root / pobysoPythonSage / src / pobyso.py @ 173
Historique | Voir | Annoter | Télécharger (51,75 ko)
1 |
"""
|
---|---|
2 |
Actual functions to use in Sage
|
3 |
ST 2012-11-13
|
4 |
|
5 |
Command line syntax:
|
6 |
use from Sage (via the "load" or the "attach" commands)
|
7 |
|
8 |
pobyso functions come in five flavors:
|
9 |
- the _so_so (arguments and returned objects are pointers to Sollya objects,
|
10 |
includes the void function and the no arguments function that return a
|
11 |
pointer to a Sollya object);
|
12 |
- the _so_sa (argument are pointers to Sollya objects, returned objects are
|
13 |
Sage/Python objects or, more generally, information is transfered from the
|
14 |
Sollya world to Sage/Python world; e.g. functions without arguments that
|
15 |
return a Sage/Python object);
|
16 |
- the _sa_so (arguments are Sage/Python objects, returned objects are
|
17 |
pointers to Sollya objects);
|
18 |
- the sa_sa (arguments and returned objects are all Sage/Python objects);
|
19 |
- a catch all flavor, without any suffix, (e. g. functions that have no argument
|
20 |
nor return value).
|
21 |
This classification is not always very strict. Conversion functions from Sollya
|
22 |
to Sage/Python are sometimes decorated with Sage/Python arguments to set
|
23 |
the precision. These functions remain in the so_sa category.
|
24 |
NOTES:
|
25 |
Reported errors in Eclipse come from the calls to
|
26 |
the Sollya library
|
27 |
|
28 |
ToDo (among other things):
|
29 |
-memory management.
|
30 |
"""
|
31 |
from ctypes import * |
32 |
import re |
33 |
from sage.symbolic.expression_conversions import polynomial |
34 |
from sage.symbolic.expression_conversions import PolynomialConverter |
35 |
"""
|
36 |
Create the equivalent to an enum for the Sollya function types.
|
37 |
"""
|
38 |
(SOLLYA_BASE_FUNC_ABS, |
39 |
SOLLYA_BASE_FUNC_ACOS, |
40 |
SOLLYA_BASE_FUNC_ACOSH, |
41 |
SOLLYA_BASE_FUNC_ADD, |
42 |
SOLLYA_BASE_FUNC_ASIN, |
43 |
SOLLYA_BASE_FUNC_ASINH, |
44 |
SOLLYA_BASE_FUNC_ATAN, |
45 |
SOLLYA_BASE_FUNC_ATANH, |
46 |
SOLLYA_BASE_FUNC_CEIL, |
47 |
SOLLYA_BASE_FUNC_CONSTANT, |
48 |
SOLLYA_BASE_FUNC_COS, |
49 |
SOLLYA_BASE_FUNC_COSH, |
50 |
SOLLYA_BASE_FUNC_DIV, |
51 |
SOLLYA_BASE_FUNC_DOUBLE, |
52 |
SOLLYA_BASE_FUNC_DOUBLEDOUBLE, |
53 |
SOLLYA_BASE_FUNC_DOUBLEEXTENDED, |
54 |
SOLLYA_BASE_FUNC_ERF, |
55 |
SOLLYA_BASE_FUNC_ERFC, |
56 |
SOLLYA_BASE_FUNC_EXP, |
57 |
SOLLYA_BASE_FUNC_EXP_M1, |
58 |
SOLLYA_BASE_FUNC_FLOOR, |
59 |
SOLLYA_BASE_FUNC_FREE_VARIABLE, |
60 |
SOLLYA_BASE_FUNC_HALFPRECISION, |
61 |
SOLLYA_BASE_FUNC_LIBRARYCONSTANT, |
62 |
SOLLYA_BASE_FUNC_LIBRARYFUNCTION, |
63 |
SOLLYA_BASE_FUNC_LOG, |
64 |
SOLLYA_BASE_FUNC_LOG_10, |
65 |
SOLLYA_BASE_FUNC_LOG_1P, |
66 |
SOLLYA_BASE_FUNC_LOG_2, |
67 |
SOLLYA_BASE_FUNC_MUL, |
68 |
SOLLYA_BASE_FUNC_NEARESTINT, |
69 |
SOLLYA_BASE_FUNC_NEG, |
70 |
SOLLYA_BASE_FUNC_PI, |
71 |
SOLLYA_BASE_FUNC_POW, |
72 |
SOLLYA_BASE_FUNC_PROCEDUREFUNCTION, |
73 |
SOLLYA_BASE_FUNC_QUAD, |
74 |
SOLLYA_BASE_FUNC_SIN, |
75 |
SOLLYA_BASE_FUNC_SINGLE, |
76 |
SOLLYA_BASE_FUNC_SINH, |
77 |
SOLLYA_BASE_FUNC_SQRT, |
78 |
SOLLYA_BASE_FUNC_SUB, |
79 |
SOLLYA_BASE_FUNC_TAN, |
80 |
SOLLYA_BASE_FUNC_TANH, |
81 |
SOLLYA_BASE_FUNC_TRIPLEDOUBLE) = map(int,xrange(44)) |
82 |
print "\nSuperficial pobyso check..." |
83 |
print "First constant - SOLLYA_BASE_FUNC_ABS: ", SOLLYA_BASE_FUNC_ABS |
84 |
print "Last constant - SOLLYA_BASE_FUNC_TRIPLEDOUBLE: ", SOLLYA_BASE_FUNC_TRIPLEDOUBLE |
85 |
|
86 |
pobyso_max_arity = 9
|
87 |
|
88 |
def pobyso_absolute_so_so(): |
89 |
return(sollya_lib_absolute(None)) |
90 |
|
91 |
def pobyso_autoprint(arg): |
92 |
sollya_lib_autoprint(arg,None)
|
93 |
|
94 |
def pobyso_autoprint_so_so(arg): |
95 |
sollya_lib_autoprint(arg,None)
|
96 |
|
97 |
def pobyso_bounds_to_range_sa_so(rnLowerBoundSa, rnUpperBoundSa, \ |
98 |
precisionSa=None):
|
99 |
"""
|
100 |
Return a Sollya range from to 2 RealField Sage elements.
|
101 |
The Sollya range element has a sufficient precision to hold all
|
102 |
the digits of the widest of the Sage bounds.
|
103 |
"""
|
104 |
# Sanity check.
|
105 |
if rnLowerBoundSa > rnUpperBoundSa:
|
106 |
return None |
107 |
# Precision stuff.
|
108 |
if precisionSa is None: |
109 |
# Check for the largest precision.
|
110 |
lbPrecSa = rnLowerBoundSa.parent().precision() |
111 |
ubPrecSa = rnLowerBoundSa.parent().precision() |
112 |
maxPrecSa = max(lbPrecSa, ubPrecSa)
|
113 |
else:
|
114 |
maxPrecSa = precisionSa |
115 |
# From Sage to Sollya bounds.
|
116 |
# lowerBoundSo = sollya_lib_constant(get_rn_value(rnLowerBoundSa),
|
117 |
# maxPrecSa)
|
118 |
lowerBoundSo = pobyso_constant_sa_so(rnLowerBoundSa, |
119 |
maxPrecSa) |
120 |
upperBoundSo = pobyso_constant_sa_so(rnUpperBoundSa, |
121 |
maxPrecSa) |
122 |
|
123 |
# From Sollya bounds to range.
|
124 |
rangeSo = sollya_lib_range(lowerBoundSo, upperBoundSo) |
125 |
# Back to original precision.
|
126 |
# Clean up
|
127 |
sollya_lib_clear_obj(lowerBoundSo) |
128 |
sollya_lib_clear_obj(upperBoundSo) |
129 |
return rangeSo
|
130 |
# End pobyso_bounds_to_range_sa_so
|
131 |
|
132 |
def pobyso_build_function_sub_so_so(exp1So, exp2So): |
133 |
return(sollya_lib_build_function_sub(exp1So, exp2So))
|
134 |
|
135 |
def pobyso_change_var_in_function_so_so(funcSo, chvarExpSo): |
136 |
"""
|
137 |
Variable change in a function.
|
138 |
"""
|
139 |
return(sollya_lib_evaluate(funcSo,chvarExpSo))
|
140 |
# End pobyso_change_var_in_function_so_so
|
141 |
|
142 |
def pobyso_chebyshevform_so_so(functionSo, degreeSo, intervalSo): |
143 |
resultSo = sollya_lib_chebyshevform(functionSo, degreeSo, intervalSo) |
144 |
return(resultSo)
|
145 |
# End pobyso_chebyshevform_so_so.
|
146 |
|
147 |
def pobyso_clear_taylorform_sa_so(taylorFormSaSo): |
148 |
"""
|
149 |
This method is necessary to correctly clean up the memory from Taylor forms.
|
150 |
These are made of a Sollya object, a Sollya object list, a Sollya object.
|
151 |
For no clearly understood reason, sollya_lib_clear_object_list crashed
|
152 |
when applied to the object list.
|
153 |
Here, we decompose it into Sage list of Sollya objects references and we
|
154 |
clear them one by one.
