 |
currentPolynomial = polynomialAtPower * nAtPower |
770 |
polynomialsList.append(currentPolynomial) |
771 |
# Exit when pPower == alpha |
772 |
if pPower == alpha: |
773 |
return polynomialsList |
774 |
# We now introduce the mixed i^k * t^l monomials by i^m * p^n * N^(alpha-n) |
775 |
for iPower in xrange(1, pIdegree + 1): |
776 |
if columnsWidth != 0: |
777 |
polExpStr = spo_expression_as_string(iPower, iBound, |
778 |
0, tBound, |
779 |
pPower, alpha-pPower) |
780 |
print "->", polExpStr |
781 |
currentExpression = i^iPower * iBound^iPower * nAtPower |
782 |
currentPolynomial = pRing(currentExpression) * polynomialAtPower |
783 |
polynomialsList.append(currentPolynomial) |
784 |
# End for iPower |
785 |
polynomialAtPower *= p |
786 |
# End for pPower loop |
787 |
return polynomialsList |
788 |
# End spo_polynomial_to_proto_matrix_4 |
789 |
|
790 |
def spo_polynomial_to_polynomials_list_5(p, alpha, N, iBound, tBound, |
791 |
columnsWidth=0): |
792 |
""" |
793 |
From p, alpha, N build a list of polynomials use to create a base |
794 |
that will eventually be reduced with LLL. |
795 |
|
796 |
The bounds are computed for the coefficients that will be used to |
797 |
form the base. |
798 |
|
799 |
We try to introduce only one new monomial at a time, to obtain a |
800 |
triangular matrix (it is easy to compute the volume of the underlining |
801 |
latice if the matrix is triangular). |
802 |
|
803 |
There are many possibilities to introduce the monomials: our goal is also |
804 |
to introduce each of them on the diagonal with the smallest coefficient. |
805 |
|
806 |
The method depends on the structure of the polynomial. Here it is adapted |
807 |
to the a_n*i^n + ... + a_1 * i - t + b form. |
808 |
|
809 |
Parameters |
810 |
---------- |
811 |
p: the (bivariate) polynomial; |
812 |
alpha: |
813 |
N: |
814 |
iBound: |
815 |
tBound: |
816 |
columsWidth: if == 0, no information is displayed, otherwise data is |
817 |
printed in colums of columnsWitdth width. |
818 |
""" |
819 |
pRing = p.parent() |
820 |
polynomialsList = [] |
821 |
pVariables = p.variables() |
822 |
iVariable = pVariables[0] |
823 |
tVariable = pVariables[1] |
824 |
polynomialAtPower = copy(p) |
825 |
currentPolynomial = pRing(1) |
826 |
pIdegree = p.degree(iVariable) |
827 |
pTdegree = p.degree(tVariable) |
828 |
maxIdegree = pIdegree * alpha |
829 |
currentIdegree = currentPolynomial.degree(iVariable) |
830 |
nAtAlpha = N^alpha |
831 |
nAtPower = nAtAlpha |
832 |
polExpStr = "" |
833 |
# We first introduce all the monomials in i alone multiplied by N^alpha. |
834 |
for iPower in xrange(0, maxIdegree + 1): |
835 |
if columnsWidth !=0: |
836 |
polExpStr = spo_expression_as_string(iPower, iBound, |
837 |
0, tBound, |
838 |
0, alpha) |
839 |
print "->", polExpStr |
840 |
currentExpression = iVariable^iPower * nAtAlpha * iBound^iPower |
841 |
currentPolynomial = pRing(currentExpression) |
842 |
polynomialsList.append(currentPolynomial) |
843 |
# End for iPower |
844 |
# We work from p^1 * N^alpha-1 to p^alpha * N^0 |
845 |
for pPower in xrange(1, alpha + 1): |
846 |
# First of all the p^pPower * N^(alpha-pPower) polynomial. |
847 |
nAtPower /= N |
848 |
if columnsWidth !=0: |
849 |
polExpStr = spo_expression_as_string(0, iBound, |
850 |
0, tBound, |
851 |
pPower, alpha-pPower) |
852 |
print "->", polExpStr |
853 |
currentPolynomial = polynomialAtPower * nAtPower |
854 |
