root / pobysoPythonSage / src / sageSLZ / sagePolynomialOperations.sage @ 172
Historique | Voir | Annoter | Télécharger (49,8 ko)
1 |
load("/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageMatrixOperations.sage") |
---|---|
2 |
#load(str('/home/storres/recherche/arithmetique/pobysoPythonSage/src/sageSLZ/sageMatrixOperations.sage')) |
3 |
print "sagePolynomialOperations loading..." |
4 |
def spo_add_polynomial_coeffs_to_matrix_row(poly, |
5 |
knownMonomials, |
6 |
protoMatrixRows, |
7 |
columnsWidth=0): |
8 |
""" |
9 |
For a given polynomial , |
10 |
add the coefficients of the protoMatrix (a list of proto matrix rows). |
11 |
Coefficients are added to the protoMatrix row in the order imposed by the |
12 |
monomials discovery list (the knownMonomials list) built as construction |
13 |
goes on. |
14 |
As a bonus, data can be printed out for a visual check. |
15 |
poly : the polynomial; in argument; |
16 |
knownMonomials : the list of the already known monomials; will determine |
17 |
the order of the coefficients appending to a row; in-out |
18 |
argument (new monomials may be discovered and then |
19 |
appended the the knowMonomials list); |
20 |
protoMatrixRows: a list of lists, each one holding the coefficients of the |
21 |
monomials of a polynomial; in-out argument: a new row is |
22 |
added at each call; |
23 |
columnWith : the width, in characters, of the displayed column ; if 0, |
24 |
do not display anything; in argument. |
25 |
""" |
26 |
pMonomials = poly.monomials() |
27 |
pCoefficients = poly.coefficients() |
28 |
# We have started with the smaller degrees in the first variable. |
29 |
pMonomials.reverse() |
30 |
pCoefficients.reverse() |
31 |
# New empty proto matrix row. |
32 |
protoMatrixRowCoefficients = [] |
33 |
# We work according to the order of the already known monomials |
34 |
# No known monomials yet: add the pMonomials to knownMonomials |
35 |
# and add the coefficients to the proto matrix row. |
36 |
if len(knownMonomials) == 0: |
37 |
for pmIdx in xrange(0, len(pMonomials)): |
38 |
knownMonomials.append(pMonomials[pmIdx]) |
39 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
40 |
if columnsWidth != 0: |
41 |
monomialAsString = str(pCoefficients[pmIdx]) + " " + \ |
42 |
str(pMonomials[pmIdx]) |
43 |
print monomialAsString, " " * \ |
44 |
(columnsWidth - len(monomialAsString)), |
45 |
# There are some known monomials. We search for them in pMonomials and |
46 |
# add their coefficients to the proto matrix row. |
47 |
else: |
48 |
for knownMonomialIndex in xrange(0,len(knownMonomials)): |
49 |
# We lazily use an exception here since pMonomials.index() function |
50 |
# may fail throwing the ValueError exception. |
51 |
try: |
52 |
indexInPmonomials = \ |
53 |
pMonomials.index(knownMonomials[knownMonomialIndex]) |
54 |
if columnsWidth != 0: |
55 |
monomialAsString = str(pCoefficients[indexInPmonomials]) + \ |
56 |
" " + str(knownMonomials[knownMonomialIndex]) |
57 |
print monomialAsString, " " * \ |
58 |
(columnsWidth - len(monomialAsString)), |
59 |
# Add the coefficient to the proto matrix row and delete the |
60 |
# known monomial from the current pMonomial list |
61 |
# (and the corresponding coefficient as well). |
62 |
protoMatrixRowCoefficients.append(pCoefficients[indexInPmonomials]) |
63 |
del pMonomials[indexInPmonomials] |
64 |
del pCoefficients[indexInPmonomials] |
65 |
# The knownMonomials element is not in pMonomials |
66 |
except ValueError: |
67 |
protoMatrixRowCoefficients.append(0) |
68 |
if columnsWidth != 0: |
69 |
monomialAsString = "0" + " "+ \ |
70 |
str(knownMonomials[knownMonomialIndex]) |
71 |
print monomialAsString, " " * \ |
72 |
(columnsWidth - len(monomialAsString)), |
73 |
# End for knownMonomialKey loop. |
74 |
# We now append the remaining monomials of pMonomials to knownMonomials |
75 |
# and the corresponding coefficients to proto matrix row. |
76 |
for pmIdx in xrange(0, len(pMonomials)): |
77 |
knownMonomials.append(pMonomials[pmIdx]) |
78 |
protoMatrixRowCoefficients.append(pCoefficients[pmIdx]) |
79 |
if columnsWidth != 0: |
80 |
monomialAsString = str(pCoefficients[pmIdx]) + " " \ |
81 |
+ str(pMonomials[pmIdx]) |
82 |
print monomialAsString, " " * \ |
83 |
(columnsWidth - len(monomialAsString)), |
84 |
# End for pmIdx loop. |
85 |
# Add the new list row elements to the proto matrix. |
86 |
protoMatrixRows.append(protoMatrixRowCoefficients) |
87 |
if columnsWidth != 0: |
88 |
|
89 |
# End spo_add_polynomial_coeffs_to_matrix_row |
90 |
|
91 |
def spo_get_coefficient_for_monomial(monomialsList, coefficientsList, monomial): |
92 |
""" |
93 |
Get, for a polynomial, the coefficient for a given monomial. |
94 |
The polynomial is given as two lists (monomials and coefficients as |
95 |
return by the respective methods ; indexes of the two lists must match). |
96 |
If the monomial is not found, 0 is returned. |
97 |
""" |
98 |
monomialIndex = 0 |
99 |
for mono in monomialsList: |
100 |
if mono == monomial: |
101 |
return coefficientsList[monomialIndex] |
102 |
monomialIndex += 1 |
103 |
return 0 |
104 |
# End spo_get_coefficient_for_monomial. |
105 |
|
106 |
|
107 |
def spo_expression_as_string(powI, boundI, powT, boundT, powP, powN): |
108 |
""" |
109 |
Computes a string version of the i^k + t^l + p^m + N^n expression for |
110 |
output. |
111 |
""" |
112 |
expressionAsString ="" |
113 |
if powI != 0: |
114 |
expressionAsString += str(iBound^powI) + " i^" + str(powI) |