|
155 |
"""
|
156 |
sollya_lib_clear_obj(taylorFormSaSo[0])
|
157 |
(coefficientsErrorsListSaSo, numElementsSa, isEndEllipticSa) = \ |
158 |
pobyso_get_list_elements_so_so(taylorFormSaSo[1])
|
159 |
for element in coefficientsErrorsListSaSo: |
160 |
sollya_lib_clear_obj(element) |
161 |
sollya_lib_clear_obj(taylorFormSaSo[1])
|
162 |
sollya_lib_clear_obj(taylorFormSaSo[2])
|
163 |
# End pobyso_clear_taylorform_sa_so
|
164 |
|
165 |
def pobyso_cmp(rnArgSa, cteSo): |
166 |
"""
|
167 |
Compare the MPFR value a RealNumber with that of a Sollya constant.
|
168 |
|
169 |
Get the value of the Sollya constant into a RealNumber and compare
|
170 |
using MPFR. Could be optimized by working directly with a mpfr_t
|
171 |
for the intermediate number.
|
172 |
"""
|
173 |
# Get the precision of the Sollya constant to build a Sage RealNumber
|
174 |
# with enough precision.to hold it.
|
175 |
precisionOfCte = c_int(0)
|
176 |
# From the Sollya constant, create a local Sage RealNumber.
|
177 |
sollya_lib_get_prec_of_constant(precisionOfCte, cteSo) |
178 |
#print "Precision of constant: ", precisionOfCte
|
179 |
RRRR = RealField(precisionOfCte.value) |
180 |
rnLocalSa = RRRR(0)
|
181 |
sollya_lib_get_constant(get_rn_value(rnLocalSa), cteSo) |
182 |
#
|
183 |
## Compare the Sage RealNumber version of the Sollya constant with rnArg.
|
184 |
return(cmp_rn_value(rnArgSa, rnLocal))
|
185 |
# End pobyso_smp
|
186 |
|
187 |
def pobyso_compute_pos_function_abs_val_bounds_sa_sa(funcSa, lowerBoundSa, \ |
188 |
upperBoundSa): |
189 |
"""
|
190 |
TODO: completely rework and test.
|
191 |
"""
|
192 |
pobyso = pobyso_name_free_variable_sa_so(funcSa.variables()[0])
|
193 |
funcSo = pobyso_parse_string(funcSa._assume_str().replace('_SAGE_VAR_', '')) |
194 |
rangeSo = pobyso_range_sa_so(lowerBoundSa, upperBoundSa) |
195 |
infnormSo = pobyso_infnorm_so_so(funcSo,rangeSo) |
196 |
# Sollya return the infnorm as an interval.
|
197 |
fMaxSa = pobyso_get_interval_from_range_so_sa(infnormSo) |
198 |
# Get the top bound and compute the binade top limit.
|
199 |
fMaxUpperBoundSa = fMaxSa.upper() |
200 |
binadeTopLimitSa = 2**ceil(fMaxUpperBoundSa.log2())
|
201 |
# Put up together the function to use to compute the lower bound.
|
202 |
funcAuxSo = pobyso_parse_string(str(binadeTopLimitSa) + \
|
203 |
'-(' + f._assume_str().replace('_SAGE_VAR_', '') + ')') |
204 |
pobyso_autoprint(funcAuxSo) |
205 |
# Clear the Sollya range before a new call to infnorm and issue the call.
|
206 |
sollya_lib_clear_obj(infnormSo) |
207 |
infnormSo = pobyso_infnorm_so_so(funcAuxSo,rangeSo) |
208 |
fMinSa = pobyso_get_interval_from_range_so_sa(infnormSo) |
209 |
sollya_lib_clear_obj(infnormSo) |
210 |
fMinLowerBoundSa = binadeTopLimitSa - fMinSa.lower() |
211 |
# Compute the maximum of the precisions of the different bounds.
|
212 |
maxPrecSa = max([fMinLowerBoundSa.parent().precision(), \
|
213 |
fMaxUpperBoundSa.parent().precision()]) |
214 |
# Create a RealIntervalField and create an interval with the "good" bounds.
|
215 |
RRRI = RealIntervalField(maxPrecSa) |
216 |
imageIntervalSa = RRRI(fMinLowerBoundSa, fMaxUpperBoundSa) |
217 |
# Free the unneeded Sollya objects
|
218 |
sollya_lib_clear_obj(funcSo) |
219 |
sollya_lib_clear_obj(funcAuxSo) |
220 |
sollya_lib_clear_obj(rangeSo) |
221 |
return(imageIntervalSa)
|
222 |
# End pobyso_compute_pos_function_abs_val_bounds_sa_sa
|
223 |
|
224 |
def pobyso_constant(rnArg): |
225 |
""" Legacy function. See pobyso_constant_sa_so. """
|
226 |
return(pobyso_constant_sa_so(rnArg))
|
227 |
|
228 |
def pobyso_constant_sa_so(rnArgSa, precisionSa=None): |
229 |
"""
|
230 |
Create a Sollya constant from a Sage RealNumber.
|
231 |
"""
|
232 |
# Precision stuff
|
233 |
if precisionSa is None: |
234 |
precisionSa = rnArgSa.parent().precision() |
235 |
currentSollyaPrecisionSo = sollya_lib_get_prec() |
236 |
currentSollyaPrecisionSa = \ |
237 |
pobyso_constant_from_int(currentSollyaPrecisionSo) |
238 |
# Sollya constant creation takes place here.
|
239 |
if precisionSa > currentSollyaPrecisionSa:
|
240 |
pobyso_set_prec_sa_so(precisionSa) |
241 |
constantSo = sollya_lib_constant(get_rn_value(rnArgSa)) |
242 |
pobyso_set_prec_so_so(currentSollyaPrecisionSo) |
243 |
else:
|
244 |
constantSo = sollya_lib_constant(get_rn_value(rnArgSa)) |
245 |
sollya_lib_clear_obj(currentSollyaPrecisionSo) |
246 |
return constantSo
|
247 |
# End pobyso_constant_sa_so
|
248 |
|
249 |
def pobyso_constant_0_sa_so(): |
250 |
"""
|
251 |
Obvious.
|
252 |
"""
|
253 |
return(pobyso_constant_from_int_sa_so(0)) |
254 |
|
255 |
def pobyso_constant_1(): |
256 |
"""
|
257 |
Obvious.
|
258 |
Legacy function. See pobyso_constant_so_so.
|
259 |
"""
|
260 |
return(pobyso_constant_1_sa_so())
|
261 |
|
262 |
def pobyso_constant_1_sa_so(): |
263 |
"""
|
264 |
Obvious.
|
265 |
"""
|
266 |
return(pobyso_constant_from_int_sa_so(1)) |
267 |
|
268 |
def pobyso_constant_from_int(anInt): |
269 |
""" Legacy function. See pobyso_constant_from_int_sa_so. """
|
270 |
return(pobyso_constant_from_int_sa_so(anInt))
|
271 |
|
272 |
def pobyso_constant_from_int_sa_so(anInt): |
273 |
"""
|
274 |
Get a Sollya constant from a Sage int.
|
275 |
"""
|
276 |
return(sollya_lib_constant_from_int(int(anInt))) |
277 |
|
278 |
def pobyso_constant_from_int_so_sa(constSo): |
279 |
"""
|
280 |
Get a Sage int from a Sollya int constant.
|
281 |
Usefull for precision or powers in polynomials.
|
282 |
"""
|
283 |
constSa = c_int(0)
|
284 |
sollya_lib_get_constant_as_int(byref(constSa), constSo) |
285 |
return(constSa.value)
|
286 |
# End pobyso_constant_from_int_so_sa
|
287 |
|
288 |
def pobyso_error_so(): |
289 |
return sollya_lib_error(None) |
290 |
# End pobyso_error().
|
291 |
|
292 |
def pobyso_function_type_as_string(funcType): |
293 |
""" Legacy function. See pobyso_function_type_as_string_so_sa. """
|
294 |
return(pobyso_function_type_as_string_so_sa(funcType))
|
295 |
|
296 |
def pobyso_function_type_as_string_so_sa(funcType): |
297 |
"""
|
298 |
Numeric Sollya function codes -> Sage mathematical function names.
|
299 |
Notice that pow -> ^ (a la Sage, not a la Python).
