root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 176
Historique | Voir | Annoter | Télécharger (58 ko)
1 |
r""" |
---|---|
2 |
Sage core functions needed for the implementation of SLZ. |
3 |
|
4 |
AUTHORS: |
5 |
- S.T. (2013-08): initial version |
6 |
|
7 |
Examples: |
8 |
|
9 |
TODO:: |
10 |
""" |
11 |
print "sageSLZ loading..." |
12 |
# |
13 |
def slz_check_htr_value(function, htrValue, lowerBound, upperBound, precision, \ |
14 |
degree, targetHardnessToRound, alpha): |
15 |
""" |
16 |
Check an Hard-to-round value. |
17 |
TODO:: |
18 |
Full rewriting: this is hardly a draft. |
19 |
""" |
20 |
polyApproxPrec = targetHardnessToRound + 1 |
21 |
polyTargetHardnessToRound = targetHardnessToRound + 1 |
22 |
internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
23 |
RRR = htrValue.parent() |
24 |
# |
25 |
## Compute the scaled function. |
26 |
fff = slz_compute_scaled_function(f, lowerBound, upperBound, precision)[0] |
27 |
print "Scaled function:", fff |
28 |
# |
29 |
## Compute the scaling. |
30 |
boundsIntervalRifSa = RealIntervalField(precision) |
31 |
domainBoundsInterval = boundsIntervalRifSa(lowerBound, upperBound) |
32 |
scalingExpressions = \ |
33 |
slz_interval_scaling_expression(domainBoundsInterval, i) |
34 |
# |
35 |
## Get the polynomials, bounds, etc. for all the interval. |
36 |
resultListOfTuplesOfSo = \ |
37 |
slz_get_intervals_and_polynomials(f, degree, lowerBound, upperBound, \ |
38 |
precision, internalSollyaPrec,\ |
39 |
2^-(polyApproxPrec)) |
40 |
# |
41 |
## We only want one interval. |
42 |
if len(resultListOfTuplesOfSo) > 1: |
43 |
print "Too many intervals! Aborting!" |
44 |
exit |
45 |
# |
46 |
## Get the first tuple of Sollya objects as Sage objects. |
47 |
firstTupleSa = \ |
48 |
slz_interval_and_polynomial_to_sage(resultListOfTuplesOfSo[0]) |
49 |
pobyso_set_canonical_on() |
50 |
# |
51 |
print "Floatting point polynomial:", firstTupleSa[0] |
52 |
print "with coefficients precision:", firstTupleSa[0].base_ring().prec() |
53 |
# |
54 |
## From a polynomial over a real ring, create a polynomial over the |
55 |
# rationals ring. |
56 |
rationalPolynomial = \ |
57 |
slz_float_poly_of_float_to_rat_poly_of_rat(firstTupleSa[0]) |
58 |
print "Rational polynomial:", rationalPolynomial |
59 |
# |
60 |
## Create a polynomial over the rationals that will take integer |
61 |
# variables instead of rational. |
62 |
rationalPolynomialOfIntegers = \ |
63 |
slz_rat_poly_of_rat_to_rat_poly_of_int(rationalPolynomial, precision) |
64 |
print "Type:", type(rationalPolynomialOfIntegers) |
65 |
print "Rational polynomial of integers:", rationalPolynomialOfIntegers |
66 |
# |
67 |
## Check the rational polynomial of integers variables. |
68 |
# (check against the scaled function). |
69 |
toIntegerFactor = 2^(precision-1) |
70 |
intervalCenterAsIntegerSa = int(firstTupleSa[3] * toIntegerFactor) |
71 |
print "Interval center as integer:", intervalCenterAsIntegerSa |
72 |
lowerBoundAsIntegerSa = int(firstTupleSa[2].endpoints()[0] * \ |
73 |
toIntegerFactor) - intervalCenterAsIntegerSa |
74 |
upperBoundAsIntegerSa = int(firstTupleSa[2].endpoints()[1] * \ |
75 |
toIntegerFactor) - intervalCenterAsIntegerSa |
76 |
print "Lower bound as integer:", lowerBoundAsIntegerSa |
77 |
print "Upper bound as integer:", upperBoundAsIntegerSa |
78 |
print "Image of the lower bound by the scaled function", \ |
79 |
fff(firstTupleSa[2].endpoints()[0]) |
80 |
print "Image of the lower bound by the approximation polynomial of ints:", \ |
81 |
RRR(rationalPolynomialOfIntegers(lowerBoundAsIntegerSa)) |
82 |
print "Image of the center by the scaled function", fff(firstTupleSa[3]) |
83 |
print "Image of the center by the approximation polynomial of ints:", \ |
84 |
RRR(rationalPolynomialOfIntegers(0)) |
85 |
print "Image of the upper bound by the scaled function", \ |
86 |
fff(firstTupleSa[2].endpoints()[1]) |
87 |
print "Image of the upper bound by the approximation polynomial of ints:", \ |
88 |
RRR(rationalPolynomialOfIntegers(upperBoundAsIntegerSa)) |
89 |
|
90 |
# End slz_check_htr_value. |
91 |
|
92 |
def slz_compute_binade(number): |
93 |
"""" |
94 |
For a given number, compute the "binade" that is integer m such that |
95 |
2^m <= number < 2^(m+1). If number == 0 return None. |
96 |
""" |
97 |
# Checking the parameter. |
98 |
# The exception construction is used to detect if number is a RealNumber |
99 |
# since not all numbers have |
100 |
# the mro() method. sage.rings.real_mpfr.RealNumber do. |
101 |
try: |
102 |
classTree = [number.__class__] + number.mro() |
103 |
# If the number is not a RealNumber (or offspring thereof) try |
104 |
# to transform it. |
105 |
if not sage.rings.real_mpfr.RealNumber in classTree: |
106 |
numberAsRR = RR(number) |
107 |
else: |
108 |
numberAsRR = number |
109 |
except AttributeError: |
110 |
return None |
111 |
# Zero special case. |
112 |
if numberAsRR == 0: |
113 |
return RR(-infinity) |
114 |
else: |
115 |
realField = numberAsRR.parent() |
116 |
numberLog2 = numberAsRR.abs().log2() |
117 |
floorNumberLog2 = floor(numberLog2) |
118 |
## Do not get caught by rounding of log2() both ways. |
119 |
## When numberLog2 is an integer, compare numberAsRR |
120 |
# with 2^numberLog2. |
121 |
if floorNumberLog2 == numberLog2: |
122 |
if numberAsRR.abs() < realField(2^floorNumberLog2): |
123 |
return floorNumberLog2 - 1 |
124 |
else: |
125 |
return floorNumberLog2 |
126 |
else: |
127 |
return floorNumberLog2 |
128 |
# End slz_compute_binade |
129 |
|
130 |
# |
131 |
def slz_compute_binade_bounds(number, emin, emax=sys.maxint): |
132 |
""" |
133 |
For given "real number", compute the bounds of the binade it belongs to. |
134 |
|
135 |
NOTE:: |
136 |
When number >= 2^(emax+1), we return the "fake" binade |
137 |
[2^(emax+1), +infinity]. Ditto for number <= -2^(emax+1) |
138 |
with interval [-infinity, -2^(emax+1)]. We want to distinguish |
139 |
this case from that of "really" invalid arguments. |
140 |
|
141 |
""" |
142 |
# Check the parameters. |
143 |
# RealNumbers or RealNumber offspring only. |
144 |
# The exception construction is necessary since not all objects have |
145 |
# the mro() method. sage.rings.real_mpfr.RealNumber do. |
146 |
try: |
147 |
classTree = [number.__class__] + number.mro() |
148 |
if not sage.rings.real_mpfr.RealNumber in classTree: |
149 |
return None |
150 |
except AttributeError: |
151 |
return None |
152 |
# Non zero negative integers only for emin. |
153 |
if emin >= 0 or int(emin) != emin: |
154 |
return None |
155 |
# Non zero positive integers only for emax. |
156 |
if emax <= 0 or int(emax) != emax: |
157 |
return None |
158 |
precision = number.precision() |
159 |
RF = RealField(precision) |
160 |
if number == 0: |
161 |
return (RF(0),RF(2^(emin)) - RF(2^(emin-precision))) |
162 |
# A more precise RealField is needed to avoid unwanted rounding effects |
163 |
# when computing number.log2(). |
164 |