polynomialsList.append(currentPolynomial) |
855 |
# Exit when pPower == alpha |
856 |
if pPower == alpha: |
857 |
return polynomialsList |
858 |
for iPower in xrange(1, pIdegree + 1): |
859 |
iCurrentPower = pIdegree + iPower |
860 |
for tPower in xrange(pPower-1, 0, -1): |
861 |
#print "tPower:", tPower |
862 |
if columnsWidth != 0: |
863 |
polExpStr = spo_expression_as_string(iCurrentPower, iBound, |
864 |
tPower, tBound, |
865 |
0, alpha) |
866 |
print "->", polExpStr |
867 |
currentExpression = i^iCurrentPower * iBound^iCurrentPower * t^tPower * tBound^tPower *nAtAlpha |
868 |
currentPolynomial = pRing(currentExpression) |
869 |
polynomialsList.append(currentPolynomial) |
870 |
iCurrentPower += pIdegree |
871 |
# End for tPower |
872 |
# We now introduce the mixed i^k * t^l monomials by i^m * p^n * N^(alpha-n) |
873 |
if columnsWidth != 0: |
874 |
polExpStr = spo_expression_as_string(iPower, iBound, |
875 |
0, tBound, |
876 |
pPower, alpha-pPower) |
877 |
print "->", polExpStr |
878 |
currentExpression = i^iPower * iBound^iPower * nAtPower |
879 |
currentPolynomial = pRing(currentExpression) * polynomialAtPower |
880 |
polynomialsList.append(currentPolynomial) |
881 |
# End for iPower |
882 |
polynomialAtPower *= p |
883 |
# End for pPower loop |
884 |
return polynomialsList |
885 |
# End spo_polynomial_to_proto_matrix_5 |
886 |
|
887 |
def spo_polynomial_to_polynomials_list_6(p, alpha, N, iBound, tBound, |
888 |
columnsWidth=0): |
889 |
""" |
890 |
From p, alpha, N build a list of polynomials use to create a base |
891 |
that will eventually be reduced with LLL. |
892 |
|
893 |
The bounds are computed for the coefficients that will be used to |
894 |
form the base. |
895 |
|
896 |
We try to introduce only one new monomial at a time, whithout trying to |
897 |
obtain a triangular matrix. |
898 |
|
899 |
There are many possibilities to introduce the monomials: our goal is also |
900 |
to introduce each of them on the diagonal with the smallest coefficient. |
901 |
|
902 |
The method depends on the structure of the polynomial. Here it is adapted |
903 |
to the a_n*i^n + ... + a_1 * i - t + b form. |
904 |
|
905 |
Parameters |
906 |
---------- |
907 |
p: the (bivariate) polynomial; |
908 |
alpha: |
909 |
N: |
910 |
iBound: |
911 |
tBound: |
912 |
columsWidth: if == 0, no information is displayed, otherwise data is |
913 |
printed in colums of columnsWitdth width. |
914 |
""" |
915 |
pRing = p.parent() |
916 |
polynomialsList = [] |
917 |
pVariables = p.variables() |
918 |
iVariable = pVariables[0] |
919 |
tVariable = pVariables[1] |
920 |
polynomialAtPower = copy(p) |
921 |
currentPolynomial = pRing(1) # Constant term. |
922 |
pIdegree = p.degree(iVariable) |
923 |
pTdegree = p.degree(tVariable) |
924 |
maxIdegree = pIdegree * alpha |
925 |
currentIdegree = currentPolynomial.degree(iVariable) |
926 |
nAtAlpha = N^alpha |
927 |
nAtPower = nAtAlpha |
928 |
polExpStr = "" |
929 |
# |
930 |
""" |
931 |
## Bound for iPower + pIdegree*tPower <= alpha*pIdegree |
932 |
print "degree in i:", pIdegree |
933 |
powersRangeUpperBound = alpha * pIdegree + 1 # +1 for the range. |
934 |
for iPower in xrange(0, powersRangeUpperBound): |
935 |
tPower = 0 |
936 |
while (iPower + tPower * pIdegree) < powersRangeUpperBound: |
937 |
print "iPower:", iPower, " tPower:", tPower |
938 |
q = pRing(iVariable * iBound)^iPower * ((p * N)^tPower) |
939 |
print "q monomials:", q.monomials() |