115 |
if powT != 0: |
116 |
if len(expressionAsString) != 0: |
117 |
expressionAsString += " * " |
118 |
expressionAsString += str(tBound^powT) + " t^" + str(powT) |
119 |
if powP != 0: |
120 |
if len(expressionAsString) != 0: |
121 |
expressionAsString += " * " |
122 |
expressionAsString += "p^" + str(powP) |
123 |
if (powN) != 0 : |
124 |
if len(expressionAsString) != 0: |
125 |
expressionAsString += " * " |
126 |
expressionAsString += "N^" + str(powN) |
127 |
return(expressionAsString) |
128 |
# End spo_expression_as_string. |
129 |
|
130 |
def spo_norm(poly, p=2): |
131 |
""" |
132 |
Behaves more or less (no infinity defined) as the norm for the |
133 |
univariate polynomials. |
134 |
Quoting Sage documentation: |
135 |
"Definition: For integer p, the p-norm of a polynomial is the pth root of |
136 |
the sum of the pth powers of the absolute values of the coefficients of |
137 |
the polynomial." |
138 |
|
139 |
""" |
140 |
# TODO: check the arguments (for p see below).. |
141 |
norm = 0 |
142 |
# For infinity norm. |
143 |
if p == Infinity: |
144 |
for coefficient in poly.coefficients(): |
145 |
coefficientAbs = coefficient.abs() |
146 |
if coefficientAbs > norm: |
147 |
norm = coefficientAbs |
148 |
return norm |
149 |
# TODO: check here the value of p |
150 |
# p must be a positive integer >= 1. |
151 |
if p < 1 or (not p in ZZ): |
152 |
return None |
153 |
# For 1 norm. |
154 |
if p == 1: |
155 |
for coefficient in poly.coefficients(): |
156 |
norm += coefficient.abs() |
157 |
return norm |
158 |
# For other norms |
159 |
for coefficient in poly.coefficients(): |
160 |
norm += coefficient.abs()^p |
161 |
return pow(norm, 1/p) |
162 |
# end spo_norm |
163 |
|
164 |
def spo_polynomial_to_proto_matrix(p, alpha, N, columnsWidth=0): |
165 |
""" |
166 |
From a (bivariate) polynomial and some other parameters build a proto |
167 |
matrix (an array of "rows") to be converted into a "true" matrix and |
168 |
eventually by reduced by fpLLL. |
169 |
The matrix is such as those found in Boneh-Durphee and Stehlé. |
170 |
|
171 |
Parameters |
172 |
---------- |
173 |
p: the (bivariate) polynomial; |
174 |
pRing: the ring over which p is defined; |
175 |
alpha: |
176 |
N: |
177 |
columsWidth: if == 0, no information is displayed, otherwise data is |
178 |
printed in colums of columnsWitdth width. |
179 |
""" |
180 |
pRing = p.parent() |
181 |
knownMonomials = [] |
182 |
protoMatrixRows = [] |
183 |
polynomialsList = [] |
184 |
pVariables = p.variables() |
185 |
#print "In spo...", p, p.variables() |
186 |
iVariable = pVariables[0] |
187 |
tVariable = pVariables[1] |
188 |
polynomialAtPower = pRing(1) |
189 |
currentPolynomial = pRing(1) |
190 |
pIdegree = p.degree(pVariables[0]) |
191 |
pTdegree = p.degree(pVariables[1]) |
192 |
currentIdegree = currentPolynomial.degree(iVariable) |
193 |
nAtAlpha = N^alpha |
194 |
nAtPower = nAtAlpha |
195 |
polExpStr = "" |
196 |
# We work from p^0 * N^alpha to p^alpha * N^0 |
197 |
for pPower in xrange(0, alpha + 1): |
198 |
# pPower == 0 is a special case. We introduce all the monomials but one |
199 |
# in i and those in t necessary to be able to introduce |
200 |
# p. We arbitrary choose to introduce the highest degree monomial in i |
201 |
# with p. We also introduce all the mixed i^k * t^l monomials with |
202 |
# k < p.degree(i) and l <= p.degree(t). |
203 |
# Mixed terms introduction is necessary here before we start "i shifts" |
204 |
# in the next iteration. |
205 |
if pPower == 0: |
206 |
# Notice that i^pIdegree is excluded as the bound of the xrange is |
207 |
# pIdegree |
208 |
for iPower in xrange(0, pIdegree): |
209 |
for tPower in xrange(0, pTdegree + 1): |
210 |
if columnsWidth != 0: |
211 |
polExpStr = spo_expression_as_string(iPower, |
212 |
tPower, |
213 |
pPower, |
214 |
alpha-pPower) |
215 |
print "->", polExpStr |
216 |
currentExpression = iVariable^iPower * \ |
217 |
tVariable^tPower * nAtAlpha |
218 |
# polynomialAtPower == 1 here. Next line should be commented |
219 |
# out but it does not work! Some conversion problem? |
220 |
currentPolynomial = pRing(currentExpression) |
221 |
polynomialsList.append(currentPolynomial) |
222 |
pMonomials = currentPolynomial.monomials() |
223 |
pCoefficients = currentPolynomial.coefficients() |
224 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
225 |
pCoefficients, |
226 |
knownMonomials, |
227 |
protoMatrixRows, |
228 |
columnsWidth) |
229 |
# End tPower. |
230 |
# End for iPower. |
231 |
else: # pPower > 0: (p^1..p^alpha) |
232 |
# This where we introduce the p^pPower * N^(alpha-pPower) |
233 |
# polynomial. |
234 |
# This step could technically be fused as the first iteration |
235 |
# of the next loop (with iPower starting at 0). |
236 |
# We set it apart for clarity. |
237 |
if columnsWidth != 0: |
238 |
polExpStr = spo_expression_as_string(0, 0, pPower, alpha-pPower) |
239 |
print "->", polExpStr |
240 |
currentPolynomial = polynomialAtPower * nAtPower |
241 |
polynomialsList.append(currentPolynomial) |
242 |
pMonomials = currentPolynomial.monomials() |
243 |
pCoefficients = currentPolynomial.coefficients() |
244 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
245 |
pCoefficients, |
246 |
knownMonomials, |
247 |
protoMatrixRows, |
248 |
columnsWidth) |
249 |
|
250 |
# The i^iPower * p^pPower polynomials: they add i^k monomials to |
251 |
# p^pPower up to k < pIdegree * pPower. This only introduces i^k |
252 |