RRF = RealField(max(2048, 2 * precision)) |
165 |
# number = 0 special case, the binade bounds are |
166 |
# [0, 2^emin - 2^(emin-precision)] |
167 |
# Begin general case |
168 |
l2 = RRF(number).abs().log2() |
169 |
# Another special one: beyond largest representable -> "Fake" binade. |
170 |
if l2 >= emax + 1: |
171 |
if number > 0: |
172 |
return (RF(2^(emax+1)), RF(+infinity) ) |
173 |
else: |
174 |
return (RF(-infinity), -RF(2^(emax+1))) |
175 |
# Regular case cont'd. |
176 |
offset = int(l2) |
177 |
# number.abs() >= 1. |
178 |
if l2 >= 0: |
179 |
if number >= 0: |
180 |
lb = RF(2^offset) |
181 |
ub = RF(2^(offset + 1) - 2^(-precision+offset+1)) |
182 |
else: #number < 0 |
183 |
lb = -RF(2^(offset + 1) - 2^(-precision+offset+1)) |
184 |
ub = -RF(2^offset) |
185 |
else: # log2 < 0, number.abs() < 1. |
186 |
if l2 < emin: # Denormal |
187 |
# print "Denormal:", l2 |
188 |
if number >= 0: |
189 |
lb = RF(0) |
190 |
ub = RF(2^(emin)) - RF(2^(emin-precision)) |
191 |
else: # number <= 0 |
192 |
lb = - RF(2^(emin)) + RF(2^(emin-precision)) |
193 |
ub = RF(0) |
194 |
elif l2 > emin: # Normal number other than +/-2^emin. |
195 |
if number >= 0: |
196 |
if int(l2) == l2: |
197 |
lb = RF(2^(offset)) |
198 |
ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
199 |
else: |
200 |
lb = RF(2^(offset-1)) |
201 |
ub = RF(2^(offset)) - RF(2^(-precision+offset)) |
202 |
else: # number < 0 |
203 |
if int(l2) == l2: # Binade limit. |
204 |
lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
205 |
ub = -RF(2^(offset)) |
206 |
else: |
207 |
lb = -RF(2^(offset) - 2^(-precision+offset)) |
208 |
ub = -RF(2^(offset-1)) |
209 |
else: # l2== emin, number == +/-2^emin |
210 |
if number >= 0: |
211 |
lb = RF(2^(offset)) |
212 |
ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
213 |
else: # number < 0 |
214 |
lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
215 |
ub = -RF(2^(offset)) |
216 |
return (lb, ub) |
217 |
# End slz_compute_binade_bounds |
218 |
# |
219 |
def slz_compute_coppersmith_reduced_polynomials(inputPolynomial, |
220 |
alpha, |
221 |
N, |
222 |
iBound, |
223 |
tBound): |
224 |
""" |
225 |
For a given set of arguments (see below), compute a list |
226 |
of "reduced polynomials" that could be used to compute roots |
227 |
of the inputPolynomial. |
228 |
INPUT: |
229 |
|
230 |
- "inputPolynomial" -- (no default) a bivariate integer polynomial; |
231 |
- "alpha" -- the alpha parameter of the Coppersmith algorithm; |
232 |
- "N" -- the modulus; |
233 |
- "iBound" -- the bound on the first variable; |
234 |
- "tBound" -- the bound on the second variable. |
235 |
|
236 |
OUTPUT: |
237 |
|
238 |
A list of bivariate integer polynomial obtained using the Coppersmith |
239 |
algorithm. The polynomials correspond to the rows of the LLL-reduce |
240 |
reduced base that comply with the Coppersmith condition. |
241 |
""" |
242 |
# Arguments check. |
243 |
if iBound == 0 or tBound == 0: |
244 |
return () |
245 |
# End arguments check. |
246 |
nAtAlpha = N^alpha |
247 |
## Building polynomials for matrix. |
248 |
polyRing = inputPolynomial.parent() |
249 |
# Whatever the 2 variables are actually called, we call them |
250 |
# 'i' and 't' in all the variable names. |
251 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
252 |
#print polyVars[0], type(polyVars[0]) |
253 |
initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
254 |
tVariable:tVariable * tBound}) |
255 |
polynomialsList = \ |
256 |
spo_polynomial_to_polynomials_list_5(initialPolynomial, |
257 |
alpha, |
258 |
N, |
259 |
iBound, |
260 |
tBound, |
261 |
0) |
262 |
#print "Polynomials list:", polynomialsList |
263 |
## Building the proto matrix. |
264 |
knownMonomials = [] |
265 |
protoMatrix = [] |
266 |
for poly in polynomialsList: |
267 |
spo_add_polynomial_coeffs_to_matrix_row(poly, |
268 |
knownMonomials, |
269 |
protoMatrix, |
270 |
0) |
271 |
matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
272 |
#print matrixToReduce |
273 |
## Reduction and checking. |
274 |
## S.T. changed 'fp' to None as of Sage 6.6 complying to |
275 |
# error message issued when previous code was used. |
276 |
#reducedMatrix = matrixToReduce.LLL(fp='fp') |
277 |
reducedMatrix = matrixToReduce.LLL(fp=None) |
278 |
isLLLReduced = reducedMatrix.is_LLL_reduced() |
279 |
if not isLLLReduced: |
280 |
return () |
281 |
monomialsCount = len(knownMonomials) |
282 |
monomialsCountSqrt = sqrt(monomialsCount) |
283 |
#print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
284 |
#print reducedMatrix |
285 |
## Check the Coppersmith condition for each row and build the reduced |
286 |
# polynomials. |
287 |
ccReducedPolynomialsList = [] |
288 |
for row in reducedMatrix.rows(): |
289 |
l2Norm = row.norm(2) |
290 |
if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
291 |
#print (l2Norm * monomialsCountSqrt).n() |
292 |
#print l2Norm.n() |
293 |
ccReducedPolynomial = \ |
294 |
slz_compute_reduced_polynomial(row, |
295 |
knownMonomials, |
296 |
iVariable, |
297 |
iBound, |
298 |
tVariable, |
299 |
tBound) |
300 |
if not ccReducedPolynomial is None: |
301 |
ccReducedPolynomialsList.append(ccReducedPolynomial) |
302 |
else: |
303 |
#print l2Norm.n() , ">", nAtAlpha |
304 |
pass |
305 |
if len(ccReducedPolynomialsList) < 2: |
306 |
print "Less than 2 Coppersmith condition compliant vectors." |
307 |
return () |
308 |
|
309 |
#print ccReducedPolynomialsList |
310 |
return ccReducedPolynomialsList |
311 |
# End slz_compute_coppersmith_reduced_polynomials |
312 |
|
313 |
def slz_compute_integer_polynomial_modular_roots(inputPolynomial, |
314 |
alpha, |
315 |
N, |
316 |
iBound, |
317 |
tBound): |
318 |
""" |
319 |
For a given set of arguments (see below), compute the polynomial modular |
320 |
roots, if any. |
321 |
|
322 |
""" |
323 |
# Arguments check. |
324 |
if iBound == 0 or tBound == 0: |
325 |
return set() |
326 |
# End arguments check. |
327 |
nAtAlpha = N^alpha |
328 |
## Building polynomials for matrix. |
329 |
polyRing = inputPolynomial.parent() |
330 |
# Whatever the 2 variables are actually called, we call them |
331 |
# 'i' and 't' in all the variable names. |
332 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
333 |
ccReducedPolynomialsList = \ |
334 |
slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
335 |
alpha, |
336 |
N, |
337 |
iBound, |
338 |
tBound) |
339 |
if len(ccReducedPolynomialsList) == 0: |
340 |
return set() |
341 |
## Create the valid (poly1 and poly2 are algebraically independent) |
342 |
# resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
343 |
# Try to mix and match all the polynomial pairs built from the |
344 |
# ccReducedPolynomialsList to obtain non zero resultants. |
345 |
resultantsInITuplesList = [] |
346 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
347 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
348 |