|
300 |
"""
|
301 |
if funcType == SOLLYA_BASE_FUNC_ABS:
|
302 |
return "abs" |
303 |
elif funcType == SOLLYA_BASE_FUNC_ACOS:
|
304 |
return "arccos" |
305 |
elif funcType == SOLLYA_BASE_FUNC_ACOSH:
|
306 |
return "arccosh" |
307 |
elif funcType == SOLLYA_BASE_FUNC_ADD:
|
308 |
return "+" |
309 |
elif funcType == SOLLYA_BASE_FUNC_ASIN:
|
310 |
return "arcsin" |
311 |
elif funcType == SOLLYA_BASE_FUNC_ASINH:
|
312 |
return "arcsinh" |
313 |
elif funcType == SOLLYA_BASE_FUNC_ATAN:
|
314 |
return "arctan" |
315 |
elif funcType == SOLLYA_BASE_FUNC_ATANH:
|
316 |
return "arctanh" |
317 |
elif funcType == SOLLYA_BASE_FUNC_CEIL:
|
318 |
return "ceil" |
319 |
elif funcType == SOLLYA_BASE_FUNC_CONSTANT:
|
320 |
return "cte" |
321 |
elif funcType == SOLLYA_BASE_FUNC_COS:
|
322 |
return "cos" |
323 |
elif funcType == SOLLYA_BASE_FUNC_COSH:
|
324 |
return "cosh" |
325 |
elif funcType == SOLLYA_BASE_FUNC_DIV:
|
326 |
return "/" |
327 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLE:
|
328 |
return "double" |
329 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLEDOUBLE:
|
330 |
return "doubleDouble" |
331 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLEEXTENDED:
|
332 |
return "doubleDxtended" |
333 |
elif funcType == SOLLYA_BASE_FUNC_ERF:
|
334 |
return "erf" |
335 |
elif funcType == SOLLYA_BASE_FUNC_ERFC:
|
336 |
return "erfc" |
337 |
elif funcType == SOLLYA_BASE_FUNC_EXP:
|
338 |
return "exp" |
339 |
elif funcType == SOLLYA_BASE_FUNC_EXP_M1:
|
340 |
return "expm1" |
341 |
elif funcType == SOLLYA_BASE_FUNC_FLOOR:
|
342 |
return "floor" |
343 |
elif funcType == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
344 |
return "freeVariable" |
345 |
elif funcType == SOLLYA_BASE_FUNC_HALFPRECISION:
|
346 |
return "halfPrecision" |
347 |
elif funcType == SOLLYA_BASE_FUNC_LIBRARYCONSTANT:
|
348 |
return "libraryConstant" |
349 |
elif funcType == SOLLYA_BASE_FUNC_LIBRARYFUNCTION:
|
350 |
return "libraryFunction" |
351 |
elif funcType == SOLLYA_BASE_FUNC_LOG:
|
352 |
return "log" |
353 |
elif funcType == SOLLYA_BASE_FUNC_LOG_10:
|
354 |
return "log10" |
355 |
elif funcType == SOLLYA_BASE_FUNC_LOG_1P:
|
356 |
return "log1p" |
357 |
elif funcType == SOLLYA_BASE_FUNC_LOG_2:
|
358 |
return "log2" |
359 |
elif funcType == SOLLYA_BASE_FUNC_MUL:
|
360 |
return "*" |
361 |
elif funcType == SOLLYA_BASE_FUNC_NEARESTINT:
|
362 |
return "round" |
363 |
elif funcType == SOLLYA_BASE_FUNC_NEG:
|
364 |
return "__neg__" |
365 |
elif funcType == SOLLYA_BASE_FUNC_PI:
|
366 |
return "pi" |
367 |
elif funcType == SOLLYA_BASE_FUNC_POW:
|
368 |
return "^" |
369 |
elif funcType == SOLLYA_BASE_FUNC_PROCEDUREFUNCTION:
|
370 |
return "procedureFunction" |
371 |
elif funcType == SOLLYA_BASE_FUNC_QUAD:
|
372 |
return "quad" |
373 |
elif funcType == SOLLYA_BASE_FUNC_SIN:
|
374 |
return "sin" |
375 |
elif funcType == SOLLYA_BASE_FUNC_SINGLE:
|
376 |
return "single" |
377 |
elif funcType == SOLLYA_BASE_FUNC_SINH:
|
378 |
return "sinh" |
379 |
elif funcType == SOLLYA_BASE_FUNC_SQRT:
|
380 |
return "sqrt" |
381 |
elif funcType == SOLLYA_BASE_FUNC_SUB:
|
382 |
return "-" |
383 |
elif funcType == SOLLYA_BASE_FUNC_TAN:
|
384 |
return "tan" |
385 |
elif funcType == SOLLYA_BASE_FUNC_TANH:
|
386 |
return "tanh" |
387 |
elif funcType == SOLLYA_BASE_FUNC_TRIPLEDOUBLE:
|
388 |
return "tripleDouble" |
389 |
else:
|
390 |
return None |
391 |
|
392 |
def pobyso_get_constant(rnArgSa, constSo): |
393 |
""" Legacy function. See pobyso_get_constant_so_sa. """
|
394 |
return(pobyso_get_constant_so_sa(rnArgSa, constSo))
|
395 |
|
396 |
def pobyso_get_constant_so_sa(rnArgSa, constSo): |
397 |
"""
|
398 |
Set the value of rnArgSo to the value of constSo in MPFR_RNDN mode.
|
399 |
rnArg must already exist and belong to some RealField.
|
400 |
We assume that constSo points to a Sollya constant.
|
401 |
"""
|
402 |
return(sollya_lib_get_constant(get_rn_value(rnArgSa), constSo))
|
403 |
|
404 |
def pobyso_get_constant_as_rn(ctExpSo): |
405 |
"""
|
406 |
Legacy function. See pobyso_get_constant_as_rn_so_sa.
|
407 |
"""
|
408 |
return(pobyso_get_constant_as_rn_so_sa(ctExpSo))
|
409 |
|
410 |
def pobyso_get_constant_as_rn_so_sa(constExpSo): |
411 |
"""
|
412 |
Get a Sollya constant as a Sage "real number".
|
413 |
The precision of the floating-point number returned is that of the Sollya
|
414 |
constant.
|
415 |
"""
|
416 |
precisionSa = pobyso_get_prec_of_constant_so_sa(constExpSo) |
417 |
RRRR = RealField(precisionSa) |
418 |
rnSa = RRRR(0)
|
419 |
sollya_lib_get_constant(get_rn_value(rnSa), constExpSo) |
420 |
return(rnSa)
|
421 |
# End pobyso_get_constant_as_rn_so_sa
|
422 |
|
423 |
def pobyso_get_constant_as_rn_with_rf(ctExp, realField): |
424 |
"""
|
425 |
Legacy function. See pobyso_get_constant_as_rn_with_rf_so_sa.
|
426 |
"""
|
427 |
return(pobyso_get_constant_as_rn_with_rf_so_sa(ctExp, realField))
|
428 |
|
429 |
def pobyso_get_constant_as_rn_with_rf_so_sa(ctExpSo, realFieldSa = None): |
430 |
"""
|
431 |
Get a Sollya constant as a Sage "real number".
|
432 |
If no real field is specified, the precision of the floating-point number
|
433 |
returned is that of the Sollya constant.
|
434 |
Otherwise is is that of the real field. Hence rounding may happen.
|
435 |
"""
|
436 |
if realFieldSa is None: |
437 |
sollyaPrecSa = pobyso_get_prec_of_constant_so_sa(ctExpSo) |
438 |
realFieldSa = RealField(sollyaPrecSa) |
439 |
rnSa = realFieldSa(0)
|
440 |
sollya_lib_get_constant(get_rn_value(rnSa), ctExpSo) |
441 |
return(rnSa)
|
442 |
# End pobyso_get_constant_as_rn_with_rf_so_sa
|
443 |
|
444 |
def pobyso_get_free_variable_name(): |
445 |
"""
|
446 |
Legacy function. See pobyso_get_free_variable_name_so_sa.
|
447 |
"""
|
448 |
return(pobyso_get_free_variable_name_so_sa())
|
449 |
|
450 |
def pobyso_get_free_variable_name_so_sa(): |
451 |
return(sollya_lib_get_free_variable_name())
|
452 |
|
453 |
def pobyso_get_function_arity(expressionSo): |
454 |
"""
|
455 |
Legacy function. See pobyso_get_function_arity_so_sa.
|
456 |
"""
|
457 |
return(pobyso_get_function_arity_so_sa(expressionSo))
|
458 |
|
459 |
def pobyso_get_function_arity_so_sa(expressionSo): |
460 |
arity = c_int(0)
|
461 |
sollya_lib_get_function_arity(byref(arity),expressionSo) |
462 |
return(int(arity.value)) |
463 |
|
464 |
def pobyso_get_head_function(expressionSo): |
465 |
"""
|
466 |
Legacy function. See pobyso_get_head_function_so_sa.
|
467 |
"""
|
468 |
return(pobyso_get_head_function_so_sa(expressionSo))
|
469 |
|
470 |
def pobyso_get_head_function_so_sa(expressionSo): |
471 |
functionType = c_int(0)
|
472 |
sollya_lib_get_head_function(byref(functionType), expressionSo, None)
|
473 |
return(int(functionType.value)) |
474 |
|
475 |
def pobyso_get_interval_from_range_so_sa(soRange, realIntervalFieldSa = None ): |
476 |
"""
|
477 |
Return the Sage interval corresponding to the Sollya range argument.
|
478 |
If no reaIntervalField is passed as an argument, the interval bounds are not
|
479 |
rounded: they are elements of RealIntervalField of the "right" precision
|
480 |
to hold all the digits.
|
481 |
"""
|
482 |
prec = c_int(0)
|
483 |
if realIntervalFieldSa is None: |
484 |
retval = sollya_lib_get_prec_of_range(byref(prec), soRange, None)
|
485 |
if retval == 0: |
486 |
return(None) |
487 |
realIntervalFieldSa = RealIntervalField(prec.value) |
488 |
intervalSa = realIntervalFieldSa(0,0) |
489 |
retval = \ |
490 |
sollya_lib_get_interval_from_range(get_interval_value(intervalSa),\ |
491 |
soRange) |
492 |
if retval == 0: |
493 |
return(None) |
494 |
return(intervalSa)
|
495 |
# End pobyso_get_interval_from_range_so_sa
|
496 |
|
497 |
def pobyso_get_list_elements(soObj): |
498 |
""" Legacy function. See pobyso_get_list_elements_so_so. """
|
499 |
return(pobyso_get_list_elements_so_so(soObj))
|
500 |
|
501 |
def pobyso_get_list_elements_so_so(objectListSo): |
502 |
"""
|
503 |
Get the Sollya list elements as a Sage/Python array of Sollya objects.