# monomials since mixed terms (that were introduced at a previous |
253 |
# stage) are only shifted to already existing |
254 |
# ones. p^pPower is "shifted" to higher degrees in i as far as |
255 |
# possible, one step short of the degree in i of p^(pPower+1) . |
256 |
# These "pure" i^k monomials can only show up with i multiplications. |
257 |
for iPower in xrange(1, pIdegree): |
258 |
if columnsWidth != 0: |
259 |
polExpStr = spo_expression_as_string(iPower, \ |
260 |
0, \ |
261 |
pPower, \ |
262 |
alpha) |
263 |
print "->", polExpStr |
264 |
currentExpression = i^iPower * nAtPower |
265 |
currentPolynomial = pRing(currentExpression) * polynomialAtPower |
266 |
polynomialsList.append(currentPolynomial) |
267 |
pMonomials = currentPolynomial.monomials() |
268 |
pCoefficients = currentPolynomial.coefficients() |
269 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, \ |
270 |
pCoefficients, \ |
271 |
knownMonomials, \ |
272 |
protoMatrixRows, \ |
273 |
columnsWidth) |
274 |
# End for iPower |
275 |
# We want now to introduce a t * p^pPower polynomial. But before |
276 |
# that we must introduce some mixed monomials. |
277 |
# This loop is no triggered before pPower == 2. |
278 |
# It introduces a first set of high i degree mixed monomials. |
279 |
for iPower in xrange(1, pPower): |
280 |
tPower = pPower - iPower + 1 |
281 |
if columnsWidth != 0: |
282 |
polExpStr = spo_expression_as_string(iPower * pIdegree, |
283 |
tPower, |
284 |
0, |
285 |
alpha) |
286 |
print "->", polExpStr |
287 |
currentExpression = i^(iPower * pIdegree) * t^tPower * nAtAlpha |
288 |
currentPolynomial = pRing(currentExpression) |
289 |
polynomialsList.append(currentPolynomial) |
290 |
pMonomials = currentPolynomial.monomials() |
291 |
pCoefficients = currentPolynomial.coefficients() |
292 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
293 |
pCoefficients, |
294 |
knownMonomials, |
295 |
protoMatrixRows, |
296 |
columnsWidth) |
297 |
# End for iPower |
298 |
# |
299 |
# This is the mixed monomials main loop. It introduces: |
300 |
# - the missing mixed monomials needed before the |
301 |
# t^l * p^pPower * N^(alpha-pPower) polynomial; |
302 |
# - the t^l * p^pPower * N^(alpha-pPower) itself; |
303 |
# - for each of i^k * t^l * p^pPower * N^(alpha-pPower) polynomials: |
304 |
# - the the missing mixed monomials needed polynomials, |
305 |
# - the i^k * t^l * p^pPower * N^(alpha-pPower) itself. |
306 |
# The t^l * p^pPower * N^(alpha-pPower) is introduced when |
307 |
# |
308 |
for iShift in xrange(0, pIdegree): |
309 |
# When pTdegree == 1, the following loop only introduces |
310 |
# a single new monomial. |
311 |
#print "++++++++++" |
312 |
for outerTpower in xrange(1, pTdegree + 1): |
313 |
# First one high i degree mixed monomial. |
314 |
iPower = iShift + pPower * pIdegree |
315 |
if columnsWidth != 0: |
316 |
polExpStr = spo_expression_as_string(iPower, |
317 |
outerTpower, |
318 |
0, |
319 |
alpha) |
320 |
print "->", polExpStr |
321 |
currentExpression = i^iPower * t^outerTpower * nAtAlpha |
322 |
currentPolynomial = pRing(currentExpression) |
323 |
polynomialsList.append(currentPolynomial) |
324 |
pMonomials = currentPolynomial.monomials() |
325 |
pCoefficients = currentPolynomial.coefficients() |
326 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
327 |
pCoefficients, |
328 |
knownMonomials, |
329 |
protoMatrixRows, |
330 |
columnsWidth) |
331 |
#print "+++++" |
332 |
# At iShift == 0, the following innerTpower loop adds |
333 |
# duplicate monomials, since no extra i^l * t^k is needed |
334 |
# before introducing the |
335 |
# i^iShift * t^outerPpower * p^pPower * N^(alpha-pPower) |
336 |
# polynomial. |
337 |
# It introduces smaller i degree monomials than the |
338 |
# one(s) added previously (no pPower multiplication). |
339 |
# Here the exponent of t decreases as that of i increases. |
340 |
# This conditional is not entered before pPower == 1. |
341 |
# The innerTpower loop does not produce anything before |
342 |
# pPower == 2. We keep it anyway for other configuration of |
343 |
# p. |
344 |
if iShift > 0: |
345 |
iPower = pIdegree + iShift |
346 |
for innerTpower in xrange(pPower, 1, -1): |
347 |
if columnsWidth != 0: |
348 |
polExpStr = spo_expression_as_string(iPower, |
349 |
innerTpower, |
350 |
0, |
351 |
alpha) |
352 |
currentExpression = \ |
353 |
i^(iPower) * t^(innerTpower) * nAtAlpha |
354 |
currentPolynomial = pRing(currentExpression) |
355 |
polynomialsList.append(currentPolynomial) |
356 |
pMonomials = currentPolynomial.monomials() |
357 |
pCoefficients = currentPolynomial.coefficients() |
358 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
359 |
pCoefficients, |
360 |
knownMonomials, |
361 |
protoMatrixRows, |
362 |
columnsWidth) |
363 |
iPower += pIdegree |
364 |
# End for innerTpower |
365 |
# End of if iShift > 0 |
366 |
# When iShift == 0, just after each of the |
367 |
# p^pPower * N^(alpha-pPower) polynomials has |
368 |
# been introduced (followed by a string of |
369 |
# i^k * p^pPower * N^(alpha-pPower) polynomials) a |
370 |
# t^l * p^pPower * N^(alpha-pPower) is introduced here. |
371 |
# |
372 |
# Eventually, the following section introduces the |
373 |
# i^iShift * t^outerTpower * p^iPower * N^(alpha-pPower) |
374 |
# polynomials. |
375 |
if columnsWidth != 0: |
376 |
polExpStr = spo_expression_as_string(iShift, |
377 |
outerTpower, |
378 |
pPower, |
379 |
alpha-pPower) |