len(ccReducedPolynomialsList)): |
349 |
# Compute the resultant in resultants in the |
350 |
# first variable (is it the optimal choice?). |
351 |
resultantInI = \ |
352 |
ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
353 |
ccReducedPolynomialsList[0].parent(str(iVariable))) |
354 |
#print "Resultant", resultantInI |
355 |
# Test algebraic independence. |
356 |
if not resultantInI.is_zero(): |
357 |
resultantsInITuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
358 |
ccReducedPolynomialsList[polyInnerIndex], |
359 |
resultantInI)) |
360 |
# If no non zero resultant was found: we can't get no algebraically |
361 |
# independent polynomials pair. Give up! |
362 |
if len(resultantsInITuplesList) == 0: |
363 |
return set() |
364 |
#print resultantsInITuplesList |
365 |
# Compute the roots. |
366 |
Zi = ZZ[str(iVariable)] |
367 |
Zt = ZZ[str(tVariable)] |
368 |
polynomialRootsSet = set() |
369 |
# First, solve in the second variable since resultants are in the first |
370 |
# variable. |
371 |
for resultantInITuple in resultantsInITuplesList: |
372 |
tRootsList = Zt(resultantInITuple[2]).roots() |
373 |
# For each tRoot, compute the corresponding iRoots and check |
374 |
# them in the input polynomial. |
375 |
for tRoot in tRootsList: |
376 |
#print "tRoot:", tRoot |
377 |
# Roots returned by root() are (value, multiplicity) tuples. |
378 |
iRootsList = \ |
379 |
Zi(resultantInITuple[0].subs({resultantInITuple[0].variables()[1]:tRoot[0]})).roots() |
380 |
print iRootsList |
381 |
# The iRootsList can be empty, hence the test. |
382 |
if len(iRootsList) != 0: |
383 |
for iRoot in iRootsList: |
384 |
polyEvalModN = inputPolynomial(iRoot[0], tRoot[0]) / N |
385 |
# polyEvalModN must be an integer. |
386 |
if polyEvalModN == int(polyEvalModN): |
387 |
polynomialRootsSet.add((iRoot[0],tRoot[0])) |
388 |
return polynomialRootsSet |
389 |
# End slz_compute_integer_polynomial_modular_roots. |
390 |
# |
391 |
def slz_compute_integer_polynomial_modular_roots_2(inputPolynomial, |
392 |
alpha, |
393 |
N, |
394 |
iBound, |
395 |
tBound): |
396 |
""" |
397 |
For a given set of arguments (see below), compute the polynomial modular |
398 |
roots, if any. |
399 |
This version differs in the way resultants are computed. |
400 |
""" |
401 |
# Arguments check. |
402 |
if iBound == 0 or tBound == 0: |
403 |
return set() |
404 |
# End arguments check. |
405 |
nAtAlpha = N^alpha |
406 |
## Building polynomials for matrix. |
407 |
polyRing = inputPolynomial.parent() |
408 |
# Whatever the 2 variables are actually called, we call them |
409 |
# 'i' and 't' in all the variable names. |
410 |
(iVariable, tVariable) = inputPolynomial.variables()[:2] |
411 |
#print polyVars[0], type(polyVars[0]) |
412 |
ccReducedPolynomialsList = \ |
413 |
slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
414 |
alpha, |
415 |
N, |
416 |
iBound, |
417 |
tBound) |
418 |
if len(ccReducedPolynomialsList) == 0: |
419 |
return set() |
420 |
## Create the valid (poly1 and poly2 are algebraically independent) |
421 |
# resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
422 |
# Try to mix and match all the polynomial pairs built from the |
423 |
# ccReducedPolynomialsList to obtain non zero resultants. |
424 |
resultantsInTTuplesList = [] |
425 |
for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
426 |
for polyInnerIndex in xrange(polyOuterIndex+1, |
427 |
len(ccReducedPolynomialsList)): |
428 |
# Compute the resultant in resultants in the |
429 |
# first variable (is it the optimal choice?). |
430 |
resultantInT = \ |
431 |
ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
432 |
ccReducedPolynomialsList[0].parent(str(tVariable))) |
433 |
#print "Resultant", resultantInT |
434 |
# Test algebraic independence. |
435 |
if not resultantInT.is_zero(): |
436 |
resultantsInTTuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
437 |
ccReducedPolynomialsList[polyInnerIndex], |
438 |
resultantInT)) |
439 |
# If no non zero resultant was found: we can't get no algebraically |
440 |
# independent polynomials pair. Give up! |
441 |
if len(resultantsInTTuplesList) == 0: |
442 |
return set() |
443 |
#print resultantsInITuplesList |
444 |
# Compute the roots. |
445 |
Zi = ZZ[str(iVariable)] |
446 |
Zt = ZZ[str(tVariable)] |
447 |
polynomialRootsSet = set() |
448 |
# First, solve in the second variable since resultants are in the first |
449 |
# variable. |
450 |
for resultantInTTuple in resultantsInTTuplesList: |
451 |
iRootsList = Zi(resultantInTTuple[2]).roots() |
452 |
# For each iRoot, compute the corresponding tRoots and check |
453 |
# them in the input polynomial. |
454 |
for iRoot in iRootsList: |
455 |
#print "iRoot:", iRoot |
456 |
# Roots returned by root() are (value, multiplicity) tuples. |
457 |
tRootsList = \ |
458 |
Zt(resultantInTTuple[0].subs({resultantInTTuple[0].variables()[0]:iRoot[0]})).roots() |
459 |
print tRootsList |
460 |
# The tRootsList can be empty, hence the test. |
461 |
if len(tRootsList) != 0: |
462 |
for tRoot in tRootsList: |
463 |
polyEvalModN = inputPolynomial(iRoot[0],tRoot[0]) / N |
464 |
# polyEvalModN must be an integer. |
465 |
if polyEvalModN == int(polyEvalModN): |
466 |
polynomialRootsSet.add((iRoot[0],tRoot[0])) |
467 |
return polynomialRootsSet |
468 |
# End slz_compute_integer_polynomial_modular_roots_2. |
469 |
# |
470 |
def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
471 |
upperBoundSa, approxPrecSa, |
472 |
sollyaPrecSa=None): |
473 |
""" |
474 |
Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
475 |
a polynomial that approximates the function on a an interval starting |
476 |
at lowerBoundSa and finishing at a value that guarantees that the polynomial |
477 |
approximates with the expected precision. |
478 |
The interval upper bound is lowered until the expected approximation |
479 |
precision is reached. |
480 |
The polynomial, the bounds, the center of the interval and the error |
481 |
are returned. |
482 |
OUTPUT: |
483 |
A tuple made of 4 Sollya objects: |
484 |
- a polynomial; |
485 |
- an range (an interval, not in the sense of number given as an interval); |
486 |
- the center of the interval; |
487 |
- the maximum error in the approximation of the input functionSo by the |
488 |
output polynomial ; this error <= approxPrecSaS. |
489 |
|
490 |
""" |
491 |
## Superficial argument check. |
492 |
if lowerBoundSa > upperBoundSa: |
493 |
return None |
494 |
RRR = lowerBoundSa.parent() |
495 |
intervalShrinkConstFactorSa = RRR('0.9') |
496 |
absoluteErrorTypeSo = pobyso_absolute_so_so() |
497 |
currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
498 |
currentUpperBoundSa = upperBoundSa |
499 |
currentLowerBoundSa = lowerBoundSa |
500 |
# What we want here is the polynomial without the variable change, |
501 |
# since our actual variable will be x-intervalCenter defined over the |
502 |
# domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
503 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
504 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
505 |
currentRangeSo, |
506 |
absoluteErrorTypeSo) |
507 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
508 |
while maxErrorSa > approxPrecSa: |
509 |
print "++Approximation error:", maxErrorSa |
510 |
sollya_lib_clear_obj(polySo) |
511 |
sollya_lib_clear_obj(intervalCenterSo) |
512 |
sollya_lib_clear_obj(maxErrorSo) |
513 |
# Very empirical schrinking factor. |
514 |
shrinkFactorSa = 1 / (maxErrorSa/approxPrecSa).log2().abs() |
515 |
print "Shrink factor:", shrinkFactorSa, intervalShrinkConstFactorSa |
516 |
#errorRatioSa = approxPrecSa/maxErrorSa |
517 |
#print "Error ratio: ", errorRatioSa |
518 |
if shrinkFactorSa > intervalShrinkConstFactorSa: |
519 |
actualShrinkFactorSa = intervalShrinkConstFactorSa |
520 |
#print "Fixed" |
521 |
else: |
522 |
actualShrinkFactorSa = shrinkFactorSa |
523 |
#print "Computed",shrinkFactorSa,maxErrorSa |
524 |
#print shrinkFactorSa, maxErrorSa |
525 |
#print "Shrink factor", actualShrinkFactorSa |
526 |
currentUpperBoundSa = currentLowerBoundSa + \ |
527 |
(currentUpperBoundSa - currentLowerBoundSa) * \ |
528 |
actualShrinkFactorSa |
529 |
#print "Current upper bound:", currentUpperBoundSa |
530 |
sollya_lib_clear_obj(currentRangeSo) |
531 |
if currentUpperBoundSa <= currentLowerBoundSa or \ |
532 |
currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
533 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
534 |
print "Can't find an interval." |
535 |
print "Use either or both a higher polynomial degree or a higher", |
536 |
print "internal precision." |
537 |
print "Aborting!" |
538 |
return (None, None, None, None) |
539 |
currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
540 |
currentUpperBoundSa) |
541 |
# print "New interval:", |
542 |
# pobyso_autoprint(currentRangeSo) |
543 |
#print "Second Taylor expansion call." |
544 |
(polySo, intervalCenterSo, maxErrorSo) = \ |
545 |
pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
546 |
currentRangeSo, |
547 |
absoluteErrorTypeSo) |
548 |
#maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
549 |
#print "Max errorSo:", |
550 |
#pobyso_autoprint(maxErrorSo) |
551 |
maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
552 |
#print "Max errorSa:", maxErrorSa |
553 |
#print "Sollya prec:", |
554 |
#pobyso_autoprint(sollya_lib_get_prec(None)) |
555 |
sollya_lib_clear_obj(absoluteErrorTypeSo) |
556 |
return (polySo, currentRangeSo, intervalCenterSo, maxErrorSo) |
557 |
# End slz_compute_polynomial_and_interval |
558 |
|
559 |
def slz_compute_reduced_polynomial(matrixRow, |
560 |
knownMonomials, |
561 |
var1, |
562 |
var1Bound, |
563 |
var2, |
564 |
var2Bound): |
565 |
""" |
566 |
Compute a polynomial from a single reduced matrix row. |
567 |
This function was introduced in order to avoid the computation of the |
568 |
all the polynomials from the full matrix (even those built from rows |
569 |
that do no verify the Coppersmith condition) as this may involves |
570 |
expensive operations over (large) integers. |
571 |
""" |
572 |
## Check arguments. |
573 |
if len(knownMonomials) == 0: |
574 |
return None |
575 |
# varNounds can be zero since 0^0 returns 1. |
576 |
if (var1Bound < 0) or (var2Bound < 0): |
577 |
return None |
578 |
## Initialisations. |
579 |
polynomialRing = knownMonomials[0].parent() |
580 |
currentPolynomial = polynomialRing(0) |
581 |
# TODO: use zip instead of indices. |
582 |
for colIndex in xrange(0, len(knownMonomials)): |
583 |
currentCoefficient = matrixRow[colIndex] |
584 |
if currentCoefficient != 0: |
585 |
#print "Current coefficient:", currentCoefficient |
586 |
currentMonomial = knownMonomials[colIndex] |
587 |
#print "Monomial as multivariate polynomial:", \ |
588 |
#currentMonomial, type(currentMonomial) |
589 |
degreeInVar1 = currentMonomial.degree(var1) |
590 |
#print "Degree in var1", var1, ":", degreeInVar1 |
591 |
degreeInVar2 = currentMonomial.degree(var2) |
592 |
#print "Degree in var2", var2, ":", degreeInVar2 |
593 |
if degreeInVar1 > 0: |
594 |
currentCoefficient = \ |
595 |
currentCoefficient / (var1Bound^degreeInVar1) |
596 |
#print "varBound1 in degree:", var1Bound^degreeInVar1 |
597 |
#print "Current coefficient(1)", currentCoefficient |
598 |
if degreeInVar2 > 0: |
599 |
currentCoefficient = \ |
600 |
currentCoefficient / (var2Bound^degreeInVar2) |
601 |
#print "Current coefficient(2)", currentCoefficient |
602 |
#print "Current reduced monomial:", (currentCoefficient * \ |
603 |
# currentMonomial) |
604 |
currentPolynomial += (currentCoefficient * currentMonomial) |
605 |
#print "Current polynomial:", currentPolynomial |
606 |
# End if |
607 |
# End for colIndex. |
608 |
#print "Type of the current polynomial:", type(currentPolynomial) |
609 |
return(currentPolynomial) |
610 |
# End slz_compute_reduced_polynomial |
611 |
# |
612 |
def slz_compute_reduced_polynomials(reducedMatrix, |
613 |
knownMonomials, |
614 |
var1, |
615 |
var1Bound, |
616 |
var2, |
617 |
var2Bound): |
618 |
""" |
619 |
Legacy function, use slz_compute_reduced_polynomials_list |
620 |
""" |
621 |
return(slz_compute_reduced_polynomials_list(reducedMatrix, |
622 |
knownMonomials, |
623 |
var1, |
624 |
var1Bound, |
625 |
var2, |
626 |
var2Bound) |
627 |
) |
628 |
def slz_compute_reduced_polynomials_list(reducedMatrix, |
629 |
knownMonomials, |
630 |
var1, |
631 |
var1Bound, |
632 |
var2, |
633 |
var2Bound): |
634 |
""" |
635 |
From a reduced matrix, holding the coefficients, from a monomials list, |
636 |
from the bounds of each variable, compute the corresponding polynomials |
637 |
scaled back by dividing by the "right" powers of the variables bounds. |
638 |
|
639 |
The elements in knownMonomials must be of the "right" polynomial type. |
640 |
They set the polynomial type of the output polynomials in list. |
641 |
@param reducedMatrix: the reduced matrix as output from LLL; |
642 |
@param kwnonMonomials: the ordered list of the monomials used to |
643 |
build the polynomials; |
644 |
@param var1: the first variable (of the "right" type); |
645 |
@param var1Bound: the first variable bound; |
646 |
@param var2: the second variable (of the "right" type); |
647 |
@param var2Bound: the second variable bound. |
648 |
@return: a list of polynomials obtained with the reduced coefficients |
649 |
and scaled down with the bounds |
650 |
""" |
651 |
|
652 |
# TODO: check input arguments. |
653 |
reducedPolynomials = [] |
654 |
#print "type var1:", type(var1), " - type var2:", type(var2) |
655 |
for matrixRow in reducedMatrix.rows(): |
656 |
currentPolynomial = 0 |
657 |
for colIndex in xrange(0, len(knownMonomials)): |
658 |
currentCoefficient = matrixRow[colIndex] |
659 |
if currentCoefficient != 0: |
660 |
#print "Current coefficient:", currentCoefficient |
661 |
currentMonomial = knownMonomials[colIndex] |
