root / pobysoPythonSage / src / pobyso.py @ 154
Historique | Voir | Annoter | Télécharger (49,89 ko)
1 |
"""
|
---|---|
2 |
Actual functions to use in Sage
|
3 |
ST 2012-11-13
|
4 |
|
5 |
Command line syntax:
|
6 |
use from Sage (via the "load" or the "attach" commands)
|
7 |
|
8 |
pobyso functions come in five flavors:
|
9 |
- the _so_so (arguments and returned objects are pointers to Sollya objects,
|
10 |
includes the void function and the no arguments function that return a
|
11 |
pointer to a Sollya object);
|
12 |
- the _so_sa (argument are pointers to Sollya objects, returned objects are
|
13 |
Sage/Python objects or, more generally, information is transfered from the
|
14 |
Sollya world to Sage/Python world; e.g. functions without arguments that
|
15 |
return a Sage/Python object);
|
16 |
- the _sa_so (arguments are Sage/Python objects, returned objects are
|
17 |
pointers to Sollya objects);
|
18 |
- the sa_sa (arguments and returned objects are all Sage/Python objects);
|
19 |
- a catch all flavor, without any suffix, (e. g. functions that have no argument
|
20 |
nor return value).
|
21 |
This classification is not always very strict. Conversion functions from Sollya
|
22 |
to Sage/Python are sometimes decorated with Sage/Python arguments to set
|
23 |
the precision. These functions remain in the so_sa category.
|
24 |
NOTES:
|
25 |
Reported errors in Eclipse come from the calls to
|
26 |
the Sollya library
|
27 |
|
28 |
ToDo (among other things):
|
29 |
-memory management.
|
30 |
"""
|
31 |
from ctypes import * |
32 |
import re |
33 |
from sage.symbolic.expression_conversions import polynomial |
34 |
from sage.symbolic.expression_conversions import PolynomialConverter |
35 |
"""
|
36 |
Create the equivalent to an enum for the Sollya function types.
|
37 |
"""
|
38 |
(SOLLYA_BASE_FUNC_ABS, |
39 |
SOLLYA_BASE_FUNC_ACOS, |
40 |
SOLLYA_BASE_FUNC_ACOSH, |
41 |
SOLLYA_BASE_FUNC_ADD, |
42 |
SOLLYA_BASE_FUNC_ASIN, |
43 |
SOLLYA_BASE_FUNC_ASINH, |
44 |
SOLLYA_BASE_FUNC_ATAN, |
45 |
SOLLYA_BASE_FUNC_ATANH, |
46 |
SOLLYA_BASE_FUNC_CEIL, |
47 |
SOLLYA_BASE_FUNC_CONSTANT, |
48 |
SOLLYA_BASE_FUNC_COS, |
49 |
SOLLYA_BASE_FUNC_COSH, |
50 |
SOLLYA_BASE_FUNC_DIV, |
51 |
SOLLYA_BASE_FUNC_DOUBLE, |
52 |
SOLLYA_BASE_FUNC_DOUBLEDOUBLE, |
53 |
SOLLYA_BASE_FUNC_DOUBLEEXTENDED, |
54 |
SOLLYA_BASE_FUNC_ERF, |
55 |
SOLLYA_BASE_FUNC_ERFC, |
56 |
SOLLYA_BASE_FUNC_EXP, |
57 |
SOLLYA_BASE_FUNC_EXP_M1, |
58 |
SOLLYA_BASE_FUNC_FLOOR, |
59 |
SOLLYA_BASE_FUNC_FREE_VARIABLE, |
60 |
SOLLYA_BASE_FUNC_HALFPRECISION, |
61 |
SOLLYA_BASE_FUNC_LIBRARYCONSTANT, |
62 |
SOLLYA_BASE_FUNC_LIBRARYFUNCTION, |
63 |
SOLLYA_BASE_FUNC_LOG, |
64 |
SOLLYA_BASE_FUNC_LOG_10, |
65 |
SOLLYA_BASE_FUNC_LOG_1P, |
66 |
SOLLYA_BASE_FUNC_LOG_2, |
67 |
SOLLYA_BASE_FUNC_MUL, |
68 |
SOLLYA_BASE_FUNC_NEARESTINT, |
69 |
SOLLYA_BASE_FUNC_NEG, |
70 |
SOLLYA_BASE_FUNC_PI, |
71 |
SOLLYA_BASE_FUNC_POW, |
72 |
SOLLYA_BASE_FUNC_PROCEDUREFUNCTION, |
73 |
SOLLYA_BASE_FUNC_QUAD, |
74 |
SOLLYA_BASE_FUNC_SIN, |
75 |
SOLLYA_BASE_FUNC_SINGLE, |