380 |
print "->", polExpStr |
381 |
currentExpression = i^iShift * t^outerTpower * nAtPower |
382 |
currentPolynomial = pRing(currentExpression) * \ |
383 |
polynomialAtPower |
384 |
polynomialsList.append(currentPolynomial) |
385 |
pMonomials = currentPolynomial.monomials() |
386 |
pCoefficients = currentPolynomial.coefficients() |
387 |
spo_add_polynomial_coeffs_to_matrix_row(pMonomials, |
388 |
pCoefficients, |
389 |
knownMonomials, |
390 |
protoMatrixRows, |
391 |
columnsWidth) |
392 |
# End for outerTpower |
393 |
#print "++++++++++" |
394 |
# End for iShift |
395 |
polynomialAtPower *= p |
396 |
nAtPower /= N |
397 |
# End for pPower loop |
398 |
return ((protoMatrixRows, knownMonomials, polynomialsList)) |
399 |
# End spo_polynomial_to_proto_matrix |
400 |
|
401 |
def spo_polynomial_to_polynomials_list_2(p, alpha, N, iBound, tBound, |
402 |
columnsWidth=0): |
403 |
""" |
404 |
Badly out of sync code: check with versions 3 or 4. |
405 |
|
406 |
From p, alpha, N build a list of polynomials... |
407 |
TODO: clean up the comments below! |
408 |
|
409 |
From a (bivariate) polynomial and some other parameters build a proto |
410 |
matrix (an array of "rows") to be converted into a "true" matrix and |
411 |
eventually by reduced by fpLLL. |
412 |
The matrix is based on a list of polynomials that are built in a way |
413 |
that one and only monomial is added at each new polynomial. Among the many |
414 |
possible ways to build this list we pick one strongly dependent on the |
415 |
structure of the polynomial and of the problem. |
416 |
We consider here the polynomials of the form: |
417 |
a_k*i^k + a_(k-1)*i^(k-1) + ... + a_1*i + a_0 - t |
418 |
The values of i and t are bounded and we eventually look for (i_0,t_0) |
419 |
pairs such that: |
420 |
a_k*i_0^k + a_(k-1)*i_0^(k-1) + ... + a_1*i_0 + a_0 = t_0 |
421 |
Hence, departing from the procedure in described in Boneh-Durfee, we will |
422 |
not use "t-shifts" but only "i-shifts". |
423 |
|
424 |
Parameters |
425 |
---------- |
426 |
p: the (bivariate) polynomial; |
427 |
pRing: the ring over which p is defined; |
428 |
alpha: |
429 |
N: |
430 |
columsWidth: if == 0, no information is displayed, otherwise data is |
431 |
printed in colums of columnsWitdth width. |
432 |
""" |
433 |
pRing = p.parent() |
434 |
polynomialsList = [] |
435 |
pVariables = p.variables() |
436 |
iVariable = pVariables[0] |
437 |
tVariable = pVariables[1] |
438 |
polynomialAtPower = pRing(1) |
439 |
currentPolynomial = pRing(1) |
440 |
pIdegree = p.degree(iVariable) |
441 |
pTdegree = p.degree(tVariable) |
442 |
currentIdegree = currentPolynomial.degree(iVariable) |
443 |
nAtAlpha = N^alpha |
444 |
nAtPower = nAtAlpha |
445 |
polExpStr = "" |
446 |
# We work from p^0 * N^alpha to p^alpha * N^0 |
447 |
for pPower in xrange(0, alpha + 1): |
448 |
# pPower == 0 is a special case. We introduce all the monomials in i |
449 |
# up to i^pIdegree. |
450 |
if pPower == 0: |
451 |
# Notice who iPower runs up to i^pIdegree. |
452 |
for iPower in xrange(0, pIdegree + 1): |
453 |
# No t power is taken into account as we limit our selves to |
454 |
# degree 1 in t and make no "t-shifts". |
455 |
if columnsWidth != 0: |
456 |
polExpStr = spo_expression_as_string(iPower, |
457 |
iBound, |
458 |
0, |
459 |
tBound, |
460 |
0, |
461 |
alpha) |
462 |
print "->", polExpStr |
463 |
currentExpression = iVariable^iPower * nAtAlpha * iBound^iPower |
464 |
# polynomialAtPower == 1 here. Next line should be commented |
465 |
# out but it does not work! Some conversion problem? |
466 |
currentPolynomial = pRing(currentExpression) |
467 |
polynomialsList.append(currentPolynomial) |
468 |
# End for iPower. |
469 |
else: # pPower > 0: (p^1..p^alpha) |
470 |
# This where we introduce the p^pPower * N^(alpha-pPower) |
471 |
# polynomial. This is also where the t^pPower monomials shows up for |
472 |
# the first time. |
473 |
if columnsWidth != 0: |
474 |
polExpStr = spo_expression_as_string(0, iBound, 0, tBound, \ |
475 |
pPower, alpha-pPower) |
476 |
print "->", polExpStr |
477 |
currentPolynomial = polynomialAtPower * nAtPower |
478 |
polynomialsList.append(currentPolynomial) |
479 |
# Exit when pPower == alpha |
480 |
if pPower == alpha: |
481 |
return polynomialsList |
482 |
# This is where the "i-shifts" take place. Mixed terms, i^k * t^l |
483 |
# (that were introduced at a previous |
484 |
# stage or are introduced now) are only shifted to already existing |
485 |
# ones with the notable exception of i^iPower * t^pPower, which |
486 |
# must be manually introduced. |
487 |
# p^pPower is "shifted" to higher degrees in i as far as |
488 |
# possible, up to of the degree in i of p^(pPower+1). |
489 |
# These "pure" i^k monomials can only show up with i multiplications. |
490 |
for iPower in xrange(1, pIdegree + 1): |
491 |
# The i^iPower * t^pPower monomial. Notice the alpha exponent |
492 |
# for N. |
493 |
internalIpower = iPower |
494 |
for tPower in xrange(pPower,0,-1): |
495 |
if columnsWidth != 0: |
496 |
polExpStr = spo_expression_as_string(internalIpower, |
497 |
iBound, |
498 |
tPower, |
499 |
tBound, |
500 |
0, |
501 |
alpha) |
502 |
print "->", polExpStr |
503 |
currentExpression = i^internalIpower * t^tPower * \ |
504 |
nAtAlpha * iBound^internalIpower * \ |
505 |
tBound^tPower |
506 |
|
507 |
currentPolynomial = pRing(currentExpression) |
508 |
polynomialsList.append(currentPolynomial) |
509 |
internalIpower += pIdegree |