662 |
parentRing = currentMonomial.parent() |
663 |
#print "Monomial as multivariate polynomial:", \ |
664 |
#currentMonomial, type(currentMonomial) |
665 |
degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
666 |
#print "Degree in var", var1, ":", degreeInVar1 |
667 |
degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
668 |
#print "Degree in var", var2, ":", degreeInVar2 |
669 |
if degreeInVar1 > 0: |
670 |
currentCoefficient /= var1Bound^degreeInVar1 |
671 |
#print "varBound1 in degree:", var1Bound^degreeInVar1 |
672 |
#print "Current coefficient(1)", currentCoefficient |
673 |
if degreeInVar2 > 0: |
674 |
currentCoefficient /= var2Bound^degreeInVar2 |
675 |
#print "Current coefficient(2)", currentCoefficient |
676 |
#print "Current reduced monomial:", (currentCoefficient * \ |
677 |
# currentMonomial) |
678 |
currentPolynomial += (currentCoefficient * currentMonomial) |
679 |
#if degreeInVar1 == 0 and degreeInVar2 == 0: |
680 |
#print "!!!! constant term !!!!" |
681 |
#print "Current polynomial:", currentPolynomial |
682 |
# End if |
683 |
# End for colIndex. |
684 |
#print "Type of the current polynomial:", type(currentPolynomial) |
685 |
reducedPolynomials.append(currentPolynomial) |
686 |
return reducedPolynomials |
687 |
# End slz_compute_reduced_polynomials. |
688 |
|
689 |
def slz_compute_scaled_function(functionSa, |
690 |
lowerBoundSa, |
691 |
upperBoundSa, |
692 |
floatingPointPrecSa, |
693 |
debug=False): |
694 |
""" |
695 |
From a function, compute the scaled function whose domain |
696 |
is included in [1, 2) and whose image is also included in [1,2). |
697 |
Return a tuple: |
698 |
[0]: the scaled function |
699 |
[1]: the scaled domain lower bound |
700 |
[2]: the scaled domain upper bound |
701 |
[3]: the scaled image lower bound |
702 |
[4]: the scaled image upper bound |
703 |
""" |
704 |
x = functionSa.variables()[0] |
705 |
# Reassert f as a function (an not a mere expression). |
706 |
|
707 |
# Scalling the domain -> [1,2[. |
708 |
boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
709 |
domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
710 |
(invDomainScalingExpressionSa, domainScalingExpressionSa) = \ |
711 |
slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
712 |
if debug: |
713 |
print "domainScalingExpression for argument :", \ |
714 |
invDomainScalingExpressionSa |
715 |
print "f: ", f |
716 |
ff = f.subs({x : domainScalingExpressionSa}) |
717 |
#ff = f.subs_expr(x==domainScalingExpressionSa) |
718 |
domainScalingFunction(x) = invDomainScalingExpressionSa |
719 |
scaledLowerBoundSa = \ |
720 |
domainScalingFunction(lowerBoundSa).n(prec=floatingPointPrecSa) |
721 |
scaledUpperBoundSa = \ |
722 |
domainScalingFunction(upperBoundSa).n(prec=floatingPointPrecSa) |
723 |
if debug: |
724 |
print 'ff:', ff, "- Domain:", scaledLowerBoundSa, \ |
725 |
scaledUpperBoundSa |
726 |
# |
727 |
# Scalling the image -> [1,2[. |
728 |
flbSa = ff(scaledLowerBoundSa).n(prec=floatingPointPrecSa) |
729 |
fubSa = ff(scaledUpperBoundSa).n(prec=floatingPointPrecSa) |
730 |
if flbSa <= fubSa: # Increasing |
731 |
imageBinadeBottomSa = floor(flbSa.log2()) |
732 |
else: # Decreasing |
733 |
imageBinadeBottomSa = floor(fubSa.log2()) |
734 |
if debug: |
735 |
print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
736 |
imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
737 |
(invImageScalingExpressionSa,imageScalingExpressionSa) = \ |
738 |
slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
739 |
if debug: |
740 |
print "imageScalingExpression for argument :", \ |
741 |
invImageScalingExpressionSa |
742 |
iis = invImageScalingExpressionSa.function(x) |
743 |
fff = iis.subs({x:ff}) |
744 |
if debug: |
745 |
print "fff:", fff, |
746 |
print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
747 |
return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
748 |
fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
749 |
# End slz_compute_scaled_function |
750 |
|
751 |
def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
752 |
# Create a polynomial over the rationals. |
753 |
polynomialRing = QQ[str(polyOfFloat.variables()[0])] |
754 |
return(polynomialRing(polyOfFloat)) |
755 |
# End slz_float_poly_of_float_to_rat_poly_of_rat. |
756 |
|
757 |
def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
758 |
lowerBoundSa, |
759 |
upperBoundSa, floatingPointPrecSa, |
760 |
internalSollyaPrecSa, approxPrecSa): |
761 |
""" |
762 |
Under the assumption that: |
763 |
- functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
764 |
- lowerBound and upperBound belong to the same binade. |
765 |
from a: |
766 |
- function; |
767 |
- a degree |
768 |
- a pair of bounds; |
769 |
- the floating-point precision we work on; |
770 |
- the internal Sollya precision; |
771 |
- the requested approximation error |
772 |
The initial interval is, possibly, splitted into smaller intervals. |
773 |
It return a list of tuples, each made of: |
774 |
- a first polynomial (without the changed variable f(x) = p(x-x0)); |
775 |
- a second polynomial (with a changed variable f(x) = q(x)) |
776 |
- the approximation interval; |
777 |
- the center, x0, of the interval; |
778 |
- the corresponding approximation error. |
779 |
TODO: fix endless looping for some parameters sets. |
780 |
""" |
781 |
resultArray = [] |
782 |
# Set Sollya to the necessary internal precision. |
783 |
precChangedSa = False |
784 |
currentSollyaPrecSo = pobyso_get_prec_so() |
785 |
currentSollyaPrecSa = pobyso_constant_from_int_so_sa(currentSollyaPrecSo) |
786 |
if internalSollyaPrecSa > currentSollyaPrecSa: |
787 |
pobyso_set_prec_sa_so(internalSollyaPrecSa) |
788 |
precChangedSa = True |
789 |
# |
790 |
x = functionSa.variables()[0] # Actual variable name can be anything. |
791 |
# Scaled function: [1=,2] -> [1,2]. |
792 |
(fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
793 |
scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
794 |
slz_compute_scaled_function(functionSa, \ |
795 |
lowerBoundSa, \ |
796 |
upperBoundSa, \ |
797 |
floatingPointPrecSa) |
798 |
# In case bounds were in the negative real one may need to |
799 |
# switch scaled bounds. |
800 |
if scaledLowerBoundSa > scaledUpperBoundSa: |
801 |
scaledLowerBoundSa, scaledUpperBoundSa = \ |
802 |
scaledUpperBoundSa, scaledLowerBoundSa |
803 |
#print "Switching!" |
804 |
print "Approximation precision: ", RR(approxPrecSa) |
805 |
# Prepare the arguments for the Taylor expansion computation with Sollya. |
806 |
functionSo = \ |
807 |
pobyso_parse_string_sa_so(fff._assume_str().replace('_SAGE_VAR_', '')) |
808 |
degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
809 |
scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
810 |
scaledUpperBoundSa) |
811 |
|
812 |
realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
813 |
upperBoundSa.parent().precision())) |