76 |
SOLLYA_BASE_FUNC_SINH, |
77 |
SOLLYA_BASE_FUNC_SQRT, |
78 |
SOLLYA_BASE_FUNC_SUB, |
79 |
SOLLYA_BASE_FUNC_TAN, |
80 |
SOLLYA_BASE_FUNC_TANH, |
81 |
SOLLYA_BASE_FUNC_TRIPLEDOUBLE) = map(int,xrange(44)) |
82 |
print "\nSuperficial pobyso check..." |
83 |
print "First constant - SOLLYA_BASE_FUNC_ABS: ", SOLLYA_BASE_FUNC_ABS |
84 |
print "Last constant - SOLLYA_BASE_FUNC_TRIPLEDOUBLE: ", SOLLYA_BASE_FUNC_TRIPLEDOUBLE |
85 |
|
86 |
pobyso_max_arity = 9
|
87 |
|
88 |
def pobyso_absolute_so_so(): |
89 |
return(sollya_lib_absolute(None)) |
90 |
|
91 |
def pobyso_autoprint(arg): |
92 |
sollya_lib_autoprint(arg,None)
|
93 |
|
94 |
def pobyso_autoprint_so_so(arg): |
95 |
sollya_lib_autoprint(arg,None)
|
96 |
|
97 |
def pobyso_bounds_to_range_sa_so(rnLowerBoundSa, rnUpperBoundSa, \ |
98 |
precisionSa=None):
|
99 |
"""
|
100 |
Return a Sollya range from to 2 RealField Sage elements.
|
101 |
The Sollya range element has a sufficient precision to hold all
|
102 |
the digits of the Sage bounds.
|
103 |
"""
|
104 |
# Sanity check.
|
105 |
if rnLowerBoundSa > rnUpperBoundSa:
|
106 |
return None |
107 |
# Precision stuff.
|
108 |
if precisionSa is None: |
109 |
# Check for the largest precision.
|
110 |
lbPrecSa = rnLowerBoundSa.parent().precision() |
111 |
ubPrecSa = rnLowerBoundSa.parent().precision() |
112 |
maxPrecSa = max(lbPrecSa, ubPrecSa)
|
113 |
else:
|
114 |
maxPrecSa = precisionSa |
115 |
# From Sage to Sollya bounds.
|
116 |
lowerBoundSo = sollya_lib_constant(get_rn_value(rnLowerBoundSa), |
117 |
maxPrecSa) |
118 |
upperBoundSo = sollya_lib_constant(get_rn_value(rnUpperBoundSa), |
119 |
maxPrecSa) |
120 |
# From Sollya bounds to range.
|
121 |
rangeSo = sollya_lib_range(lowerBoundSo, upperBoundSo) |
122 |
# Back to original precision.
|
123 |
# Clean up
|
124 |
sollya_lib_clear_obj(lowerBoundSo) |
125 |
sollya_lib_clear_obj(upperBoundSo) |
126 |
return rangeSo
|
127 |
# End pobyso_bounds_to_range_sa_so
|
128 |
|
129 |
def pobyso_build_function_sub_so_so(exp1So, exp2So): |
130 |
return(sollya_lib_build_function_sub(exp1So, exp2So))
|
131 |
|
132 |
def pobyso_change_var_in_function_so_so(funcSo, chvarExpSo): |
133 |
"""
|
134 |
Variable change in a function.
|
135 |
"""
|
136 |
return(sollya_lib_evaluate(funcSo,chvarExpSo))
|
137 |
# End pobyso_change_var_in_function_so_so
|
138 |
|
139 |
def pobyso_chebyshevform_so_so(functionSo, degreeSo, intervalSo): |
140 |
resultSo = sollya_lib_chebyshevform(functionSo, degreeSo, intervalSo) |
141 |
return(resultSo)
|
142 |
# End pobyso_chebyshevform_so_so.
|
143 |
|
144 |
def pobyso_clear_taylorform_sa_so(taylorFormSaSo): |
145 |
"""
|
146 |
This method is necessary to correctly clean up the memory from Taylor forms.
|
147 |
These are made of a Sollya object, a Sollya object list, a Sollya object.
|
148 |
For no clearly understood reason, sollya_lib_clear_object_list crashed
|
149 |
when applied to the object list.
|
150 |
Here, we decompose it into Sage list of Sollya objects references and we
|
151 |
clear them one by one.