|
504 |
|
505 |
INPUT:
|
506 |
- objectListSo: a Sollya list of Sollya objects.
|
507 |
|
508 |
OUTPUT:
|
509 |
- a Sage/Python tuple made of:
|
510 |
- a Sage/Python list of Sollya objects,
|
511 |
- a Sage/Python int holding the number of elements,
|
512 |
- a Sage/Python int stating (!= 0) that the list is end-elliptic.
|
513 |
NOTE::
|
514 |
We recover the addresses of the Sollya object from the list of pointers
|
515 |
returned by sollya_lib_get_list_elements. The list itself is freed.
|
516 |
TODO::
|
517 |
Figure out what to do with numElements since the number of elements
|
518 |
can easily be recovered from the list itself.
|
519 |
Ditto for isEndElliptic.
|
520 |
"""
|
521 |
listAddress = POINTER(c_longlong)() |
522 |
numElements = c_int(0)
|
523 |
isEndElliptic = c_int(0)
|
524 |
listAsSageList = [] |
525 |
result = sollya_lib_get_list_elements(byref(listAddress),\ |
526 |
byref(numElements),\ |
527 |
byref(isEndElliptic),\ |
528 |
objectListSo) |
529 |
if result == 0 : |
530 |
return None |
531 |
for i in xrange(0, numElements.value, 1): |
532 |
#listAsSageList.append(sollya_lib_copy_obj(listAddress[i]))
|
533 |
listAsSageList.append(listAddress[i]) |
534 |
# Clear each of the elements returned by Sollya.
|
535 |
#sollya_lib_clear_obj(listAddress[i])
|
536 |
# Free the list itself.
|
537 |
sollya_lib_free(listAddress) |
538 |
return(listAsSageList, numElements.value, isEndElliptic.value)
|
539 |
|
540 |
def pobyso_get_max_prec_of_exp(soExp): |
541 |
""" Legacy function. See pobyso_get_max_prec_of_exp_so_sa. """
|
542 |
return(pobyso_get_max_prec_of_exp_so_sa(soExp))
|
543 |
|
544 |
def pobyso_get_max_prec_of_exp_so_sa(expSo): |
545 |
"""
|
546 |
Get the maximum precision used for the numbers in a Sollya expression.
|
547 |
|
548 |
Arguments:
|
549 |
soExp -- a Sollya expression pointer
|
550 |
Return value:
|
551 |
A Python integer
|
552 |
TODO:
|
553 |
- error management;
|
554 |
- correctly deal with numerical type such as DOUBLEEXTENDED.
|
555 |
"""
|
556 |
maxPrecision = 0
|
557 |
minConstPrec = 0
|
558 |
currentConstPrec = 0
|
559 |
operator = pobyso_get_head_function_so_sa(expSo) |
560 |
if (operator != SOLLYA_BASE_FUNC_CONSTANT) and \ |
561 |
(operator != SOLLYA_BASE_FUNC_FREE_VARIABLE): |
562 |
(arity, subexpressions) = pobyso_get_subfunctions_so_sa(expSo) |
563 |
for i in xrange(arity): |
564 |
maxPrecisionCandidate = \ |
565 |
pobyso_get_max_prec_of_exp_so_sa(subexpressions[i]) |
566 |
if maxPrecisionCandidate > maxPrecision:
|
567 |
maxPrecision = maxPrecisionCandidate |
568 |
return(maxPrecision)
|
569 |
elif operator == SOLLYA_BASE_FUNC_CONSTANT:
|
570 |
#minConstPrec = pobyso_get_min_prec_of_constant_so_sa(expSo)
|
571 |
#currentConstPrec = pobyso_get_min_prec_of_constant_so_sa(soExp)
|
572 |
#print minConstPrec, " - ", currentConstPrec
|
573 |
return(pobyso_get_min_prec_of_constant_so_sa(expSo))
|
574 |
|
575 |
elif operator == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
576 |
return(0) |
577 |
else:
|
578 |
print "pobyso_get_max_prec_of_exp_so_sa: unexepected operator." |
579 |
return(0) |
580 |
|
581 |
def pobyso_get_min_prec_of_constant_so_sa(constExpSo): |
582 |
"""
|
583 |
Get the minimum precision necessary to represent the value of a Sollya
|
584 |
constant.
|
585 |
MPFR_MIN_PREC and powers of 2 are taken into account.
|
586 |
We assume that constExpSo is a point
|
587 |
"""
|
588 |
constExpAsRnSa = pobyso_get_constant_as_rn_so_sa(constExpSo) |
589 |
return(min_mpfr_size(get_rn_value(constExpAsRnSa)))
|
590 |
|
591 |
def pobyso_get_sage_exp_from_sollya_exp(sollyaExpSo, realField = RR): |
592 |
""" Legacy function. See pobyso_get_sage_exp_from_sollya_exp_so_sa. """
|
593 |
return(pobyso_get_sage_exp_from_sollya_exp_so_sa(sollyaExpSo, \
|
594 |
realField = RR)) |
595 |
|
596 |
def pobyso_get_sage_exp_from_sollya_exp_so_sa(sollyaExpSo, realFieldSa = RR): |
597 |
"""
|
598 |
Get a Sage expression from a Sollya expression.
|
599 |
Currently only tested with polynomials with floating-point coefficients.
|
600 |
Notice that, in the returned polynomial, the exponents are RealNumbers.
|
601 |
"""
|
602 |
#pobyso_autoprint(sollyaExp)
|
603 |
operatorSa = pobyso_get_head_function_so_sa(sollyaExpSo) |
604 |
sollyaLibFreeVariableName = sollya_lib_get_free_variable_name() |
605 |
# Constants and the free variable are special cases.
|
606 |
# All other operator are dealt with in the same way.
|
607 |
if (operatorSa != SOLLYA_BASE_FUNC_CONSTANT) and \ |
608 |
(operatorSa != SOLLYA_BASE_FUNC_FREE_VARIABLE): |
609 |
(aritySa, subexpressionsSa) = pobyso_get_subfunctions_so_sa(sollyaExpSo) |
610 |
if aritySa == 1: |
611 |
sageExpSa = eval(pobyso_function_type_as_string_so_sa(operatorSa) + \
|
612 |
"(" + pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressionsSa[0], \ |
613 |
realFieldSa) + ")")
|
614 |
elif aritySa == 2: |
615 |
# We do not get through the preprocessor.
|
616 |
# The "^" operator is then a special case.
|
617 |
if operatorSa == SOLLYA_BASE_FUNC_POW:
|
618 |
operatorAsStringSa = "**"
|
619 |
else:
|
620 |
operatorAsStringSa = \ |
621 |
pobyso_function_type_as_string_so_sa(operatorSa) |
622 |
sageExpSa = \ |
623 |
eval("pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressionsSa[0], realFieldSa)"\ |
624 |
+ " " + operatorAsStringSa + " " + \ |
625 |
"pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressionsSa[1], realFieldSa)")
|
626 |
# We do not know yet how to deal with arity >= 3
|
627 |
# (is there any in Sollya anyway?).
|
628 |
else:
|
629 |
sageExpSa = eval('None') |
630 |
return(sageExpSa)
|
631 |
elif operatorSa == SOLLYA_BASE_FUNC_CONSTANT:
|
632 |
#print "This is a constant"
|
633 |
return pobyso_get_constant_as_rn_with_rf_so_sa(sollyaExpSo, realFieldSa)
|
634 |
elif operatorSa == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
635 |
#print "This is free variable"
|
636 |
return(eval(sollyaLibFreeVariableName)) |
637 |
else:
|
638 |
print "Unexpected" |
639 |
return eval('None') |
640 |
# End pobyso_get_sage_poly_from_sollya_poly
|
641 |
|
642 |
def pobyso_get_poly_sa_so(polySo, realFieldSa=None): |
643 |
"""
|
644 |
Create a Sollya polynomial from a Sage polynomial.
|
645 |
"""
|
646 |
pass
|
647 |
# pobyso_get_poly_sa_so
|
648 |
|
649 |
def pobyso_get_poly_so_sa(polySo, realFieldSa=None): |
650 |
"""
|
651 |
Convert a Sollya polynomial into a Sage polynomial.
|
652 |
We assume that the polynomial is in canonical form.
|
653 |
If no realField is given, a RealField corresponding to the maximum
|
654 |
precision of the coefficients is internally computed.
|
655 |
The real field is not returned but can be easily retrieved from
|
656 |
the polynomial itself.
|
657 |
ALGORITHM:
|
658 |
- (optional) compute the RealField of the coefficients;
|
659 |
- convert the Sollya expression into a Sage expression;
|
660 |
- convert the Sage expression into a Sage polynomial
|
661 |
TODO: the canonical thing for the polynomial.