814 |
currentScaledLowerBoundSa = scaledLowerBoundSa |
815 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
816 |
while True: |
817 |
## Compute the first Taylor expansion. |
818 |
print "Computing a Taylor expansion..." |
819 |
(polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
820 |
slz_compute_polynomial_and_interval(functionSo, degreeSo, |
821 |
currentScaledLowerBoundSa, |
822 |
currentScaledUpperBoundSa, |
823 |
approxPrecSa, internalSollyaPrecSa) |
824 |
print "...done." |
825 |
## If slz_compute_polynomial_and_interval fails, it returns None. |
826 |
# This value goes to the first variable: polySo. Other variables are |
827 |
# not assigned and should not be tested. |
828 |
if polySo is None: |
829 |
print "slz_get_intervals_and_polynomials: Aborting and returning None!" |
830 |
if precChangedSa: |
831 |
pobyso_set_prec_so_so(currentSollyaPrecSo) |
832 |
sollya_lib_clear_obj(currentSollyaPrecSo) |
833 |
sollya_lib_clear_obj(functionSo) |
834 |
sollya_lib_clear_obj(degreeSo) |
835 |
sollya_lib_clear_obj(scaledBoundsSo) |
836 |
return None |
837 |
## Add to the result array. |
838 |
### Change variable stuff in Sollya x -> x0-x. |
839 |
changeVarExpressionSo = \ |
840 |
sollya_lib_build_function_sub( \ |
841 |
sollya_lib_build_function_free_variable(), |
842 |
sollya_lib_copy_obj(intervalCenterSo)) |
843 |
polyVarChangedSo = \ |
844 |
sollya_lib_evaluate(polySo, changeVarExpressionSo) |
845 |
#### Get rid of the variable change Sollya stuff. |
846 |
sollya_lib_clear_obj(changeVarExpressionSo) |
847 |
resultArray.append((polySo, polyVarChangedSo, boundsSo, |
848 |
intervalCenterSo, maxErrorSo)) |
849 |
boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
850 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
851 |
print "Computed approximation error:", errorSa.n(digits=10) |
852 |
# If the error and interval are OK a the first try, just return. |
853 |
if (boundsSa.endpoints()[1] >= scaledUpperBoundSa) and \ |
854 |
(errorSa <= approxPrecSa): |
855 |
if precChangedSa: |
856 |
pobyso_set_prec_sa_so(currentSollyaPrecSa) |
857 |
sollya_lib_clear_obj(currentSollyaPrecSo) |
858 |
sollya_lib_clear_obj(functionSo) |
859 |
sollya_lib_clear_obj(degreeSo) |
860 |
sollya_lib_clear_obj(scaledBoundsSo) |
861 |
#print "Approximation error:", errorSa |
862 |
return resultArray |
863 |
## The returned interval upper bound does not reach the requested upper |
864 |
# upper bound: compute the next upper bound. |
865 |
## The following ratio is always >= 1. If errorSa, we may want to |
866 |
# enlarge the interval |
867 |
currentErrorRatio = approxPrecSa / errorSa |
868 |
## --|--------------------------------------------------------------|-- |
869 |
# --|--------------------|-------------------------------------------- |
870 |
# --|----------------------------|------------------------------------ |
871 |
## Starting point for the next upper bound. |
872 |
boundsWidthSa = boundsSa.endpoints()[1] - boundsSa.endpoints()[0] |
873 |
# Compute the increment. |
874 |
newBoundsWidthSa = \ |
875 |
((currentErrorRatio.log() / 10) + 1) * boundsWidthSa |
876 |
currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
877 |
currentScaledUpperBoundSa = boundsSa.endpoints()[1] + newBoundsWidthSa |
878 |
# Take into account the original interval upper bound. |
879 |
if currentScaledUpperBoundSa > scaledUpperBoundSa: |
880 |
currentScaledUpperBoundSa = scaledUpperBoundSa |
881 |
if currentScaledUpperBoundSa == currentScaledLowerBoundSa: |
882 |
print "Can't shrink the interval anymore!" |
883 |
print "You should consider increasing the Sollya internal precision" |
884 |
print "or the polynomial degree." |
885 |
print "Giving up!" |
886 |
if precChangedSa: |
887 |
pobyso_set_prec_sa_so(currentSollyaPrecSa) |
888 |
sollya_lib_clear_obj(currentSollyaPrecSo) |
889 |
sollya_lib_clear_obj(functionSo) |
890 |
sollya_lib_clear_obj(degreeSo) |
891 |
sollya_lib_clear_obj(scaledBoundsSo) |
892 |
return None |
893 |
# Compute the other expansions. |
894 |
# Test for insufficient precision. |
895 |
# End slz_get_intervals_and_polynomials |
896 |
|
897 |
def slz_interval_scaling_expression(boundsInterval, expVar): |
898 |
""" |
899 |
Compute the scaling expression to map an interval that spans at most |
900 |
a single binade into [1, 2) and the inverse expression as well. |
901 |
If the interval spans more than one binade, result is wrong since |
902 |
scaling is only based on the lower bound. |
903 |
Not very sure that the transformation makes sense for negative numbers. |
904 |
""" |
905 |
# The "one of the bounds is 0" special case. Here we consider |
906 |
# the interval as the subnormals binade. |
907 |
if boundsInterval.endpoints()[0] == 0 or boundsInterval.endpoints()[1] == 0: |
908 |
# The upper bound is (or should be) positive. |
909 |
if boundsInterval.endpoints()[0] == 0: |
910 |
if boundsInterval.endpoints()[1] == 0: |
911 |
return None |
912 |
binade = slz_compute_binade(boundsInterval.endpoints()[1]) |
913 |
l2 = boundsInterval.endpoints()[1].abs().log2() |
914 |
# The upper bound is a power of two |
915 |
if binade == l2: |
916 |
scalingCoeff = 2^(-binade) |
917 |
invScalingCoeff = 2^(binade) |
918 |
scalingOffset = 1 |
919 |
return((scalingCoeff * expVar + scalingOffset),\ |
920 |
((expVar - scalingOffset) * invScalingCoeff)) |
921 |
else: |
922 |
scalingCoeff = 2^(-binade-1) |
923 |
invScalingCoeff = 2^(binade+1) |
924 |
scalingOffset = 1 |
925 |
return((scalingCoeff * expVar + scalingOffset),\ |
926 |
((expVar - scalingOffset) * invScalingCoeff)) |
927 |
# The lower bound is (or should be) negative. |
928 |
if boundsInterval.endpoints()[1] == 0: |
929 |
if boundsInterval.endpoints()[0] == 0: |
930 |
return None |
931 |
binade = slz_compute_binade(boundsInterval.endpoints()[0]) |
932 |
l2 = boundsInterval.endpoints()[0].abs().log2() |
933 |
# The upper bound is a power of two |
934 |
if binade == l2: |
935 |
scalingCoeff = -2^(-binade) |
936 |
invScalingCoeff = -2^(binade) |
937 |
scalingOffset = 1 |
938 |
return((scalingCoeff * expVar + scalingOffset),\ |
939 |
((expVar - scalingOffset) * invScalingCoeff)) |
940 |
else: |
941 |
scalingCoeff = -2^(-binade-1) |
942 |
invScalingCoeff = -2^(binade+1) |
943 |
scalingOffset = 1 |
944 |
return((scalingCoeff * expVar + scalingOffset),\ |
945 |
((expVar - scalingOffset) * invScalingCoeff)) |
946 |
# General case |
947 |
lbBinade = slz_compute_binade(boundsInterval.endpoints()[0]) |
948 |
ubBinade = slz_compute_binade(boundsInterval.endpoints()[1]) |
949 |
# We allow for a single exception in binade spanning is when the |
950 |
# "outward bound" is a power of 2 and its binade is that of the |
951 |
# "inner bound" + 1. |
952 |
if boundsInterval.endpoints()[0] > 0: |
953 |
ubL2 = boundsInterval.endpoints()[1].abs().log2() |
954 |
if lbBinade != ubBinade: |
955 |
print "Different binades." |
956 |