|
152 |
"""
|
153 |
sollya_lib_clear_obj(taylorFormSaSo[0])
|
154 |
(coefficientsErrorsListSaSo, numElementsSa, isEndEllipticSa) = \ |
155 |
pobyso_get_list_elements_so_so(taylorFormSaSo[1])
|
156 |
for element in coefficientsErrorsListSaSo: |
157 |
sollya_lib_clear_obj(element) |
158 |
sollya_lib_clear_obj(taylorFormSaSo[1])
|
159 |
sollya_lib_clear_obj(taylorFormSaSo[2])
|
160 |
# End pobyso_clear_taylorform_sa_so
|
161 |
|
162 |
def pobyso_cmp(rnArgSa, cteSo): |
163 |
"""
|
164 |
Compare the MPFR value a RealNumber with that of a Sollya constant.
|
165 |
|
166 |
Get the value of the Sollya constant into a RealNumber and compare
|
167 |
using MPFR. Could be optimized by working directly with a mpfr_t
|
168 |
for the intermediate number.
|
169 |
"""
|
170 |
# Get the precision of the Sollya constant to build a Sage RealNumber
|
171 |
# with enough precision.to hold it.
|
172 |
precisionOfCte = c_int(0)
|
173 |
# From the Sollya constant, create a local Sage RealNumber.
|
174 |
sollya_lib_get_prec_of_constant(precisionOfCte, cteSo) |
175 |
#print "Precision of constant: ", precisionOfCte
|
176 |
RRRR = RealField(precisionOfCte.value) |
177 |
rnLocalSa = RRRR(0)
|
178 |
sollya_lib_get_constant(get_rn_value(rnLocalSa), cteSo) |
179 |
#
|
180 |
## Compare the Sage RealNumber version of the Sollya constant with rnArg.
|
181 |
return(cmp_rn_value(rnArgSa, rnLocal))
|
182 |
# End pobyso_smp
|
183 |
|
184 |
def pobyso_compute_pos_function_abs_val_bounds_sa_sa(funcSa, lowerBoundSa, \ |
185 |
upperBoundSa): |
186 |
"""
|
187 |
TODO: completely rework and test.
|
188 |
"""
|
189 |
pobyso = pobyso_name_free_variable_sa_so(funcSa.variables()[0])
|
190 |
funcSo = pobyso_parse_string(funcSa._assume_str()) |
191 |
rangeSo = pobyso_range_sa_so(lowerBoundSa, upperBoundSa) |
192 |
infnormSo = pobyso_infnorm_so_so(funcSo,rangeSo) |
193 |
# Sollya return the infnorm as an interval.
|
194 |
fMaxSa = pobyso_get_interval_from_range_so_sa(infnormSo) |
195 |
# Get the top bound and compute the binade top limit.
|
196 |
fMaxUpperBoundSa = fMaxSa.upper() |
197 |
binadeTopLimitSa = 2**ceil(fMaxUpperBoundSa.log2())
|
198 |
# Put up together the function to use to compute the lower bound.
|
199 |
funcAuxSo = pobyso_parse_string(str(binadeTopLimitSa) + \
|
200 |
'-(' + f._assume_str() + ')') |
201 |
pobyso_autoprint(funcAuxSo) |
202 |
# Clear the Sollya range before a new call to infnorm and issue the call.
|
203 |
sollya_lib_clear_obj(infnormSo) |
204 |
infnormSo = pobyso_infnorm_so_so(funcAuxSo,rangeSo) |
205 |
fMinSa = pobyso_get_interval_from_range_so_sa(infnormSo) |
206 |
sollya_lib_clear_obj(infnormSo) |
207 |
fMinLowerBoundSa = binadeTopLimitSa - fMinSa.lower() |
208 |
# Compute the maximum of the precisions of the different bounds.
|
209 |
maxPrecSa = max([fMinLowerBoundSa.parent().precision(), \
|
210 |
fMaxUpperBoundSa.parent().precision()]) |
211 |
# Create a RealIntervalField and create an interval with the "good" bounds.
|
212 |
RRRI = RealIntervalField(maxPrecSa) |
213 |
imageIntervalSa = RRRI(fMinLowerBoundSa, fMaxUpperBoundSa) |
214 |
# Free the unneeded Sollya objects
|
215 |
sollya_lib_clear_obj(funcSo) |
216 |
sollya_lib_clear_obj(funcAuxSo) |
217 |
sollya_lib_clear_obj(rangeSo) |
218 |
return(imageIntervalSa)
|
219 |
# End pobyso_compute_pos_function_abs_val_bounds_sa_sa
|
220 |
|
221 |
def pobyso_constant(rnArg): |
222 |
""" Legacy function. See pobyso_constant_sa_so. """
|
223 |
return(pobyso_constant_sa_so(rnArg))
|
224 |
|
225 |
def pobyso_constant_sa_so(rnArgSa, precisionSa=None): |
226 |
"""
|
227 |
Create a Sollya constant from a Sage RealNumber.