|
662 |
"""
|
663 |
if realFieldSa is None: |
664 |
expressionPrecSa = pobyso_get_max_prec_of_exp_so_sa(polySo) |
665 |
realFieldSa = RealField(expressionPrecSa) |
666 |
#print "Sollya expression before...",
|
667 |
#pobyso_autoprint(polySo)
|
668 |
|
669 |
expressionSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, \ |
670 |
realFieldSa) |
671 |
#print "...Sollya expression after.",
|
672 |
#pobyso_autoprint(polySo)
|
673 |
polyVariableSa = expressionSa.variables()[0]
|
674 |
polyRingSa = realFieldSa[str(polyVariableSa)]
|
675 |
#print polyRingSa
|
676 |
# Do not use the polynomial(expressionSa, ring=polyRingSa) form!
|
677 |
polynomialSa = polyRingSa(expressionSa) |
678 |
return(polynomialSa)
|
679 |
# End pobyso_get_sage_poly_from_sollya_poly
|
680 |
|
681 |
def pobyso_get_subfunctions(expressionSo): |
682 |
""" Legacy function. See pobyso_get_subfunctions_so_sa. """
|
683 |
return(pobyso_get_subfunctions_so_sa(expressionSo))
|
684 |
|
685 |
def pobyso_get_subfunctions_so_sa(expressionSo): |
686 |
"""
|
687 |
Get the subfunctions of an expression.
|
688 |
Return the number of subfunctions and the list of subfunctions addresses.
|
689 |
S.T.: Could not figure out another way than that ugly list of declarations
|
690 |
to recover the addresses of the subfunctions.
|
691 |
We limit ourselves to arity 8 functions.
|
692 |
"""
|
693 |
subf0 = c_int(0)
|
694 |
subf1 = c_int(0)
|
695 |
subf2 = c_int(0)
|
696 |
subf3 = c_int(0)
|
697 |
subf4 = c_int(0)
|
698 |
subf5 = c_int(0)
|
699 |
subf6 = c_int(0)
|
700 |
subf7 = c_int(0)
|
701 |
subf8 = c_int(0)
|
702 |
arity = c_int(0)
|
703 |
nullPtr = POINTER(c_int)() |
704 |
sollya_lib_get_subfunctions(expressionSo, byref(arity), \ |
705 |
byref(subf0), byref(subf1), byref(subf2), byref(subf3), \ |
706 |
byref(subf4), byref(subf5),\ |
707 |
byref(subf6), byref(subf7), byref(subf8), nullPtr, None)
|
708 |
# byref(cast(subfunctions[0], POINTER(c_int))), \
|
709 |
# byref(cast(subfunctions[0], POINTER(c_int))), \
|
710 |
# byref(cast(subfunctions[2], POINTER(c_int))), \
|
711 |
# byref(cast(subfunctions[3], POINTER(c_int))), \
|
712 |
# byref(cast(subfunctions[4], POINTER(c_int))), \
|
713 |
# byref(cast(subfunctions[5], POINTER(c_int))), \
|
714 |
# byref(cast(subfunctions[6], POINTER(c_int))), \
|
715 |
# byref(cast(subfunctions[7], POINTER(c_int))), \
|
716 |
# byref(cast(subfunctions[8], POINTER(c_int))), nullPtr)
|
717 |
subfunctions = [subf0, subf1, subf2, subf3, subf4, subf5, subf6, subf7, \ |
718 |
subf8] |
719 |
subs = [] |
720 |
if arity.value > pobyso_max_arity:
|
721 |
return(0,[]) |
722 |
for i in xrange(arity.value): |
723 |
subs.append(int(subfunctions[i].value))
|
724 |
#print subs[i]
|
725 |
return(int(arity.value), subs) |
726 |
|
727 |
def pobyso_get_prec(): |
728 |
""" Legacy function. See pobyso_get_prec_so_sa(). """
|
729 |
return(pobyso_get_prec_so_sa())
|
730 |
|
731 |
def pobyso_get_prec_so(): |
732 |
"""
|
733 |
Get the current default precision in Sollya.
|
734 |
The return value is a Sollya object.
|
735 |
Usefull when modifying the precision back and forth by avoiding
|
736 |
extra conversions.
|
737 |
"""
|
738 |
return(sollya_lib_get_prec(None)) |
739 |
|
740 |
def pobyso_get_prec_so_sa(): |
741 |
"""
|
742 |
Get the current default precision in Sollya.
|
743 |
The return value is Sage/Python int.
|
744 |
"""
|
745 |
precSo = sollya_lib_get_prec(None)
|
746 |
precSa = c_int(0)
|
747 |
sollya_lib_get_constant_as_int(byref(precSa), precSo) |
748 |
sollya_lib_clear_obj(precSo) |
749 |
return int(precSa.value) |
750 |
# End pobyso_get_prec_so_sa.
|
751 |
|
752 |
def pobyso_get_prec_of_constant(ctExpSo): |
753 |
""" Legacy function. See pobyso_get_prec_of_constant_so_sa. """
|
754 |
return(pobyso_get_prec_of_constant_so_sa(ctExpSo))
|
755 |
|
756 |
def pobyso_get_prec_of_constant_so_sa(ctExpSo): |
757 |
prec = c_int(0)
|
758 |
retc = sollya_lib_get_prec_of_constant(byref(prec), ctExpSo, None)
|
759 |
if retc == 0: |
760 |
return(None) |
761 |
return(int(prec.value)) |
762 |
|
763 |
def pobyso_get_prec_of_range_so_sa(rangeSo): |
764 |
prec = c_int(0)
|
765 |
retc = sollya_lib_get_prec_of_range(byref(prec), rangeSo, None)
|
766 |
if retc == 0: |
767 |
return(None) |
768 |
return(int(prec.value)) |
769 |
# End pobyso_get_prec_of_range_so_sa()
|
770 |
|
771 |
def pobyso_guess_degree_sa_sa(functionSa, intervalSa, approxErrorSa, |
772 |
weightSa=None, degreeBoundSa=None): |
773 |
"""
|
774 |
Sa_sa variant of the solly_guessdegree function.
|
775 |
Return 0 if something goes wrong.
|
776 |
"""
|
777 |
functionAsStringSa = functionSa._assume_str().replace('_SAGE_VAR_', '') |
778 |
functionSo = pobyso_parse_string_sa_so(functionAsStringSa) |
779 |
if pobyso_is_error_so_sa(functionSo):
|
780 |
sollya_lib_clear_obj(functionSo) |
781 |
return 0 |
782 |
rangeSo = pobyso_interval_to_range_sa_so(intervalSa) |
783 |
# The approximation error is expected to be a floating point number.
|
784 |
if pobyso_is_floating_point_number_sa_sa(approxErrorSa):
|
785 |
approxErrorSo = pobyso_constant_sa_so(approxErrorSa) |
786 |
else:
|
787 |
approxErrorSo = pobyso_constant_sa_so(RR(approxErrorSa)) |
788 |
if not weightSa is None: |
789 |
weightAsStringSa = weightSa._assume_str().replace('_SAGE_VAR_', '') |
790 |
weightSo = pobyso_parse_string_sa_so(weightAsStringSa) |
791 |
if pobyso_is_error_so_sa(weightSo):
|
792 |
sollya_lib_clear_obj(functionSo) |
793 |
sollya_lib_clear_obj(rangeSo) |
794 |
sollya_lib_clear_obj(approxErrorSo) |
795 |
sollya_lib_clear_obj(weightSo) |
796 |
return 0 |
797 |
else:
|
798 |
weightSo = None
|
799 |
if not degreeBoundSa is None: |
800 |
degreeBoundSo = pobyso_constant_from_int_sa_so(degreeBoundSa) |
801 |
else:
|
802 |
degreeBoundSo = None
|
803 |
guessedDegreeSa = pobyso_guess_degree_so_sa(functionSo, |
804 |
rangeSo, |
805 |
approxErrorSo, |
806 |
weightSo, |
807 |
degreeBoundSo) |
808 |
sollya_lib_clear_obj(functionSo) |
809 |
sollya_lib_clear_obj(rangeSo) |
810 |
sollya_lib_clear_obj(approxErrorSo) |
811 |
if not weightSo is None: |
812 |
sollya_lib_clear_obj(weightSo) |
813 |
if not degreeBoundSo is None: |
814 |
sollya_lib_clear_obj(degreeBoundSo) |
815 |
return guessedDegreeSa
|
816 |
# End poyso_guess_degree_sa_sa
|
817 |
|
818 |
def pobyso_guess_degree_so_sa(functionSo, rangeSo, errorSo, weightSo=None, \ |
819 |
degreeBoundSo=None):
|
820 |
"""
|
821 |
Thin wrapper around the guessdegree function.
|
822 |
Nevertheless, some precision control stuff has been appended.
|
823 |
"""
|
824 |
# Deal with Sollya internal precision issues: if it is too small,
|
825 |
# compared with the error, increases it to about twice -log2(error).
|
826 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(errorSo) |
827 |
log2ErrorSa = errorSa.log2() |
828 |
if log2ErrorSa < 0: |
829 |
neededPrecisionSa = int(2 * int(-log2ErrorSa) / 64) * 64 |
830 |
else:
|
831 |
neededPrecisionSa = int(2 * int(log2ErrorSa) / 64) * 64 |
832 |
#print "Needed precision:", neededPrecisionSa
|
833 |
currentPrecSa = pobyso_get_prec_so_sa() |
834 |
if neededPrecisionSa > currentPrecSa:
|
835 |
currentPrecSo = pobyso_get_prec_so() |
836 |
pobyso_set_prec_sa_so(neededPrecisionSa) |
837 |
#print "Guessing degree..."