if ubL2 != ubBinade: |
957 |
print "Not a power of 2." |
958 |
return None |
959 |
elif abs(ubBinade - lbBinade) > 1: |
960 |
print "Too large span:", abs(ubBinade - lbBinade) |
961 |
return None |
962 |
else: |
963 |
lbL2 = boundsInterval.endpoints()[0].abs().log2() |
964 |
if lbBinade != ubBinade: |
965 |
print "Different binades." |
966 |
if lbL2 != lbBinade: |
967 |
print "Not a power of 2." |
968 |
return None |
969 |
elif abs(ubBinade - lbBinade) > 1: |
970 |
print "Too large span:", abs(ubBinade - lbBinade) |
971 |
return None |
972 |
#print "Lower bound binade:", binade |
973 |
if boundsInterval.endpoints()[0] > 0: |
974 |
return((2^(-lbBinade) * expVar),(2^(lbBinade) * expVar)) |
975 |
else: |
976 |
return((-(2^(-ubBinade)) * expVar),(-(2^(ubBinade)) * expVar)) |
977 |
""" |
978 |
# Code sent to attic. Should be the base for a |
979 |
# "slz_interval_translate_expression" rather than scale. |
980 |
# Extra control and special cases code added in |
981 |
# slz_interval_scaling_expression could (should ?) be added to |
982 |
# this new function. |
983 |
# The scaling offset is only used for negative numbers. |
984 |
# When the absolute value of the lower bound is < 0. |
985 |
if abs(boundsInterval.endpoints()[0]) < 1: |
986 |
if boundsInterval.endpoints()[0] >= 0: |
987 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
988 |
invScalingCoeff = 1/scalingCoeff |
989 |
return((scalingCoeff * expVar, |
990 |
invScalingCoeff * expVar)) |
991 |
else: |
992 |
scalingCoeff = \ |
993 |
2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
994 |
scalingOffset = -3 * scalingCoeff |
995 |
return((scalingCoeff * expVar + scalingOffset, |
996 |
1/scalingCoeff * expVar + 3)) |
997 |
else: |
998 |
if boundsInterval.endpoints()[0] >= 0: |
999 |
scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
1000 |
scalingOffset = 0 |
1001 |
return((scalingCoeff * expVar, |
1002 |
1/scalingCoeff * expVar)) |
1003 |
else: |
1004 |
scalingCoeff = \ |
1005 |
2^(floor((-boundsInterval.endpoints()[1]).log2())) |
1006 |
scalingOffset = -3 * scalingCoeff |
1007 |
#scalingOffset = 0 |
1008 |
return((scalingCoeff * expVar + scalingOffset, |
1009 |
1/scalingCoeff * expVar + 3)) |
1010 |
""" |
1011 |
# End slz_interval_scaling_expression |
1012 |
|
1013 |
def slz_interval_and_polynomial_to_sage(polyRangeCenterErrorSo): |
1014 |
""" |
1015 |
Compute the Sage version of the Taylor polynomial and it's |
1016 |
companion data (interval, center...) |
1017 |
The input parameter is a five elements tuple: |
1018 |
- [0]: the polyomial (without variable change), as polynomial over a |
1019 |
real ring; |
1020 |
- [1]: the polyomial (with variable change done in Sollya), as polynomial |
1021 |
over a real ring; |
1022 |
- [2]: the interval (as Sollya range); |
1023 |
- [3]: the interval center; |
1024 |
- [4]: the approximation error. |
1025 |
|
1026 |
The function return a 5 elements tuple: formed with all the |
1027 |
input elements converted into their Sollya counterpart. |
1028 |
""" |
1029 |
polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
1030 |
polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
1031 |
intervalSa = \ |
1032 |
pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
1033 |
centerSa = \ |
1034 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
1035 |
errorSa = \ |
1036 |
pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
1037 |
return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
1038 |
# End slz_interval_and_polynomial_to_sage |
1039 |
|
1040 |
def slz_is_htrn(argument, function, targetAccuracy, targetRF = None, |
1041 |
targetPlusOnePrecRF = None, quasiExactRF = None): |
1042 |
""" |
1043 |
Check if an element (argument) of the domain of function (function) |
1044 |
yields a HTRN case (rounding to next) for the target precision |
1045 |
(as impersonated by targetRF) for a given accuracy (targetAccuraty). |
1046 |
""" |
1047 |
## Arguments filtering. TODO: filter the first argument for consistence. |
1048 |
## If no target accuracy is given, assume it is that of the argument. |
1049 |
if targetRF is None: |
1050 |
targetRF = argument.parent() |
1051 |
## Ditto for the real field holding the midpoints. |
1052 |
if targetPlusOnePrecRF is None: |
1053 |
targetPlusOnePrecRF = RealField(targetRF.prec()+1) |
1054 |
## Create a high accuracy RealField |
1055 |
if quasiExactRF is None: |
1056 |
quasiExactRF = RealField(1536) |
1057 |
|
1058 |
exactArgument = quasiExactRF(argument) |
1059 |
quasiExactValue = function(exactArgument) |
1060 |
roundedValue = targetRF(quasiExactValue) |
1061 |
roundedValuePrecPlusOne = targetPlusOnePrecRF(roundedValue) |
1062 |
# Upper midpoint. |
1063 |
roundedValuePrecPlusOneNext = roundedValuePrecPlusOne.nextabove() |
1064 |
# Lower midpoint. |
1065 |
roundedValuePrecPlusOnePrev = roundedValuePrecPlusOne.nextbelow() |
1066 |
binade = slz_compute_binade(roundedValue) |
1067 |
binadeCorrectedTargetAccuracy = targetAccuracy * 2^binade |
1068 |
#print "Argument:", argument |
1069 |
#print "f(x):", roundedValue, binade, floor(binade), ceil(binade) |
1070 |
#print "Binade:", binade |
1071 |
#print "binadeCorrectedTargetAccuracy:", \ |
1072 |
#binadeCorrectedTargetAccuracy.n(prec=100) |
1073 |
#print "binadeCorrectedTargetAccuracy:", \ |
1074 |
# binadeCorrectedTargetAccuracy.n(prec=100).str(base=2) |
1075 |
#print "Upper midpoint:", \ |
1076 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1077 |
#print "Rounded value :", \ |
1078 |
# roundedValuePrecPlusOne.n(prec=targetPlusOnePrecRF.prec()).str(base=2), \ |
1079 |
# roundedValuePrecPlusOne.ulp().n(prec=2).str(base=2) |
1080 |
#print "QuasiEx value :", quasiExactValue.n(prec=250).str(base=2) |
1081 |
#print "Lower midpoint:", \ |
1082 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1083 |
## Begining of the general case : check with the midpoint with |
1084 |
# greatest absolute value. |
1085 |
if quasiExactValue > 0: |
1086 |
if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) <\ |
1087 |
binadeCorrectedTargetAccuracy: |
1088 |
#print "Too close to the upper midpoint: ", \ |
1089 |
#abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100) |
1090 |
#print argument.n().str(base=16, \ |
1091 |
# no_sci=False) |
1092 |
#print "Lower midpoint:", \ |
1093 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1094 |
#print "Value :", \ |
1095 |
# quasiExactValue.n(prec=200).str(base=2) |
1096 |
#print "Upper midpoint:", \ |
1097 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1098 |
|
1099 |
return True |
1100 |
else: |
1101 |
if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) < \ |
1102 |
binadeCorrectedTargetAccuracy: |
1103 |
#print "Too close to the upper midpoint: ", \ |
1104 |
# abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100) |
1105 |
#print argument.n().str(base=16, \ |
1106 |
# no_sci=False) |
1107 |
#print "Lower midpoint:", \ |