|
228 |
"""
|
229 |
# Precision stuff
|
230 |
if precisionSa is None: |
231 |
precisionSa = rnArgSa.parent().precision() |
232 |
currentSollyaPrecisionSo = sollya_lib_get_prec() |
233 |
currentSollyaPrecisionSa = \ |
234 |
pobyso_constant_from_int(currentSollyaPrecisionSo) |
235 |
# Sollya constant creation takes place here.
|
236 |
if precisionSa > currentSollyaPrecisionSa:
|
237 |
pobyso_set_prec_sa_so(precisionSa) |
238 |
constantSo = sollya_lib_constant(get_rn_value(rnArgSa)) |
239 |
pobyso_set_prec_so_so(currentSollyaPrecisionSo) |
240 |
else:
|
241 |
constantSo = sollya_lib_constant(get_rn_value(rnArgSa)) |
242 |
sollya_lib_clear_obj(currentSollyaPrecisionSo) |
243 |
return constantSo
|
244 |
# End pobyso_constant_sa_so
|
245 |
|
246 |
def pobyso_constant_0_sa_so(): |
247 |
"""
|
248 |
Obvious.
|
249 |
"""
|
250 |
return(pobyso_constant_from_int_sa_so(0)) |
251 |
|
252 |
def pobyso_constant_1(): |
253 |
"""
|
254 |
Obvious.
|
255 |
Legacy function. See pobyso_constant_so_so.
|
256 |
"""
|
257 |
return(pobyso_constant_1_sa_so())
|
258 |
|
259 |
def pobyso_constant_1_sa_so(): |
260 |
"""
|
261 |
Obvious.
|
262 |
"""
|
263 |
return(pobyso_constant_from_int_sa_so(1)) |
264 |
|
265 |
def pobyso_constant_from_int(anInt): |
266 |
""" Legacy function. See pobyso_constant_from_int_sa_so. """
|
267 |
return(pobyso_constant_from_int_sa_so(anInt))
|
268 |
|
269 |
def pobyso_constant_from_int_sa_so(anInt): |
270 |
"""
|
271 |
Get a Sollya constant from a Sage int.
|
272 |
"""
|
273 |
return(sollya_lib_constant_from_int(int(anInt))) |
274 |
|
275 |
def pobyso_constant_from_int_so_sa(constSo): |
276 |
"""
|
277 |
Get a Sage int from a Sollya int constant.
|
278 |
Usefull for precision or powers in polynomials.
|
279 |
"""
|
280 |
constSa = c_int(0)
|
281 |
sollya_lib_get_constant_as_int(byref(constSa), constSo) |
282 |
return(constSa.value)
|
283 |
# End pobyso_constant_from_int_so_sa
|
284 |
|
285 |
def pobyso_function_type_as_string(funcType): |
286 |
""" Legacy function. See pobyso_function_type_as_string_so_sa. """
|
287 |
return(pobyso_function_type_as_string_so_sa(funcType))
|
288 |
|
289 |
def pobyso_function_type_as_string_so_sa(funcType): |
290 |
"""
|
291 |
Numeric Sollya function codes -> Sage mathematical function names.
|
292 |
Notice that pow -> ^ (a la Sage, not a la Python).