510 |
# End for tPower |
511 |
# The i^iPower * p^pPower * N^(alpha-pPower) i-shift. |
512 |
if columnsWidth != 0: |
513 |
polExpStr = spo_expression_as_string(iPower, |
514 |
iBound, |
515 |
0, |
516 |
tBound, |
517 |
pPower, |
518 |
alpha-pPower) |
519 |
print "->", polExpStr |
520 |
currentExpression = i^iPower * nAtPower * iBound^iPower |
521 |
currentPolynomial = pRing(currentExpression) * polynomialAtPower |
522 |
polynomialsList.append(currentPolynomial) |
523 |
# End for iPower |
524 |
polynomialAtPower *= p |
525 |
nAtPower /= N |
526 |
# End for pPower loop |
527 |
return polynomialsList |
528 |
# End spo_polynomial_to_proto_matrix_2 |
529 |
|
530 |
def spo_polynomial_to_polynomials_list_3(p, alpha, N, iBound, tBound, |
531 |
columnsWidth=0): |
532 |
""" |
533 |
From p, alpha, N build a list of polynomials... |
534 |
TODO: more in depth rationale... |
535 |
|
536 |
Our goal is to introduce each monomial with the smallest coefficient. |
537 |
|
538 |
|
539 |
|
540 |
Parameters |
541 |
---------- |
542 |
p: the (bivariate) polynomial; |
543 |
pRing: the ring over which p is defined; |
544 |
alpha: |
545 |
N: |
546 |
columsWidth: if == 0, no information is displayed, otherwise data is |
547 |
printed in colums of columnsWitdth width. |
548 |
""" |
549 |
pRing = p.parent() |
550 |
polynomialsList = [] |
551 |
pVariables = p.variables() |
552 |
iVariable = pVariables[0] |
553 |
tVariable = pVariables[1] |
554 |
polynomialAtPower = pRing(1) |
555 |
currentPolynomial = pRing(1) |
556 |
pIdegree = p.degree(iVariable) |
557 |
pTdegree = p.degree(tVariable) |
558 |
currentIdegree = currentPolynomial.degree(iVariable) |
559 |
nAtAlpha = N^alpha |
560 |
nAtPower = nAtAlpha |
561 |
polExpStr = "" |
562 |
# We work from p^0 * N^alpha to p^alpha * N^0 |
563 |
for pPower in xrange(0, alpha + 1): |
564 |
# pPower == 0 is a special case. We introduce all the monomials in i |
565 |
# up to i^pIdegree. |
566 |
if pPower == 0: |
567 |
# Notice who iPower runs up to i^pIdegree. |
568 |
for iPower in xrange(0, pIdegree + 1): |
569 |
# No t power is taken into account as we limit our selves to |
570 |
# degree 1 in t and make no "t-shifts". |
571 |
if columnsWidth != 0: |
572 |
polExpStr = spo_expression_as_string(iPower, |
573 |
iBound, |
574 |
0, |
575 |
tBound, |
576 |
0, |
577 |
alpha) |
578 |
print "->", polExpStr |
579 |
currentExpression = iVariable^iPower * nAtAlpha * iBound^iPower |
580 |
# polynomialAtPower == 1 here. Next line should be commented |
581 |
# out but it does not work! Some conversion problem? |
582 |
currentPolynomial = pRing(currentExpression) |
583 |
polynomialsList.append(currentPolynomial) |
584 |
# End for iPower. |
585 |
else: # pPower > 0: (p^1..p^alpha) |
586 |
# This where we introduce the p^pPower * N^(alpha-pPower) |
587 |
# polynomial. This is also where the t^pPower monomials shows up for |
588 |
# the first time. It app |
589 |
if columnsWidth != 0: |
590 |
polExpStr = spo_expression_as_string(0, iBound, |
591 |
0, tBound, |
592 |
pPower, alpha-pPower) |
593 |
print "->", polExpStr |
594 |
currentPolynomial = polynomialAtPower * nAtPower |
595 |
polynomialsList.append(currentPolynomial) |
596 |
# Exit when pPower == alpha |
597 |
if pPower == alpha: |
598 |
return polynomialsList |
599 |
# This is where the "i-shifts" take place. Mixed terms, i^k * t^l |
600 |
# (that were introduced at a previous |
601 |
# stage or are introduced now) are only shifted to already existing |
602 |
# ones with the notable exception of i^iPower * t^pPower, which |
603 |
# must be manually introduced. |
604 |
# p^pPower is "shifted" to higher degrees in i as far as |
605 |
# possible, up to of the degree in i of p^(pPower+1). |
606 |
# These "pure" i^k monomials can only show up with i multiplications. |
607 |
for iPower in xrange(1, pIdegree + 1): |
608 |
# The i^iPower * t^pPower monomial. Notice the alpha exponent |
609 |
# for N. |
610 |
internalIpower = iPower |
611 |
for tPower in xrange(pPower,0,-1): |
612 |
if columnsWidth != 0: |
613 |
polExpStr = spo_expression_as_string(internalIpower, |
614 |
iBound, |
615 |
tPower, |
616 |
tBound, |
617 |
0, |
618 |
alpha) |
619 |
print "->", polExpStr |
620 |
currentExpression = i^internalIpower * t^tPower * nAtAlpha * \ |
621 |
iBound^internalIpower * tBound^tPower |
622 |
currentPolynomial = pRing(currentExpression) |
623 |
polynomialsList.append(currentPolynomial) |
624 |
internalIpower += pIdegree |
625 |
# End for tPower |
626 |
# Here we have to choose between a |
627 |
# i^iPower * p^pPower * N^(alpha-pPower) i-shift and |
628 |
# i^iPower * i^(d_i(p) * pPower) * N^alpha, depending on which |
629 |
# coefficient is smallest. |
630 |
IcurrentExponent = iPower + \ |
631 |
(pPower * polynomialAtPower.degree(iVariable)) |
632 |
currentMonomial = pRing(iVariable^IcurrentExponent) |
633 |
currentPolynomial = pRing(iVariable^iPower * nAtPower * \ |
634 |
iBound^iPower) * \ |
635 |
polynomialAtPower |
636 |
currMonomials = currentPolynomial.monomials() |
637 |
currCoefficients = currentPolynomial.coefficients() |
638 |
currentCoefficient = spo_get_coefficient_for_monomial( \ |
639 |
currMonomials, |
640 |
currCoefficients, |
641 |
currentMonomial) |
642 |
print "Current coefficient:", currentCoefficient |
643 |
alterCoefficient = iBound^IcurrentExponent * nAtAlpha |
644 |
print "N^alpha * ibound^", IcurrentExponent, ":", \ |
645 |
alterCoefficient |
646 |