|
838 |
# weightSo and degreeBoundsSo are optional arguments.
|
839 |
# As declared, sollya_lib_guessdegree must take 5 arguments.
|
840 |
if weightSo is None: |
841 |
degreeRangeSo = sollya_lib_guessdegree(functionSo, rangeSo, errorSo, |
842 |
0, 0, None) |
843 |
elif degreeBoundSo is None: |
844 |
degreeRangeSo = sollya_lib_guessdegree(functionSo, rangeSo, \ |
845 |
errorSo, weightSo, 0, None) |
846 |
else:
|
847 |
degreeRangeSo = sollya_lib_guessdegree(functionSo, rangeSo, errorSo, \ |
848 |
weightSo, degreeBoundSo, None)
|
849 |
#print "...degree guess done."
|
850 |
# Restore internal precision, if applicable.
|
851 |
if neededPrecisionSa > currentPrecSa:
|
852 |
pobyso_set_prec_so_so(currentPrecSo) |
853 |
sollya_lib_clear_obj(currentPrecSo) |
854 |
degreeIntervalSa = pobyso_range_to_interval_so_sa(degreeRangeSo) |
855 |
sollya_lib_clear_obj(degreeRangeSo) |
856 |
# When ok, both bounds match.
|
857 |
# When the degree bound is too low, the upper bound is the degree
|
858 |
# for which the error can be honored.
|
859 |
# When it really goes wrong, the upper bound is infinity.
|
860 |
if degreeIntervalSa.lower() == degreeIntervalSa.upper():
|
861 |
return int(degreeIntervalSa.lower()) |
862 |
else:
|
863 |
if degreeIntervalSa.upper().is_infinity():
|
864 |
return None |
865 |
else:
|
866 |
return int(degreeIntervalSa.upper()) |
867 |
# End pobyso_guess_degree_so_sa
|
868 |
|
869 |
def pobyso_infnorm_so_so(func, interval, file = None, intervalList = None): |
870 |
print "Do not use this function. User pobyso_supnorm_so_so instead." |
871 |
return(None) |
872 |
|
873 |
def pobyso_interval_to_range_sa_so(intervalSa, precisionSa=None): |
874 |
if precisionSa is None: |
875 |
precisionSa = intervalSa.parent().precision() |
876 |
intervalSo = pobyso_bounds_to_range_sa_so(intervalSa.lower(),\ |
877 |
intervalSa.upper(),\ |
878 |
precisionSa) |
879 |
return(intervalSo)
|
880 |
# End pobyso_interval_to_range_sa_so
|
881 |
|
882 |
def pobyso_is_error_so_sa(objSo): |
883 |
"""
|
884 |
Thin wrapper around the sollya_lib_obj_is_error() function.
|
885 |
"""
|
886 |
if sollya_lib_obj_is_error(objSo) != 0: |
887 |
return True |
888 |
else:
|
889 |
return False |
890 |
# End pobyso_is_error-so_sa
|
891 |
|
892 |
def pobyso_is_floating_point_number_sa_sa(numberSa): |
893 |
"""
|
894 |
Check whether a Sage number is floating point
|
895 |
"""
|
896 |
return numberSa.parent().__class__ is RR.__class__ |
897 |
|
898 |
def pobyso_lib_init(): |
899 |
sollya_lib_init(None)
|
900 |
|
901 |
def pobyso_lib_close(): |
902 |
sollya_lib_close(None)
|
903 |
|
904 |
def pobyso_name_free_variable(freeVariableNameSa): |
905 |
""" Legacy function. See pobyso_name_free_variable_sa_so. """
|
906 |
pobyso_name_free_variable_sa_so(freeVariableNameSa) |
907 |
|
908 |
def pobyso_name_free_variable_sa_so(freeVariableNameSa): |
909 |
"""
|
910 |
Set the free variable name in Sollya from a Sage string.
|
911 |
"""
|
912 |
sollya_lib_name_free_variable(freeVariableNameSa) |
913 |
|
914 |
def pobyso_parse_string(string): |
915 |
""" Legacy function. See pobyso_parse_string_sa_so. """
|
916 |
return(pobyso_parse_string_sa_so(string))
|
917 |
|
918 |
def pobyso_parse_string_sa_so(string): |
919 |
"""
|
920 |
Get the Sollya expression computed from a Sage string or
|
921 |
a Sollya error object if parsing failed.
|
922 |
"""
|
923 |
return(sollya_lib_parse_string(string))
|
924 |
|
925 |
def pobyso_range(rnLowerBound, rnUpperBound): |
926 |
""" Legacy function. See pobyso_range_sa_so. """
|
927 |
return(pobyso_range_sa_so(rnLowerBound, rnUpperBound))
|
928 |
|
929 |
|
930 |
def pobyso_range_to_interval_so_sa(rangeSo, realIntervalFieldSa = None): |
931 |
"""
|
932 |
Get a Sage interval from a Sollya range.
|
933 |
If no realIntervalField is given as a parameter, the Sage interval
|
934 |
precision is that of the Sollya range.
|
935 |
Otherwise, the precision is that of the realIntervalField. In this case
|
936 |
rounding may happen.
|
937 |
"""
|
938 |
if realIntervalFieldSa is None: |
939 |
precSa = pobyso_get_prec_of_range_so_sa(rangeSo) |
940 |
realIntervalFieldSa = RealIntervalField(precSa) |
941 |
intervalSa = \ |
942 |
pobyso_get_interval_from_range_so_sa(rangeSo, realIntervalFieldSa) |
943 |
return(intervalSa)
|
944 |
|
945 |
def pobyso_remez_canonical_sa_sa(func, \ |
946 |
degree, \ |
947 |
lowerBound, \ |
948 |
upperBound, \ |
949 |
weight = None, \
|
950 |
quality = None):
|
951 |
"""
|
952 |
All arguments are Sage/Python.
|
953 |
The functions (func and weight) must be passed as expressions or strings.
|
954 |
Otherwise the function fails.
|
955 |
The return value is a Sage polynomial.
|
956 |
"""
|
957 |
var('zorglub') # Dummy variable name for type check only. Type of |
958 |
# zorglub is "symbolic expression".
|
959 |
polySo = pobyso_remez_canonical_sa_so(func, \ |
960 |
degree, \ |
961 |
lowerBound, \ |
962 |
upperBound, \ |
963 |
weight, \ |
964 |
quality) |
965 |
# String test
|
966 |
if parent(func) == parent("string"): |
967 |
functionSa = eval(func)
|
968 |
# Expression test.
|
969 |
elif type(func) == type(zorglub): |
970 |
functionSa = func |
971 |
else:
|
972 |
return None |
973 |
#
|
974 |
maxPrecision = 0
|
975 |
if polySo is None: |
976 |
return(None) |
977 |
maxPrecision = pobyso_get_max_prec_of_exp_so_sa(polySo) |
978 |
RRRRSa = RealField(maxPrecision) |
979 |
polynomialRingSa = RRRRSa[functionSa.variables()[0]]
|
980 |
expSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, RRRRSa) |
981 |
polySa = polynomial(expSa, polynomialRingSa) |
982 |
sollya_lib_clear_obj(polySo) |
983 |
return(polySa)
|
984 |
# End pobyso_remez_canonical_sa_sa
|
985 |
|
986 |
def pobyso_remez_canonical(func, \ |
987 |
degree, \ |
988 |
lowerBound, \ |
989 |
upperBound, \ |
990 |
weight = "1", \
|
991 |
quality = None):
|
992 |
""" Legacy function. See pobyso_remez_canonical_sa_so. """
|
993 |
return(pobyso_remez_canonical_sa_so(func, \
|
994 |
degree, \ |
995 |
lowerBound, \ |
996 |
upperBound, \ |
997 |
weight, \ |
998 |
quality)) |
999 |
def pobyso_remez_canonical_sa_so(func, \ |
1000 |
degree, \ |
1001 |
lowerBound, \ |
1002 |
upperBound, \ |
1003 |
weight = None, \
|
1004 |
quality = None):
|
1005 |
"""
|
1006 |
All arguments are Sage/Python.
|
1007 |
The functions (func and weight) must be passed as expressions or strings.
|
1008 |
Otherwise the function fails.
|
1009 |
The return value is a pointer to a Sollya function.