|
293 |
"""
|
294 |
if funcType == SOLLYA_BASE_FUNC_ABS:
|
295 |
return "abs" |
296 |
elif funcType == SOLLYA_BASE_FUNC_ACOS:
|
297 |
return "arccos" |
298 |
elif funcType == SOLLYA_BASE_FUNC_ACOSH:
|
299 |
return "arccosh" |
300 |
elif funcType == SOLLYA_BASE_FUNC_ADD:
|
301 |
return "+" |
302 |
elif funcType == SOLLYA_BASE_FUNC_ASIN:
|
303 |
return "arcsin" |
304 |
elif funcType == SOLLYA_BASE_FUNC_ASINH:
|
305 |
return "arcsinh" |
306 |
elif funcType == SOLLYA_BASE_FUNC_ATAN:
|
307 |
return "arctan" |
308 |
elif funcType == SOLLYA_BASE_FUNC_ATANH:
|
309 |
return "arctanh" |
310 |
elif funcType == SOLLYA_BASE_FUNC_CEIL:
|
311 |
return "ceil" |
312 |
elif funcType == SOLLYA_BASE_FUNC_CONSTANT:
|
313 |
return "cte" |
314 |
elif funcType == SOLLYA_BASE_FUNC_COS:
|
315 |
return "cos" |
316 |
elif funcType == SOLLYA_BASE_FUNC_COSH:
|
317 |
return "cosh" |
318 |
elif funcType == SOLLYA_BASE_FUNC_DIV:
|
319 |
return "/" |
320 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLE:
|
321 |
return "double" |
322 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLEDOUBLE:
|
323 |
return "doubleDouble" |
324 |
elif funcType == SOLLYA_BASE_FUNC_DOUBLEEXTENDED:
|
325 |
return "doubleDxtended" |
326 |
elif funcType == SOLLYA_BASE_FUNC_ERF:
|
327 |
return "erf" |
328 |
elif funcType == SOLLYA_BASE_FUNC_ERFC:
|
329 |
return "erfc" |
330 |
elif funcType == SOLLYA_BASE_FUNC_EXP:
|
331 |
return "exp" |
332 |
elif funcType == SOLLYA_BASE_FUNC_EXP_M1:
|
333 |
return "expm1" |
334 |
elif funcType == SOLLYA_BASE_FUNC_FLOOR:
|
335 |
return "floor" |
336 |
elif funcType == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
337 |
return "freeVariable" |
338 |
elif funcType == SOLLYA_BASE_FUNC_HALFPRECISION:
|
339 |
return "halfPrecision" |
340 |
elif funcType == SOLLYA_BASE_FUNC_LIBRARYCONSTANT:
|
341 |
return "libraryConstant" |
342 |
elif funcType == SOLLYA_BASE_FUNC_LIBRARYFUNCTION:
|
343 |
return "libraryFunction" |
344 |
elif funcType == SOLLYA_BASE_FUNC_LOG:
|
345 |
return "log" |
346 |
elif funcType == SOLLYA_BASE_FUNC_LOG_10:
|
347 |
return "log10" |
348 |
elif funcType == SOLLYA_BASE_FUNC_LOG_1P:
|
349 |
return "log1p" |
350 |
elif funcType == SOLLYA_BASE_FUNC_LOG_2:
|
351 |
return "log2" |
352 |
elif funcType == SOLLYA_BASE_FUNC_MUL:
|
353 |
return "*" |
354 |
elif funcType == SOLLYA_BASE_FUNC_NEARESTINT:
|
355 |
return "round" |
356 |
elif funcType == SOLLYA_BASE_FUNC_NEG:
|
357 |
return "__neg__" |
358 |
elif funcType == SOLLYA_BASE_FUNC_PI:
|
359 |
return "pi" |
360 |
elif funcType == SOLLYA_BASE_FUNC_POW:
|
361 |
return "^" |
362 |
elif funcType == SOLLYA_BASE_FUNC_PROCEDUREFUNCTION:
|
363 |
return "procedureFunction" |
364 |
elif funcType == SOLLYA_BASE_FUNC_QUAD:
|
365 |
return "quad" |
366 |
elif funcType == SOLLYA_BASE_FUNC_SIN:
|
367 |
return "sin" |
368 |
elif funcType == SOLLYA_BASE_FUNC_SINGLE:
|
369 |
return "single" |
370 |
elif funcType == SOLLYA_BASE_FUNC_SINH:
|
371 |
return "sinh" |
372 |
elif funcType == SOLLYA_BASE_FUNC_SQRT:
|
373 |
return "sqrt" |
374 |
elif funcType == SOLLYA_BASE_FUNC_SUB:
|
375 |
return "-" |
376 |
elif funcType == SOLLYA_BASE_FUNC_TAN:
|
377 |
return "tan" |
378 |
elif funcType == SOLLYA_BASE_FUNC_TANH:
|
379 |
return "tanh" |
380 |
elif funcType == SOLLYA_BASE_FUNC_TRIPLEDOUBLE:
|
381 |
return "tripleDouble" |
382 |
else:
|
383 |
return None |
384 |
|
385 |
def pobyso_get_constant(rnArgSa, constSo): |
386 |
""" Legacy function. See pobyso_get_constant_so_sa. """
|
387 |
return(pobyso_get_constant_so_sa(rnArgSa, constSo))
|
388 |
|
389 |
def pobyso_get_constant_so_sa(rnArgSa, constSo): |
390 |
"""
|
391 |
Set the value of rnArgSo to the value of constSo in MPFR_RNDN mode.
|
392 |
rnArg must already exist and belong to some RealField.
|
393 |
We assume that constSo points to a Sollya constant.