if currentCoefficient > alterCoefficient : |
647 |
if columnsWidth != 0: |
648 |
polExpStr = spo_expression_as_string(IcurrentExponent, |
649 |
iBound, |
650 |
0, |
651 |
tBound, |
652 |
0, |
653 |
alpha) |
654 |
print "->", polExpStr |
655 |
polynomialsList.append(currentMonomial * \ |
656 |
alterCoefficient) |
657 |
else: |
658 |
if columnsWidth != 0: |
659 |
polExpStr = spo_expression_as_string(iPower, iBound, |
660 |
0, tBound, |
661 |
pPower, |
662 |
alpha-pPower) |
663 |
print "->", polExpStr |
664 |
polynomialsList.append(currentPolynomial) |
665 |
# End for iPower |
666 |
polynomialAtPower *= p |
667 |
nAtPower /= N |
668 |
# End for pPower loop |
669 |
return polynomialsList |
670 |
# End spo_polynomial_to_proto_matrix_3 |
671 |
|
672 |
def spo_polynomial_to_polynomials_list_4(p, alpha, N, iBound, tBound, |
673 |
columnsWidth=0): |
674 |
""" |
675 |
From p, alpha, N build a list of polynomials... |
676 |
TODO: more in depth rationale... |
677 |
|
678 |
Our goal is to introduce each monomial with the smallest coefficient. |
679 |
|
680 |
|
681 |
|
682 |
Parameters |
683 |
---------- |
684 |
p: the (bivariate) polynomial; |
685 |
pRing: the ring over which p is defined; |
686 |
alpha: |
687 |
N: |
688 |
columsWidth: if == 0, no information is displayed, otherwise data is |
689 |
printed in colums of columnsWitdth width. |
690 |
""" |
691 |
pRing = p.parent() |
692 |
polynomialsList = [] |
693 |
pVariables = p.variables() |
694 |
iVariable = pVariables[0] |
695 |
tVariable = pVariables[1] |
696 |
polynomialAtPower = copy(p) |
697 |
currentPolynomial = pRing(1) |
698 |
pIdegree = p.degree(iVariable) |
699 |
pTdegree = p.degree(tVariable) |
700 |
maxIdegree = pIdegree * alpha |
701 |
currentIdegree = currentPolynomial.degree(iVariable) |
702 |
nAtAlpha = N^alpha |
703 |
nAtPower = nAtAlpha |
704 |
polExpStr = "" |
705 |
# We first introduce all the monomials in i alone multiplied by N^alpha. |
706 |
for iPower in xrange(0, maxIdegree + 1): |
707 |
if columnsWidth !=0: |
708 |
polExpStr = spo_expression_as_string(iPower, iBound, |
709 |
0, tBound, |
710 |
0, alpha) |
711 |
print "->", polExpStr |
712 |
currentExpression = iVariable^iPower * nAtAlpha * iBound^iPower |
713 |
currentPolynomial = pRing(currentExpression) |
714 |
polynomialsList.append(currentPolynomial) |
715 |
# End for iPower |
716 |
# We work from p^1 * N^alpha-1 to p^alpha * N^0 |
717 |
for pPower in xrange(1, alpha + 1): |
718 |
# First of all the p^pPower * N^(alpha-pPower) polynomial. |
719 |
nAtPower /= N |
720 |
if columnsWidth !=0: |
721 |
polExpStr = spo_expression_as_string(0, iBound, |
722 |
0, tBound, |
723 |
pPower, alpha-pPower) |
724 |
print "->", polExpStr |
725 |
currentPolynomial = polynomialAtPower * nAtPower |
726 |
polynomialsList.append(currentPolynomial) |
727 |
# Exit when pPower == alpha |
728 |
if pPower == alpha: |
729 |
return polynomialsList |
730 |
# We now introduce the mixed i^k * t^l monomials by i^m * p^n * N^(alpha-n) |
731 |
for iPower in xrange(1, pIdegree + 1): |
732 |
if columnsWidth != 0: |
733 |
polExpStr = spo_expression_as_string(iPower, iBound, |
734 |
0, tBound, |
735 |
pPower, alpha-pPower) |
736 |
print "->", polExpStr |
737 |
currentExpression = i^iPower * iBound^iPower * nAtPower |
738 |
currentPolynomial = pRing(currentExpression) * polynomialAtPower |
739 |
polynomialsList.append(currentPolynomial) |
740 |
# End for iPower |
741 |
polynomialAtPower *= p |
742 |
# End for pPower loop |
743 |
return polynomialsList |
744 |
# End spo_polynomial_to_proto_matrix_4 |
745 |
|
746 |
def spo_polynomial_to_polynomials_list_5(p, alpha, N, iBound, tBound, |
747 |
columnsWidth=0): |
748 |
""" |
749 |
From p, alpha, N build a list of polynomials use to create a base |
750 |
that will eventually be reduced with LLL. |
751 |
|
752 |
The bounds are computed for the coefficients that will be used to |
753 |
form the base. |
754 |
|
755 |
We try to introduce only one new monomial at a time, to obtain a |
756 |
triangular matrix (it is easy to compute the volume of the underlining |
757 |
latice if the matrix is triangular). |
758 |
|
759 |
There are many possibilities to introduce the monomials: our goal is also |
760 |
to introduce each of them on the diagonal with the smallest coefficient. |
761 |
|
762 |
The method depends on the structure of the polynomial. Here it is adapted |
763 |
to the a_n*i^n + ... + a_1 * i - t + b form. |
764 |
|
765 |
Parameters |
766 |
---------- |
767 |
p: the (bivariate) polynomial; |
768 |
alpha: |
769 |
N: |
770 |
iBound: |
771 |
tBound: |
772 |
columsWidth: if == 0, no information is displayed, otherwise data is |
773 |
printed in colums of columnsWitdth width. |
774 |
""" |
775 |
pRing = p.parent() |
776 |
polynomialsList = [] |
777 |
pVariables = p.variables() |
778 |
iVariable = pVariables[0] |
779 |
tVariable = pVariables[1] |
780 |
polynomialAtPower = copy(p) |
781 |
currentPolynomial = pRing(1) |
782 |
pIdegree = p.degree(iVariable) |
783 |
pTdegree = p.degree(tVariable) |
784 |
maxIdegree = pIdegree * alpha |
785 |
currentIdegree = currentPolynomial.degree(iVariable) |
786 |
nAtAlpha = N^alpha |
787 |
nAtPower = nAtAlpha |
788 |
polExpStr = "" |
789 |
# We first introduce all the monomials in i alone multiplied by N^alpha. |
790 |
for iPower in xrange(0, maxIdegree + 1): |
791 |
if columnsWidth !=0: |
792 |
polExpStr = spo_expression_as_string(iPower, iBound, |
793 |
0, tBound, |
794 |