940 |
polynomialsList.append(q) |
941 |
tPower += 1 |
942 |
""" |
943 |
""" |
944 |
Start from iExp = 0 since starting from 1 does not allow for |
945 |
resultants != 0. |
946 |
""" |
947 |
for iExp in xrange(0, alpha+1): |
948 |
tExp = 0 |
949 |
while iExp + tExp <= alpha: |
950 |
q = pRing(iVariable * iBound)^iExp * ((p * N)^tExp) |
951 |
sys.stdout.write("q " + str(iExp) + "," + str(tExp) + ": ") |
952 |
print q |
953 |
polynomialsList.append(q) |
954 |
tExp += 1 |
955 |
return polynomialsList |
956 |
|
957 |
""" |
958 |
# We first introduce all the monomials in i alone multiplied by N^alpha. |
959 |
for iPower in xrange(0, maxIdegree + 1): |
960 |
if columnsWidth !=0: |
961 |
polExpStr = spo_expression_as_string(iPower, iBound, |
962 |
0, tBound, |
963 |
0, alpha) |
964 |
print "->", polExpStr |
965 |
currentExpression = iVariable^iPower * nAtAlpha * iBound^iPower |
966 |
currentPolynomial = pRing(currentExpression) |
967 |
polynomialsList.append(currentPolynomial) |
968 |
# End for iPower |
969 |
# We work from p^1 * N^alpha-1 to p^alpha * N^0 |
970 |
for pPower in xrange(1, alpha + 1): |
971 |
# First of all the p^pPower * N^(alpha-pPower) polynomial. |
972 |
nAtPower /= N |
973 |
if columnsWidth !=0: |
974 |
polExpStr = spo_expression_as_string(0, iBound, |
975 |
0, tBound, |
976 |
pPower, alpha-pPower) |
977 |
print "->", polExpStr |
978 |
currentPolynomial = polynomialAtPower * nAtPower |
979 |
polynomialsList.append(currentPolynomial) |
980 |
# Exit when pPower == alpha |
981 |
if pPower == alpha: |
982 |
return polynomialsList |
983 |
for iPower in xrange(1, pIdegree + 1): |
984 |
iCurrentPower = pIdegree + iPower |
985 |
for tPower in xrange(pPower-1, 0, -1): |
986 |
#print "tPower:", tPower |
987 |
if columnsWidth != 0: |
988 |
polExpStr = spo_expression_as_string(iCurrentPower, iBound, |
989 |
tPower, tBound, |
990 |
0, alpha) |
991 |
print "->", polExpStr |
992 |
currentExpression = i^iCurrentPower * iBound^iCurrentPower * t^tPower * tBound^tPower *nAtAlpha |
993 |
currentPolynomial = pRing(currentExpression) |
994 |
polynomialsList.append(currentPolynomial) |
995 |
iCurrentPower += pIdegree |
996 |
# End for tPower |
997 |
# We now introduce the mixed i^k * t^l monomials by i^m * p^n * N^(alpha-n) |
998 |
if columnsWidth != 0: |
999 |
polExpStr = spo_expression_as_string(iPower, iBound, |
1000 |
0, tBound, |
1001 |
pPower, alpha-pPower) |
1002 |
print "->", polExpStr |
1003 |
currentExpression = i^iPower * iBound^iPower * nAtPower |
1004 |
currentPolynomial = pRing(currentExpression) * polynomialAtPower |
1005 |
polynomialsList.append(currentPolynomial) |
1006 |
# End for iPower |
1007 |
polynomialAtPower *= p |
1008 |
# End for pPower loop |
1009 |
""" |
1010 |
return polynomialsList |
1011 |
# End spo_polynomial_to_proto_matrix_6 |
1012 |
|
1013 |
def spo_polynomial_to_polynomials_list_7(p, alpha, N, iBound, tBound, |
1014 |
columnsWidth=0): |
1015 |
""" |
1016 |
As per Random Bits... direct loops nesting. |
1017 |
""" |
1018 |
pRing = p.parent() |
1019 |
polynomialsList = [] |
1020 |
pVariables = p.variables() |
1021 |
iVariable = pVariables[0] |
1022 |
tVariable = pVariables[1] |
1023 |
polynomialAtPower = copy(p) |
1024 |
currentPolynomial = pRing(1) # Constant term. |
1025 |
|
1026 |
for iExp in xrange(0, alpha+1): |
1027 |
pExp = 0 |
1028 |
while (iExp + pExp) <= alpha: |
1029 |
print "iExp:", iExp, \ |
1030 |
"- pExp:", pExp, \ |