|
394 |
"""
|
395 |
return(sollya_lib_get_constant(get_rn_value(rnArgSa), constSo))
|
396 |
|
397 |
def pobyso_get_constant_as_rn(ctExpSo): |
398 |
"""
|
399 |
Legacy function. See pobyso_get_constant_as_rn_so_sa.
|
400 |
"""
|
401 |
return(pobyso_get_constant_as_rn_so_sa(ctExpSo))
|
402 |
|
403 |
def pobyso_get_constant_as_rn_so_sa(constExpSo): |
404 |
"""
|
405 |
Get a Sollya constant as a Sage "real number".
|
406 |
The precision of the floating-point number returned is that of the Sollya
|
407 |
constant.
|
408 |
"""
|
409 |
precisionSa = pobyso_get_prec_of_constant_so_sa(constExpSo) |
410 |
RRRR = RealField(precisionSa) |
411 |
rnSa = RRRR(0)
|
412 |
sollya_lib_get_constant(get_rn_value(rnSa), constExpSo) |
413 |
return(rnSa)
|
414 |
# End pobyso_get_constant_as_rn_so_sa
|
415 |
|
416 |
def pobyso_get_constant_as_rn_with_rf(ctExp, realField): |
417 |
"""
|
418 |
Legacy function. See pobyso_get_constant_as_rn_with_rf_so_sa.
|
419 |
"""
|
420 |
return(pobyso_get_constant_as_rn_with_rf_so_sa(ctExp, realField))
|
421 |
|
422 |
def pobyso_get_constant_as_rn_with_rf_so_sa(ctExpSo, realFieldSa = None): |
423 |
"""
|
424 |
Get a Sollya constant as a Sage "real number".
|
425 |
If no real field is specified, the precision of the floating-point number
|
426 |
returned is that of the Sollya constant.
|
427 |
Otherwise is is that of the real field. Hence rounding may happen.
|
428 |
"""
|
429 |
if realFieldSa is None: |
430 |
sollyaPrecSa = pobyso_get_prec_of_constant_so_sa(ctExpSo) |
431 |
realFieldSa = RealField(sollyaPrecSa) |
432 |
rnSa = realFieldSa(0)
|
433 |
sollya_lib_get_constant(get_rn_value(rnSa), ctExpSo) |
434 |
return(rnSa)
|
435 |
# End pobyso_get_constant_as_rn_with_rf_so_sa
|
436 |
|
437 |
def pobyso_get_free_variable_name(): |
438 |
"""
|
439 |
Legacy function. See pobyso_get_free_variable_name_so_sa.
|
440 |
"""
|
441 |
return(pobyso_get_free_variable_name_so_sa())
|
442 |
|
443 |
def pobyso_get_free_variable_name_so_sa(): |
444 |
return(sollya_lib_get_free_variable_name())
|
445 |
|
446 |
def pobyso_get_function_arity(expressionSo): |
447 |
"""
|
448 |
Legacy function. See pobyso_get_function_arity_so_sa.
|
449 |
"""
|
450 |
return(pobyso_get_function_arity_so_sa(expressionSo))
|
451 |
|
452 |
def pobyso_get_function_arity_so_sa(expressionSo): |
453 |
arity = c_int(0)
|
454 |
sollya_lib_get_function_arity(byref(arity),expressionSo) |
455 |
return(int(arity.value)) |
456 |
|
457 |
def pobyso_get_head_function(expressionSo): |
458 |
"""
|
459 |
Legacy function. See pobyso_get_head_function_so_sa.
|
460 |
"""
|
461 |
return(pobyso_get_head_function_so_sa(expressionSo))
|
462 |
|
463 |
def pobyso_get_head_function_so_sa(expressionSo): |
464 |
functionType = c_int(0)
|
465 |
sollya_lib_get_head_function(byref(functionType), expressionSo, None)
|
466 |
return(int(functionType.value)) |
467 |
|
468 |
def pobyso_get_interval_from_range_so_sa(soRange, realIntervalFieldSa = None ): |
469 |
"""
|
470 |
Return the Sage interval corresponding to the Sollya range argument.
|
471 |
If no reaIntervalField is passed as an argument, the interval bounds are not
|
472 |
rounded: they are elements of RealIntervalField of the "right" precision
|
473 |
to hold all the digits.