|
1010 |
"""
|
1011 |
var('zorglub') # Dummy variable name for type check only. Type of |
1012 |
# zorglub is "symbolic expression".
|
1013 |
currentVariableNameSa = None
|
1014 |
# The func argument can be of different types (string,
|
1015 |
# symbolic expression...)
|
1016 |
if parent(func) == parent("string"): |
1017 |
localFuncSa = eval(func)
|
1018 |
if len(localFuncSa.variables()) > 0: |
1019 |
currentVariableNameSa = localFuncSa.variables()[0]
|
1020 |
sollya_lib_name_free_variable(str(currentVariableNameSa))
|
1021 |
functionSo = \ |
1022 |
sollya_lib_parse_string(localFuncSa._assume_str().replace('_SAGE_VAR_', '')) |
1023 |
# Expression test.
|
1024 |
elif type(func) == type(zorglub): |
1025 |
# Until we are able to translate Sage expressions into Sollya
|
1026 |
# expressions : parse the string version.
|
1027 |
if len(func.variables()) > 0: |
1028 |
currentVariableNameSa = func.variables()[0]
|
1029 |
sollya_lib_name_free_variable(str(currentVariableNameSa))
|
1030 |
functionSo = \ |
1031 |
sollya_lib_parse_string(func._assume_str().replace('_SAGE_VAR_', '')) |
1032 |
else:
|
1033 |
return(None) |
1034 |
if weight is None: # No weight given -> 1. |
1035 |
weightSo = pobyso_constant_1_sa_so() |
1036 |
elif parent(weight) == parent("string"): # Weight given as string: parse it. |
1037 |
weightSo = sollya_lib_parse_string(func) |
1038 |
elif type(weight) == type(zorglub): # Weight given as symbolice expression. |
1039 |
functionSo = \ |
1040 |
sollya_lib_parse_string_sa_so(weight._assume_str().replace('_SAGE_VAR_', '')) |
1041 |
else:
|
1042 |
return(None) |
1043 |
degreeSo = pobyso_constant_from_int(degree) |
1044 |
rangeSo = pobyso_bounds_to_range_sa_so(lowerBound, upperBound) |
1045 |
if not quality is None: |
1046 |
qualitySo= pobyso_constant_sa_so(quality) |
1047 |
else:
|
1048 |
qualitySo = None
|
1049 |
|
1050 |
remezPolySo = sollya_lib_remez(functionSo, \ |
1051 |
degreeSo, \ |
1052 |
rangeSo, \ |
1053 |
weightSo, \ |
1054 |
qualitySo, \ |
1055 |
None)
|
1056 |
sollya_lib_clear_obj(functionSo) |
1057 |
sollya_lib_clear_obj(degreeSo) |
1058 |
sollya_lib_clear_obj(rangeSo) |
1059 |
sollya_lib_clear_obj(weightSo) |
1060 |
if not qualitySo is None: |
1061 |
sollya_lib_clear_obj(qualitySo) |
1062 |
return(remezPolySo)
|
1063 |
# End pobyso_remez_canonical_sa_so
|
1064 |
|
1065 |
def pobyso_remez_canonical_so_so(funcSo, \ |
1066 |
degreeSo, \ |
1067 |
rangeSo, \ |
1068 |
weightSo = pobyso_constant_1_sa_so(),\ |
1069 |
qualitySo = None):
|
1070 |
"""
|
1071 |
All arguments are pointers to Sollya objects.
|
1072 |
The return value is a pointer to a Sollya function.
|
1073 |
"""
|
1074 |
if not sollya_lib_obj_is_function(funcSo): |
1075 |
return(None) |
1076 |
return(sollya_lib_remez(funcSo, degreeSo, rangeSo, weightSo, qualitySo, None)) |
1077 |
|
1078 |
def pobyso_set_canonical_off(): |
1079 |
sollya_lib_set_canonical(sollya_lib_off()) |
1080 |
|
1081 |
def pobyso_set_canonical_on(): |
1082 |
sollya_lib_set_canonical(sollya_lib_on()) |
1083 |
|
1084 |
def pobyso_set_prec(p): |
1085 |
""" Legacy function. See pobyso_set_prec_sa_so. """
|
1086 |
pobyso_set_prec_sa_so(p) |
1087 |
|
1088 |
def pobyso_set_prec_sa_so(p): |
1089 |
a = c_int(p) |
1090 |
precSo = c_void_p(sollya_lib_constant_from_int(a)) |
1091 |
sollya_lib_set_prec(precSo, None)
|
1092 |
|
1093 |
def pobyso_set_prec_so_so(newPrecSo): |
1094 |
sollya_lib_set_prec(newPrecSo, None)
|
1095 |
|
1096 |
def pobyso_supnorm_so_so(polySo, funcSo, intervalSo, errorTypeSo = None,\ |
1097 |
accuracySo = None):
|
1098 |
"""
|
1099 |
Computes the supnorm of the approximation error between the given
|
1100 |
polynomial and function.
|
1101 |
errorTypeSo defaults to "absolute".
|
1102 |
accuracySo defaults to 2^(-40).
|
1103 |
"""
|
1104 |
if errorTypeSo is None: |
1105 |
errorTypeSo = sollya_lib_absolute(None)
|
1106 |
errorTypeIsNone = True
|
1107 |
else:
|
1108 |
errorTypeIsNone = False
|
1109 |
#
|
1110 |
if accuracySo is None: |
1111 |
# Notice the **!
|
1112 |
accuracySo = pobyso_constant_sa_so(RR(2**(-40))) |
1113 |
accuracyIsNone = True
|
1114 |
else:
|
1115 |
accuracyIsNone = False
|
1116 |
pobyso_autoprint(accuracySo) |
1117 |
resultSo = \ |
1118 |
sollya_lib_supnorm(polySo, funcSo, intervalSo, errorTypeSo, \ |
1119 |
accuracySo) |
1120 |
if errorTypeIsNone:
|
1121 |
sollya_lib_clear_obj(errorTypeSo) |
1122 |
if accuracyIsNone:
|
1123 |
sollya_lib_clear_obj(accuracySo) |
1124 |
return resultSo
|
1125 |
# End pobyso_supnorm_so_so
|
1126 |
|
1127 |
def pobyso_taylor_expansion_no_change_var_so_so(functionSo, |
1128 |
degreeSo, |
1129 |
rangeSo, |
1130 |
errorTypeSo=None,
|
1131 |
sollyaPrecSo=None):
|
1132 |
"""
|
1133 |
Compute the Taylor expansion without the variable change
|
1134 |
x -> x-intervalCenter.
|
1135 |
"""
|
1136 |
# No global change of the working precision.
|
1137 |
if not sollyaPrecSo is None: |
1138 |
initialPrecSo = sollya_lib_get_prec(None)
|
1139 |
sollya_lib_set_prec(sollyaPrecSo) |
1140 |
# Error type stuff: default to absolute.
|
1141 |
if errorTypeSo is None: |
1142 |
errorTypeIsNone = True
|
1143 |
errorTypeSo = sollya_lib_absolute(None)
|
1144 |
else:
|
1145 |
errorTypeIsNone = False
|
1146 |
intervalCenterSo = sollya_lib_mid(rangeSo, None)
|
1147 |
taylorFormSo = sollya_lib_taylorform(functionSo, degreeSo, |
1148 |
intervalCenterSo, |
1149 |
rangeSo, errorTypeSo, None)
|
1150 |
# taylorFormListSaSo is a Python list of Sollya objects references that
|
1151 |
# are copies of the elements of taylorFormSo.
|
1152 |
# pobyso_get_list_elements_so_so clears taylorFormSo.
|
1153 |
(taylorFormListSaSo, numElementsSa, isEndEllipticSa) = \ |
1154 |
pobyso_get_list_elements_so_so(taylorFormSo) |
1155 |
polySo = sollya_lib_copy_obj(taylorFormListSaSo[0])
|
1156 |
#print "Num elements:", numElementsSa
|
1157 |
sollya_lib_clear_obj(taylorFormSo) |
1158 |
#polySo = taylorFormListSaSo[0]
|
1159 |
#errorRangeSo = sollya_lib_copy_obj(taylorFormListSaSo[2])
|
1160 |
errorRangeSo = taylorFormListSaSo[2]
|
1161 |
# No copy_obj needed here: a new object is created.
|
1162 |
maxErrorSo = sollya_lib_sup(errorRangeSo) |
1163 |
# If changed, reset the Sollya working precision.
|
1164 |
if not sollyaPrecSo is None: |
1165 |
sollya_lib_set_prec(initialPrecSo) |
1166 |
sollya_lib_clear_obj(initialPrecSo) |
1167 |
if errorTypeIsNone:
|
1168 |
sollya_lib_clear_obj(errorTypeSo) |
1169 |
pobyso_clear_taylorform_sa_so(taylorFormListSaSo) |
1170 |
return((polySo, intervalCenterSo, maxErrorSo))
|
1171 |
# end pobyso_taylor_expansion_no_change_var_so_so
|
1172 |
|
1173 |
def pobyso_taylor_expansion_with_change_var_so_so(functionSo, degreeSo, \ |
1174 |
rangeSo, \ |
1175 |
errorTypeSo=None, \
|
1176 |
sollyaPrecSo=None):
|
1177 |
"""
|
1178 |
Compute the Taylor expansion with the variable change
|
1179 |
x -> (x-intervalCenter) included.