1031 |
"- alpha-pExp:", alpha-pExp |
1032 |
q = pRing(iVariable * iBound)^iExp * p^pExp * N^(alpha-pExp) |
1033 |
print q.monomials() |
1034 |
polynomialsList.append(q) |
1035 |
pExp += 1 |
1036 |
return polynomialsList |
1037 |
# End spo_polynomial_to_polynomials_list_7 |
1038 |
|
1039 |
def spo_polynomial_to_polynomials_list_8(p, alpha, N, iBound, tBound, |
1040 |
columnsWidth=0): |
1041 |
""" |
1042 |
As per Random Bits... (reversed loop nesting) |
1043 |
""" |
1044 |
pRing = p.parent() |
1045 |
polynomialsList = [] |
1046 |
pVariables = p.variables() |
1047 |
iVariable = pVariables[0] |
1048 |
tVariable = pVariables[1] |
1049 |
polynomialAtPower = copy(p) |
1050 |
currentPolynomial = pRing(1) # Constant term. |
1051 |
|
1052 |
for pExp in xrange(0, alpha+1): |
1053 |
iExp = 0 |
1054 |
while (iExp + pExp) <= alpha: |
1055 |
#print "iExp:", iExp, \ |
1056 |
# "- pExp:", pExp, \ |
1057 |
# "- alpha-pExp:", alpha-pExp |
1058 |
q = pRing(iVariable * iBound)^iExp * p^pExp * N^(alpha-pExp) |
1059 |
#print q.monomials() |
1060 |
polynomialsList.append(q) |
1061 |
iExp += 1 |
1062 |
return polynomialsList |
1063 |
# End spo_polynomial_to_polynomials_list_8 |
1064 |
|
1065 |
def spo_proto_to_column_matrix(protoMatrixColumns): |
1066 |
""" |
1067 |
Create a column (each row holds the coefficients for one monomial) matrix. |
1068 |
|
1069 |
Parameters |
1070 |
---------- |
1071 |
protoMatrixColumns: a list of coefficient lists. |
1072 |
""" |
1073 |
numColumns = len(protoMatrixColumns) |
1074 |
if numColumns == 0: |
1075 |
return None |
1076 |
# The last column holds has the maximum length. |
1077 |
numRows = len(protoMatrixColumns[numColumns-1]) |
1078 |
if numColumns == 0: |
1079 |
return None |
1080 |
baseMatrix = matrix(ZZ, numRows, numColumns) |
1081 |
for colIndex in xrange(0, numColumns): |
1082 |
for rowIndex in xrange(0, len(protoMatrixColumns[colIndex])): |
1083 |
if protoMatrixColumns[colIndex][rowIndex] != 0: |
1084 |
baseMatrix[rowIndex, colIndex] = \ |
1085 |
protoMatrixColumns[colIndex][rowIndex] |
1086 |
return baseMatrix |
1087 |
# End spo_proto_to_column_matrix. |
1088 |
# |
1089 |
def spo_proto_to_row_matrix(protoMatrixRows): |
1090 |
""" |
1091 |
Create a row (each column holds the coefficients corresponding to one |
1092 |
monomial) matrix from the protoMatrixRows list. |
1093 |
|
1094 |
Parameters |
1095 |
---------- |
1096 |
protoMatrixRows: a list of coefficient lists. |
1097 |
""" |
1098 |
numRows = len(protoMatrixRows) |
1099 |
if numRows == 0: |
1100 |
return None |
1101 |
# Search for the longest row to get the number of columns. |
1102 |
numColumns = 0 |
1103 |
for row in protoMatrixRows: |
1104 |
rowLength = len(row) |
1105 |
if numColumns < rowLength: |
1106 |
numColumns = rowLength |
1107 |
if numColumns == 0: |
1108 |
return None |
1109 |
baseMatrix = matrix(ZZ, numRows, numColumns) |
1110 |
for rowIndex in xrange(0, numRows): |
1111 |
for colIndex in xrange(0, len(protoMatrixRows[rowIndex])): |
1112 |
if protoMatrixRows[rowIndex][colIndex] != 0: |
1113 |
baseMatrix[rowIndex, colIndex] = \ |
1114 |
protoMatrixRows[rowIndex][colIndex] |
1115 |
#print rowIndex, colIndex, |
1116 |
#print protoMatrixRows[rowIndex][colIndex], |
1117 |
#print knownMonomialsList[colIndex](boundVar1,boundVar2) |
1118 |
return baseMatrix |
1119 |
# End spo_proto_to_row_matrix. |
1120 |
# |
1121 |
print "\t...sagePolynomialOperations loaded" |