|
474 |
"""
|
475 |
prec = c_int(0)
|
476 |
if realIntervalFieldSa is None: |
477 |
retval = sollya_lib_get_prec_of_range(byref(prec), soRange, None)
|
478 |
if retval == 0: |
479 |
return(None) |
480 |
realIntervalFieldSa = RealIntervalField(prec.value) |
481 |
intervalSa = realIntervalFieldSa(0,0) |
482 |
retval = \ |
483 |
sollya_lib_get_interval_from_range(get_interval_value(intervalSa),\ |
484 |
soRange) |
485 |
if retval == 0: |
486 |
return(None) |
487 |
return(intervalSa)
|
488 |
# End pobyso_get_interval_from_range_so_sa
|
489 |
|
490 |
def pobyso_get_list_elements(soObj): |
491 |
""" Legacy function. See pobyso_get_list_elements_so_so. """
|
492 |
return(pobyso_get_list_elements_so_so(soObj))
|
493 |
|
494 |
def pobyso_get_list_elements_so_so(objectListSo): |
495 |
"""
|
496 |
Get the Sollya list elements as a Sage/Python array of Sollya objects.
|
497 |
|
498 |
INPUT:
|
499 |
- objectListSo: a Sollya list of Sollya objects.
|
500 |
|
501 |
OUTPUT:
|
502 |
- a Sage/Python tuple made of:
|
503 |
- a Sage/Python list of Sollya objects,
|
504 |
- a Sage/Python int holding the number of elements,
|
505 |
- a Sage/Python int stating (!= 0) that the list is end-elliptic.
|
506 |
NOTE::
|
507 |
We recover the addresses of the Sollya object from the list of pointers
|
508 |
returned by sollya_lib_get_list_elements. The list itself is freed.
|
509 |
TODO::
|
510 |
Figure out what to do with numElements since the number of elements
|
511 |
can easily be recovered from the list itself.
|
512 |
Ditto for isEndElliptic.
|
513 |
"""
|
514 |
listAddress = POINTER(c_longlong)() |
515 |
numElements = c_int(0)
|
516 |
isEndElliptic = c_int(0)
|
517 |
listAsSageList = [] |
518 |
result = sollya_lib_get_list_elements(byref(listAddress),\ |
519 |
byref(numElements),\ |
520 |
byref(isEndElliptic),\ |
521 |
objectListSo) |
522 |
if result == 0 : |
523 |
return None |
524 |
for i in xrange(0, numElements.value, 1): |
525 |
#listAsSageList.append(sollya_lib_copy_obj(listAddress[i]))
|
526 |
listAsSageList.append(listAddress[i]) |
527 |
# Clear each of the elements returned by Sollya.
|
528 |
#sollya_lib_clear_obj(listAddress[i])
|
529 |
# Free the list itself.
|
530 |
sollya_lib_free(listAddress) |
531 |
return(listAsSageList, numElements.value, isEndElliptic.value)
|
532 |
|
533 |
def pobyso_get_max_prec_of_exp(soExp): |
534 |
""" Legacy function. See pobyso_get_max_prec_of_exp_so_sa. """
|
535 |
return(pobyso_get_max_prec_of_exp_so_sa(soExp))
|
536 |
|
537 |
def pobyso_get_max_prec_of_exp_so_sa(expSo): |
538 |
"""
|
539 |
Get the maximum precision used for the numbers in a Sollya expression.
|
540 |
|
541 |
Arguments:
|
542 |
soExp -- a Sollya expression pointer
|
543 |
Return value:
|
544 |
A Python integer
|
545 |
TODO:
|
546 |
- error management;
|
547 |
- correctly deal with numerical type such as DOUBLEEXTENDED.
|
548 |
"""
|
549 |
maxPrecision = 0
|
550 |
minConstPrec = 0
|
551 |
currentConstPrec = 0
|
552 |
operator = pobyso_get_head_function_so_sa(expSo) |
553 |
if (operator != SOLLYA_BASE_FUNC_CONSTANT) and \ |
554 |
(operator != SOLLYA_BASE_FUNC_FREE_VARIABLE): |
555 |
(arity, subexpressions) = pobyso_get_subfunctions_so_sa(expSo) |
556 |
for i in xrange(arity): |
557 |
maxPrecisionCandidate = \ |
558 |
pobyso_get_max_prec_of_exp_so_sa(subexpressions[i]) |
559 |
if maxPrecisionCandidate > maxPrecision:
|
560 |
maxPrecision = maxPrecisionCandidate |
561 |
return(maxPrecision)
|
562 |
elif operator == SOLLYA_BASE_FUNC_CONSTANT:
|
563 |
#minConstPrec = pobyso_get_min_prec_of_constant_so_sa(expSo)
|
564 |
#currentConstPrec = pobyso_get_min_prec_of_constant_so_sa(soExp)
|
565 |
#print minConstPrec, " - ", currentConstPrec
|
566 |
return(pobyso_get_min_prec_of_constant_so_sa(expSo))
|
567 |
|
568 |
elif operator == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
569 |
return(0) |
570 |
else:
|
571 |
print "pobyso_get_max_prec_of_exp_so_sa: unexepected operator." |
572 |
return(0) |
573 |
|
574 |
def pobyso_get_min_prec_of_constant_so_sa(constExpSo): |
575 |
"""
|
576 |
Get the minimum precision necessary to represent the value of a Sollya
|
577 |
constant.