0, alpha) |
795 |
print "->", polExpStr |
796 |
currentExpression = iVariable^iPower * nAtAlpha * iBound^iPower |
797 |
currentPolynomial = pRing(currentExpression) |
798 |
polynomialsList.append(currentPolynomial) |
799 |
# End for iPower |
800 |
# We work from p^1 * N^alpha-1 to p^alpha * N^0 |
801 |
for pPower in xrange(1, alpha + 1): |
802 |
# First of all the p^pPower * N^(alpha-pPower) polynomial. |
803 |
nAtPower /= N |
804 |
if columnsWidth !=0: |
805 |
polExpStr = spo_expression_as_string(0, iBound, |
806 |
0, tBound, |
807 |
pPower, alpha-pPower) |
808 |
print "->", polExpStr |
809 |
currentPolynomial = polynomialAtPower * nAtPower |
810 |
polynomialsList.append(currentPolynomial) |
811 |
# Exit when pPower == alpha |
812 |
if pPower == alpha: |
813 |
return polynomialsList |
814 |
for iPower in xrange(1, pIdegree + 1): |
815 |
iCurrentPower = pIdegree + iPower |
816 |
for tPower in xrange(pPower-1, 0, -1): |
817 |
#print "tPower:", tPower |
818 |
if columnsWidth != 0: |
819 |
polExpStr = spo_expression_as_string(iCurrentPower, iBound, |
820 |
tPower, tBound, |
821 |
0, alpha) |
822 |
print "->", polExpStr |
823 |
currentExpression = i^iCurrentPower * iBound^iCurrentPower * t^tPower * tBound^tPower *nAtAlpha |
824 |
currentPolynomial = pRing(currentExpression) |
825 |
polynomialsList.append(currentPolynomial) |
826 |
iCurrentPower += pIdegree |
827 |
# End for tPower |
828 |
# We now introduce the mixed i^k * t^l monomials by i^m * p^n * N^(alpha-n) |
829 |
if columnsWidth != 0: |
830 |
polExpStr = spo_expression_as_string(iPower, iBound, |
831 |
0, tBound, |
832 |
pPower, alpha-pPower) |
833 |
print "->", polExpStr |
834 |
currentExpression = i^iPower * iBound^iPower * nAtPower |
835 |
currentPolynomial = pRing(currentExpression) * polynomialAtPower |
836 |
polynomialsList.append(currentPolynomial) |
837 |
# End for iPower |
838 |
polynomialAtPower *= p |
839 |
# End for pPower loop |
840 |
return polynomialsList |
841 |
# End spo_polynomial_to_proto_matrix_5 |
842 |
|
843 |
def spo_polynomial_to_polynomials_list_6(p, alpha, N, iBound, tBound, |
844 |
columnsWidth=0): |
845 |
""" |
846 |
From p, alpha, N build a list of polynomials use to create a base |
847 |
that will eventually be reduced with LLL. |
848 |
|
849 |
The bounds are computed for the coefficients that will be used to |
850 |
form the base. |
851 |
|
852 |
We try to introduce only one new monomial at a time, whithout trying to |
853 |
obtain a triangular matrix. |
854 |
|
855 |
There are many possibilities to introduce the monomials: our goal is also |
856 |
to introduce each of them on the diagonal with the smallest coefficient. |
857 |
|
858 |
The method depends on the structure of the polynomial. Here it is adapted |
859 |
to the a_n*i^n + ... + a_1 * i - t + b form. |
860 |
|
861 |
Parameters |
862 |
---------- |
863 |
p: the (bivariate) polynomial; |
864 |
alpha: |
865 |
N: |
866 |
iBound: |
867 |
tBound: |
868 |
columsWidth: if == 0, no information is displayed, otherwise data is |
869 |
printed in colums of columnsWitdth width. |
870 |
""" |
871 |
pRing = p.parent() |
872 |
polynomialsList = [] |
873 |
pVariables = p.variables() |
874 |
iVariable = pVariables[0] |
875 |
tVariable = pVariables[1] |
876 |
polynomialAtPower = copy(p) |
877 |
currentPolynomial = pRing(1) # Constant term. |
878 |
pIdegree = p.degree(iVariable) |
879 |
pTdegree = p.degree(tVariable) |
880 |
maxIdegree = pIdegree * alpha |
881 |
currentIdegree = currentPolynomial.degree(iVariable) |
882 |
nAtAlpha = N^alpha |
883 |
nAtPower = nAtAlpha |
884 |
polExpStr = "" |
885 |
# |
886 |
""" |
887 |
## Bound for iPower + pIdegree*tPower <= alpha*pIdegree |
888 |
print "degree in i:", pIdegree |
889 |
powersRangeUpperBound = alpha * pIdegree + 1 # +1 for the range. |
890 |
for iPower in xrange(0, powersRangeUpperBound): |
891 |
tPower = 0 |
892 |
while (iPower + tPower * pIdegree) < powersRangeUpperBound: |
893 |
print "iPower:", iPower, " tPower:", tPower |
894 |
q = pRing(iVariable * iBound)^iPower * ((p * N)^tPower) |
895 |
print "q monomials:", q.monomials() |
896 |
polynomialsList.append(q) |
897 |
tPower += 1 |
898 |
""" |
899 |
""" |
900 |
Start from iExp = 0 since starting from 1 does not allow for |
901 |
resultants != 0. |
902 |
""" |
903 |
for iExp in xrange(0, alpha+1): |
904 |
tExp = 0 |
905 |
while iExp + tExp <= alpha: |
906 |
q = pRing(iVariable * iBound)^iExp * ((p * N)^tExp) |
907 |
sys.stdout.write("q " + str(iExp) + "," + str(tExp) + ": ") |
908 |
print q |
909 |
polynomialsList.append(q) |
910 |
tExp += 1 |
911 |
return polynomialsList |
912 |
|
913 |
""" |
914 |
# We first introduce all the monomials in i alone multiplied by N^alpha. |
915 |
for iPower in xrange(0, maxIdegree + 1): |
916 |
if columnsWidth !=0: |
917 |
polExpStr = spo_expression_as_string(iPower, iBound, |
918 |
0, tBound, |
919 |
0, alpha) |
920 |
print "->", polExpStr |
921 |
currentExpression = iVariable^iPower * nAtAlpha * iBound^iPower |
922 |
currentPolynomial = pRing(currentExpression) |
923 |
polynomialsList.append(currentPolynomial) |
924 |
# End for iPower |
925 |
# We work from p^1 * N^alpha-1 to p^alpha * N^0 |
926 |
for pPower in xrange(1, alpha + 1): |
927 |
# First of all the p^pPower * N^(alpha-pPower) polynomial. |
928 |
nAtPower /= N |
929 |
if columnsWidth !=0: |
930 |
polExpStr = spo_expression_as_string(0, iBound, |
931 |
0, tBound, |
932 |
pPower, alpha-pPower) |
933 |