|
1180 |
"""
|
1181 |
# No global change of the working precision.
|
1182 |
if not sollyaPrecSo is None: |
1183 |
initialPrecSo = sollya_lib_get_prec(None)
|
1184 |
sollya_lib_set_prec(sollyaPrecSo) |
1185 |
#
|
1186 |
# Error type stuff: default to absolute.
|
1187 |
if errorTypeSo is None: |
1188 |
errorTypeIsNone = True
|
1189 |
errorTypeSo = sollya_lib_absolute(None)
|
1190 |
else:
|
1191 |
errorTypeIsNone = False
|
1192 |
intervalCenterSo = sollya_lib_mid(rangeSo) |
1193 |
taylorFormSo = sollya_lib_taylorform(functionSo, degreeSo, \ |
1194 |
intervalCenterSo, \ |
1195 |
rangeSo, errorTypeSo, None)
|
1196 |
# taylorFormListSaSo is a Python list of Sollya objects references that
|
1197 |
# are copies of the elements of taylorFormSo.
|
1198 |
# pobyso_get_list_elements_so_so clears taylorFormSo.
|
1199 |
(taylorFormListSo, numElements, isEndElliptic) = \ |
1200 |
pobyso_get_list_elements_so_so(taylorFormSo) |
1201 |
polySo = taylorFormListSo[0]
|
1202 |
errorRangeSo = taylorFormListSo[2]
|
1203 |
maxErrorSo = sollya_lib_sup(errorRangeSo) |
1204 |
changeVarExpSo = sollya_lib_build_function_sub(\ |
1205 |
sollya_lib_build_function_free_variable(),\ |
1206 |
sollya_lib_copy_obj(intervalCenterSo)) |
1207 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpSo) |
1208 |
sollya_lib_clear_obj(changeVarExpSo) |
1209 |
# If changed, reset the Sollya working precision.
|
1210 |
if not sollyaPrecSo is None: |
1211 |
sollya_lib_set_prec(initialPrecSo) |
1212 |
sollya_lib_clear_obj(initialPrecSo) |
1213 |
if errorTypeIsNone:
|
1214 |
sollya_lib_clear_obj(errorTypeSo) |
1215 |
sollya_lib_clear_obj(taylorFormSo) |
1216 |
# Do not clear maxErrorSo.
|
1217 |
return((polyVarChangedSo, intervalCenterSo, maxErrorSo))
|
1218 |
# end pobyso_taylor_expansion_with_change_var_so_so
|
1219 |
|
1220 |
def pobyso_taylor(function, degree, point): |
1221 |
""" Legacy function. See pobysoTaylor_so_so. """
|
1222 |
return(pobyso_taylor_so_so(function, degree, point))
|
1223 |
|
1224 |
def pobyso_taylor_so_so(functionSo, degreeSo, pointSo): |
1225 |
return(sollya_lib_taylor(functionSo, degreeSo, pointSo))
|
1226 |
|
1227 |
def pobyso_taylorform(function, degree, point = None, |
1228 |
interval = None, errorType=None): |
1229 |
""" Legacy function. See pobyso_taylorform_sa_sa;"""
|
1230 |
|
1231 |
def pobyso_taylorform_sa_sa(functionSa, \ |
1232 |
degreeSa, \ |
1233 |
pointSa, \ |
1234 |
intervalSa=None, \
|
1235 |
errorTypeSa=None, \
|
1236 |
precisionSa=None):
|
1237 |
"""
|
1238 |
Compute the Taylor form of 'degreeSa' for 'functionSa' at 'pointSa'
|
1239 |
for 'intervalSa' with 'errorTypeSa' (a string) using 'precisionSa'.
|
1240 |
point: must be a Real or a Real interval.
|
1241 |
return the Taylor form as an array
|
1242 |
TODO: take care of the interval and of the point when it is an interval;
|
1243 |
when errorType is not None;
|
1244 |
take care of the other elements of the Taylor form (coefficients
|
1245 |
errors and delta.
|
1246 |
"""
|
1247 |
# Absolute as the default error.
|
1248 |
if errorTypeSa is None: |
1249 |
errorTypeSo = sollya_lib_absolute() |
1250 |
elif errorTypeSa == "relative": |
1251 |
errorTypeSo = sollya_lib_relative() |
1252 |
elif errortypeSa == "absolute": |
1253 |
errorTypeSo = sollya_lib_absolute() |
1254 |
else:
|
1255 |
# No clean up needed.
|
1256 |
return None |
1257 |
# Global precision stuff
|
1258 |
precisionChangedSa = False
|
1259 |
currentSollyaPrecSo = pobyso_get_prec_so() |
1260 |
currentSollyaPrecSa = pobyso_constant_from_int_so_sa(currentSollyaPrecSo) |
1261 |
if not precisionSa is None: |
1262 |
if precisionSa > currentSollyaPrecSa:
|
1263 |
pobyso_set_prec_sa_so(precisionSa) |
1264 |
precisionChangedSa = True
|
1265 |
|
1266 |
if len(functionSa.variables()) > 0: |
1267 |
varSa = functionSa.variables()[0]
|
1268 |
pobyso_name_free_variable_sa_so(str(varSa))
|
1269 |
# In any case (point or interval) the parent of pointSa has a precision
|
1270 |
# method.
|
1271 |
pointPrecSa = pointSa.parent().precision() |
1272 |
if precisionSa > pointPrecSa:
|
1273 |
pointPrecSa = precisionSa |
1274 |
# In any case (point or interval) pointSa has a base_ring() method.
|
1275 |
pointBaseRingString = str(pointSa.base_ring())
|
1276 |
if re.search('Interval', pointBaseRingString) is None: # Point |
1277 |
pointSo = pobyso_constant_sa_so(pointSa, pointPrecSa) |
1278 |
else: # Interval. |
1279 |
pointSo = pobyso_interval_to_range_sa_so(pointSa, pointPrecSa) |
1280 |
# Sollyafy the function.
|
1281 |
functionSo = pobyso_parse_string_sa_so(functionSa._assume_str().replace('_SAGE_VAR_', '')) |
1282 |
if sollya_lib_obj_is_error(functionSo):
|
1283 |
print "pobyso_tailorform: function string can't be parsed!" |
1284 |
return None |
1285 |
# Sollyafy the degree
|
1286 |
degreeSo = sollya_lib_constant_from_int(int(degreeSa))
|
1287 |
# Sollyafy the point
|
1288 |
# Call Sollya
|
1289 |
taylorFormSo = \ |
1290 |
sollya_lib_taylorform(functionSo, degreeSo, pointSo, errorTypeSo,\ |
1291 |
None)
|
1292 |
sollya_lib_clear_obj(functionSo) |
1293 |
sollya_lib_clear_obj(degreeSo) |
1294 |
sollya_lib_clear_obj(pointSo) |
1295 |
sollya_lib_clear_obj(errorTypeSo) |
1296 |
(tfsAsList, numElements, isEndElliptic) = \ |
1297 |
pobyso_get_list_elements_so_so(taylorFormSo) |
1298 |
polySo = tfsAsList[0]
|
1299 |
maxPrecision = pobyso_get_max_prec_of_exp_so_sa(polySo) |
1300 |
polyRealField = RealField(maxPrecision) |
1301 |
expSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, polyRealField) |
1302 |
if precisionChangedSa:
|
1303 |
sollya_lib_set_prec(currentSollyaPrecSo) |
1304 |
sollya_lib_clear_obj(currentSollyaPrecSo) |
1305 |
polynomialRing = polyRealField[str(varSa)]
|
1306 |
polySa = polynomial(expSa, polynomialRing) |
1307 |
taylorFormSa = [polySa] |
1308 |
# Final clean-up.
|
1309 |
sollya_lib_clear_obj(taylorFormSo) |
1310 |
return(taylorFormSa)
|
1311 |
# End pobyso_taylor_form_sa_sa
|
1312 |
|
1313 |
def pobyso_taylorform_so_so(functionSo, degreeSo, pointSo, intervalSo=None, \ |
1314 |
errorTypeSo=None):
|
1315 |
createdErrorType = False
|
1316 |
if errorTypeSo is None: |
1317 |
errorTypeSo = sollya_lib_absolute() |
1318 |
createdErrorType = True
|
1319 |
else:
|
1320 |
#TODO: deal with the other case.
|
1321 |
pass
|
1322 |
if intervalSo is None: |
1323 |
resultSo = sollya_lib_taylorform(functionSo, degreeSo, pointSo, \ |
1324 |
errorTypeSo, None)
|
1325 |
else:
|
1326 |
resultSo = sollya_lib_taylorform(functionSo, degreeSo, pointSo, \ |
1327 |
intervalSo, errorTypeSo, None)
|
1328 |
if createdErrorType:
|
1329 |
sollya_lib_clear_obj(errorTypeSo) |
1330 |
return(resultSo)
|
1331 |
|
1332 |
|
1333 |
def pobyso_univar_polynomial_print_reverse(polySa): |
1334 |
""" Legacy function. See pobyso_univar_polynomial_print_reverse_sa_sa. """
|
1335 |
return(pobyso_univar_polynomial_print_reverse_sa_sa(polySa))
|
1336 |
|
1337 |
def pobyso_univar_polynomial_print_reverse_sa_sa(polySa): |
1338 |
"""
|
1339 |
Return the string representation of a univariate polynomial with
|
1340 |
monomials ordered in the x^0..x^n order of the monomials.
|
1341 |
Remember: Sage
|
1342 |
"""
|
1343 |
polynomialRing = polySa.base_ring() |
1344 |
# A very expensive solution:
|
1345 |
# -create a fake multivariate polynomial field with only one variable,
|
1346 |
# specifying a negative lexicographical order;
|
1347 |
mpolynomialRing = PolynomialRing(polynomialRing.base(), \ |
1348 |
polynomialRing.variable_name(), \ |
1349 |
1, order='neglex') |
1350 |
# - convert the univariate argument polynomial into a multivariate
|
1351 |
# version;
|
1352 |
p = mpolynomialRing(polySa) |
1353 |
# - return the string representation of the converted form.
|
1354 |
# There is no simple str() method defined for p's class.
|
1355 |
return(p.__str__())
|
1356 |
#
|
1357 |
print pobyso_get_prec()
|
1358 |
pobyso_set_prec(165)
|
1359 |
print pobyso_get_prec()
|
1360 |
a=100
|
1361 |
print type(a) |
1362 |
id(a)
|
1363 |
print "Max arity: ", pobyso_max_arity |
1364 |
print "Function tripleDouble (43) as a string: ", pobyso_function_type_as_string(43) |
1365 |
print "Function None (44) as a string: ", pobyso_function_type_as_string(44) |
1366 |
print "...Pobyso check done" |