1108 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1109 |
#print "Value :", \ |
1110 |
# quasiExactValue.n(prec=200).str(base=2) |
1111 |
#print "Upper midpoint:", \ |
1112 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1113 |
|
1114 |
return True |
1115 |
#2345678901234567890123456789012345678901234567890123456789012345678901234567890 |
1116 |
## For the midpoint of smaller absolute value, |
1117 |
# split cases with the powers of 2. |
1118 |
if sno_abs_is_power_of_two(roundedValue): |
1119 |
if quasiExactValue > 0: |
1120 |
if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) <\ |
1121 |
binadeCorrectedTargetAccuracy / 2: |
1122 |
#print "Lower midpoint:", \ |
1123 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1124 |
#print "Value :", \ |
1125 |
# quasiExactValue.n(prec=200).str(base=2) |
1126 |
#print "Upper midpoint:", \ |
1127 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1128 |
|
1129 |
return True |
1130 |
else: |
1131 |
if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) < \ |
1132 |
binadeCorrectedTargetAccuracy / 2: |
1133 |
#print "Lower midpoint:", \ |
1134 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1135 |
#print "Value :", |
1136 |
# quasiExactValue.n(prec=200).str(base=2) |
1137 |
#print "Upper midpoint:", |
1138 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1139 |
|
1140 |
return True |
1141 |
#2345678901234567890123456789012345678901234567890123456789012345678901234567890 |
1142 |
else: ## Not a power of 2, regular comparison with the midpoint of |
1143 |
# smaller absolute value. |
1144 |
if quasiExactValue > 0: |
1145 |
if abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue) < \ |
1146 |
binadeCorrectedTargetAccuracy: |
1147 |
#print "Lower midpoint:", \ |
1148 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1149 |
#print "Value :", \ |
1150 |
# quasiExactValue.n(prec=200).str(base=2) |
1151 |
#print "Upper midpoint:", \ |
1152 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1153 |
|
1154 |
return True |
1155 |
else: # quasiExactValue <= 0 |
1156 |
if abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue) < \ |
1157 |
binadeCorrectedTargetAccuracy: |
1158 |
#print "Lower midpoint:", \ |
1159 |
# roundedValuePrecPlusOnePrev.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1160 |
#print "Value :", \ |
1161 |
# quasiExactValue.n(prec=200).str(base=2) |
1162 |
#print "Upper midpoint:", \ |
1163 |
# roundedValuePrecPlusOneNext.n(prec=targetPlusOnePrecRF.prec()).str(base=2) |
1164 |
|
1165 |
return True |
1166 |
#print "distance to the upper midpoint:", \ |
1167 |
# abs(quasiExactRF(roundedValuePrecPlusOneNext) - quasiExactValue).n(prec=100).str(base=2) |
1168 |
#print "distance to the lower midpoint:", \ |
1169 |
# abs(quasiExactRF(roundedValuePrecPlusOnePrev) - quasiExactValue).n(prec=100).str(base=2) |
1170 |
return False |
1171 |
# End slz_is_htrn |
1172 |
|
1173 |
def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
1174 |
precision, |
1175 |
targetHardnessToRound, |
1176 |
variable1, |
1177 |
variable2): |
1178 |
""" |
1179 |
Creates a new multivariate polynomial with integer coefficients for use |
1180 |
with the Coppersmith method. |
1181 |
A the same time it computes : |
1182 |
- 2^K (N); |
1183 |
- 2^k (bound on the second variable) |
1184 |
- lcm |
1185 |
|
1186 |
:param ratPolyOfInt: a polynomial with rational coefficients and integer |
1187 |
variables. |
1188 |
:param precision: the precision of the floating-point coefficients. |
1189 |
:param targetHardnessToRound: the hardness to round we want to check. |
1190 |
:param variable1: the first variable of the polynomial (an expression). |
1191 |
:param variable2: the second variable of the polynomial (an expression). |
1192 |
|
1193 |
:returns: a 4 elements tuple: |
1194 |
- the polynomial; |
1195 |
- the modulus (N); |
1196 |
- the t bound; |
1197 |
- the lcm used to compute the integral coefficients and the |
1198 |
module. |
1199 |
""" |
1200 |
# Create a new integer polynomial ring. |
1201 |
IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
1202 |
# Coefficients are issued in the increasing power order. |
1203 |
ratPolyCoefficients = ratPolyOfInt.coefficients() |
1204 |
# Print the reversed list for debugging. |
1205 |
|
1206 |
print "Rational polynomial coefficients:", ratPolyCoefficients[::-1] |
1207 |
# Build the list of number we compute the lcm of. |
1208 |
coefficientDenominators = sro_denominators(ratPolyCoefficients) |
1209 |
print "Coefficient denominators:", coefficientDenominators |
1210 |
coefficientDenominators.append(2^precision) |
1211 |
coefficientDenominators.append(2^(targetHardnessToRound)) |
1212 |
leastCommonMultiple = lcm(coefficientDenominators) |
1213 |
# Compute the expression corresponding to the new polynomial |
1214 |
coefficientNumerators = sro_numerators(ratPolyCoefficients) |
1215 |
#print coefficientNumerators |
1216 |
polynomialExpression = 0 |
1217 |
power = 0 |
1218 |
# Iterate over two lists at the same time, stop when the shorter |
1219 |
# (is this case coefficientsNumerators) is |
1220 |
# exhausted. Both lists are ordered in the order of increasing powers |
1221 |
# of variable1. |
1222 |
for numerator, denominator in \ |
1223 |
zip(coefficientNumerators, coefficientDenominators): |
1224 |
multiplicator = leastCommonMultiple / denominator |
1225 |
newCoefficient = numerator * multiplicator |
1226 |
polynomialExpression += newCoefficient * variable1^power |
1227 |
power +=1 |
1228 |
polynomialExpression += - variable2 |
1229 |
return (IP(polynomialExpression), |
1230 |
leastCommonMultiple / 2^precision, # 2^K aka N. |
1231 |
#leastCommonMultiple / 2^(targetHardnessToRound + 1), # tBound |
1232 |
leastCommonMultiple / 2^(targetHardnessToRound), # tBound |
1233 |
leastCommonMultiple) # If we want to make test computations. |
1234 |
|
1235 |
# End slz_rat_poly_of_int_to_poly_for_coppersmith |
1236 |
|
1237 |
def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
1238 |
precision): |
1239 |
""" |
1240 |
Makes a variable substitution into the input polynomial so that the output |
1241 |
polynomial can take integer arguments. |
1242 |
All variables of the input polynomial "have precision p". That is to say |
1243 |
that they are rationals with denominator == 2^(precision - 1): |
1244 |
x = y/2^(precision - 1). |
1245 |
We "incorporate" these denominators into the coefficients with, |
1246 |
respectively, the "right" power. |
1247 |
""" |
1248 |
polynomialField = ratPolyOfRat.parent() |
1249 |
polynomialVariable = ratPolyOfRat.variables()[0] |
1250 |
#print "The polynomial field is:", polynomialField |
1251 |
return \ |
1252 |
polynomialField(ratPolyOfRat.subs({polynomialVariable : \ |
1253 |
polynomialVariable/2^(precision-1)})) |
1254 |
|
1255 |
# End slz_rat_poly_of_rat_to_rat_poly_of_int |
1256 |
|
1257 |
|
1258 |
print "\t...sageSLZ loaded" |