print "->", polExpStr |
934 |
currentPolynomial = polynomialAtPower * nAtPower |
935 |
polynomialsList.append(currentPolynomial) |
936 |
# Exit when pPower == alpha |
937 |
if pPower == alpha: |
938 |
return polynomialsList |
939 |
for iPower in xrange(1, pIdegree + 1): |
940 |
iCurrentPower = pIdegree + iPower |
941 |
for tPower in xrange(pPower-1, 0, -1): |
942 |
#print "tPower:", tPower |
943 |
if columnsWidth != 0: |
944 |
polExpStr = spo_expression_as_string(iCurrentPower, iBound, |
945 |
tPower, tBound, |
946 |
0, alpha) |
947 |
print "->", polExpStr |
948 |
currentExpression = i^iCurrentPower * iBound^iCurrentPower * t^tPower * tBound^tPower *nAtAlpha |
949 |
currentPolynomial = pRing(currentExpression) |
950 |
polynomialsList.append(currentPolynomial) |
951 |
iCurrentPower += pIdegree |
952 |
# End for tPower |
953 |
# We now introduce the mixed i^k * t^l monomials by i^m * p^n * N^(alpha-n) |
954 |
if columnsWidth != 0: |
955 |
polExpStr = spo_expression_as_string(iPower, iBound, |
956 |
0, tBound, |
957 |
pPower, alpha-pPower) |
958 |
print "->", polExpStr |
959 |
currentExpression = i^iPower * iBound^iPower * nAtPower |
960 |
currentPolynomial = pRing(currentExpression) * polynomialAtPower |
961 |
polynomialsList.append(currentPolynomial) |
962 |
# End for iPower |
963 |
polynomialAtPower *= p |
964 |
# End for pPower loop |
965 |
""" |
966 |
return polynomialsList |
967 |
# End spo_polynomial_to_proto_matrix_6 |
968 |
|
969 |
def spo_polynomial_to_polynomials_list_7(p, alpha, N, iBound, tBound, |
970 |
columnsWidth=0): |
971 |
""" |
972 |
As per Random Bits... direct loops nesting. |
973 |
""" |
974 |
pRing = p.parent() |
975 |
polynomialsList = [] |
976 |
pVariables = p.variables() |
977 |
iVariable = pVariables[0] |
978 |
tVariable = pVariables[1] |
979 |
polynomialAtPower = copy(p) |
980 |
currentPolynomial = pRing(1) # Constant term. |
981 |
|
982 |
for iExp in xrange(0, alpha+1): |
983 |
pExp = 0 |
984 |
while (iExp + pExp) <= alpha: |
985 |
print "iExp:", iExp, \ |
986 |
"- pExp:", pExp, \ |
987 |
"- alpha-pExp:", alpha-pExp |
988 |
q = pRing(iVariable * iBound)^iExp * p^pExp * N^(alpha-pExp) |
989 |
print q.monomials() |
990 |
polynomialsList.append(q) |
991 |
pExp += 1 |
992 |
return polynomialsList |
993 |
# End spo_polynomial_to_polynomials_list_7 |
994 |
|
995 |
def spo_polynomial_to_polynomials_list_8(p, alpha, N, iBound, tBound, |
996 |
columnsWidth=0): |
997 |
""" |
998 |
As per Random Bits... (reversed loop nesting) |
999 |
""" |
1000 |
pRing = p.parent() |
1001 |
polynomialsList = [] |
1002 |
pVariables = p.variables() |
1003 |
iVariable = pVariables[0] |
1004 |
tVariable = pVariables[1] |
1005 |
polynomialAtPower = copy(p) |
1006 |
currentPolynomial = pRing(1) # Constant term. |
1007 |
|
1008 |
for pExp in xrange(0, alpha+1): |
1009 |
iExp = 0 |
1010 |
while (iExp + pExp) <= alpha: |
1011 |
print "iExp:", iExp, \ |
1012 |
"- pExp:", pExp, \ |
1013 |
"- alpha-pExp:", alpha-pExp |
1014 |
q = pRing(iVariable * iBound)^iExp * p^pExp * N^(alpha-pExp) |
1015 |
print q.monomials() |
1016 |
polynomialsList.append(q) |
1017 |
iExp += 1 |
1018 |
return polynomialsList |
1019 |
# End spo_polynomial_to_polynomials_list_8 |
1020 |
|
1021 |
def spo_proto_to_column_matrix(protoMatrixColumns): |
1022 |
""" |
1023 |
Create a column (each row holds the coefficients for one monomial) matrix. |
1024 |
|
1025 |
Parameters |
1026 |
---------- |
1027 |
protoMatrixColumns: a list of coefficient lists. |
1028 |
""" |
1029 |
numColumns = len(protoMatrixColumns) |
1030 |
if numColumns == 0: |
1031 |
return None |
1032 |
# The last column holds has the maximum length. |
1033 |
numRows = len(protoMatrixColumns[numColumns-1]) |
1034 |
if numColumns == 0: |
1035 |
return None |
1036 |
baseMatrix = matrix(ZZ, numRows, numColumns) |
1037 |
for colIndex in xrange(0, numColumns): |
1038 |
for rowIndex in xrange(0, len(protoMatrixColumns[colIndex])): |
1039 |
if protoMatrixColumns[colIndex][rowIndex] != 0: |
1040 |
baseMatrix[rowIndex, colIndex] = \ |
1041 |
protoMatrixColumns[colIndex][rowIndex] |
1042 |
return baseMatrix |
1043 |
# End spo_proto_to_column_matrix. |
1044 |
# |
1045 |
def spo_proto_to_row_matrix(protoMatrixRows): |
1046 |
""" |
1047 |
Create a row (each column holds the coefficients corresponding to one |
1048 |
monomial) matrix from the protoMatrixRows list. |
1049 |
|
1050 |
Parameters |
1051 |
---------- |
1052 |
protoMatrixRows: a list of coefficient lists. |
1053 |
""" |
1054 |
numRows = len(protoMatrixRows) |
1055 |
if numRows == 0: |
1056 |
return None |
1057 |
# Search for the longest row to get the number of columns. |
1058 |
numColumns = 0 |
1059 |
for row in protoMatrixRows: |
1060 |
rowLength = len(row) |
1061 |
if numColumns < rowLength: |
1062 |
numColumns = rowLength |
1063 |
if numColumns == 0: |
1064 |
return None |
1065 |
baseMatrix = matrix(ZZ, numRows, numColumns) |
1066 |
for rowIndex in xrange(0, numRows): |
1067 |
for colIndex in xrange(0, len(protoMatrixRows[rowIndex])): |
1068 |
if protoMatrixRows[rowIndex][colIndex] != 0: |
1069 |
baseMatrix[rowIndex, colIndex] = \ |
1070 |
protoMatrixRows[rowIndex][colIndex] |
1071 |
#print rowIndex, colIndex, |
1072 |
#print protoMatrixRows[rowIndex][colIndex], |
1073 |
#print knownMonomialsList[colIndex](boundVar1,boundVar2) |
1074 |
return baseMatrix |
1075 |
# End spo_proto_to_row_matrix. |
1076 |
# |
1077 |
print "\t...sagePolynomialOperations loaded" |