|
578 |
MPFR_MIN_PREC and powers of 2 are taken into account.
|
579 |
We assume that constExpSo is a point
|
580 |
"""
|
581 |
constExpAsRnSa = pobyso_get_constant_as_rn_so_sa(constExpSo) |
582 |
return(min_mpfr_size(get_rn_value(constExpAsRnSa)))
|
583 |
|
584 |
def pobyso_get_sage_exp_from_sollya_exp(sollyaExpSo, realField = RR): |
585 |
""" Legacy function. See pobyso_get_sage_exp_from_sollya_exp_so_sa. """
|
586 |
return(pobyso_get_sage_exp_from_sollya_exp_so_sa(sollyaExpSo, \
|
587 |
realField = RR)) |
588 |
|
589 |
def pobyso_get_sage_exp_from_sollya_exp_so_sa(sollyaExpSo, realFieldSa = RR): |
590 |
"""
|
591 |
Get a Sage expression from a Sollya expression.
|
592 |
Currently only tested with polynomials with floating-point coefficients.
|
593 |
Notice that, in the returned polynomial, the exponents are RealNumbers.
|
594 |
"""
|
595 |
#pobyso_autoprint(sollyaExp)
|
596 |
operatorSa = pobyso_get_head_function_so_sa(sollyaExpSo) |
597 |
sollyaLibFreeVariableName = sollya_lib_get_free_variable_name() |
598 |
# Constants and the free variable are special cases.
|
599 |
# All other operator are dealt with in the same way.
|
600 |
if (operatorSa != SOLLYA_BASE_FUNC_CONSTANT) and \ |
601 |
(operatorSa != SOLLYA_BASE_FUNC_FREE_VARIABLE): |
602 |
(aritySa, subexpressionsSa) = pobyso_get_subfunctions_so_sa(sollyaExpSo) |
603 |
if aritySa == 1: |
604 |
sageExpSa = eval(pobyso_function_type_as_string_so_sa(operatorSa) + \
|
605 |
"(" + pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressionsSa[0], \ |
606 |
realFieldSa) + ")")
|
607 |
elif aritySa == 2: |
608 |
# We do not get through the preprocessor.
|
609 |
# The "^" operator is then a special case.
|
610 |
if operatorSa == SOLLYA_BASE_FUNC_POW:
|
611 |
operatorAsStringSa = "**"
|
612 |
else:
|
613 |
operatorAsStringSa = \ |
614 |
pobyso_function_type_as_string_so_sa(operatorSa) |
615 |
sageExpSa = \ |
616 |
eval("pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressionsSa[0], realFieldSa)"\ |
617 |
+ " " + operatorAsStringSa + " " + \ |
618 |
"pobyso_get_sage_exp_from_sollya_exp_so_sa(subexpressionsSa[1], realFieldSa)")
|
619 |
# We do not know yet how to deal with arity >= 3
|
620 |
# (is there any in Sollya anyway?).
|
621 |
else:
|
622 |
sageExpSa = eval('None') |
623 |
return(sageExpSa)
|
624 |
elif operatorSa == SOLLYA_BASE_FUNC_CONSTANT:
|
625 |
#print "This is a constant"
|
626 |
return pobyso_get_constant_as_rn_with_rf_so_sa(sollyaExpSo, realFieldSa)
|
627 |
elif operatorSa == SOLLYA_BASE_FUNC_FREE_VARIABLE:
|
628 |
#print "This is free variable"
|
629 |
return(eval(sollyaLibFreeVariableName)) |
630 |
else:
|
631 |
print "Unexpected" |
632 |
return eval('None') |
633 |
# End pobyso_get_sage_poly_from_sollya_poly
|
634 |
|
635 |
def pobyso_get_poly_sa_so(polySo, realFieldSa=None): |
636 |
"""
|
637 |
Create a Sollya polynomial from a Sage polynomial.
|
638 |
"""
|
639 |
pass
|
640 |
# pobyso_get_poly_sa_so
|
641 |
|
642 |
def pobyso_get_poly_so_sa(polySo, realFieldSa=None): |
643 |
"""
|
644 |
Convert a Sollya polynomial into a Sage polynomial.
|
645 |
We assume that the polynomial is in canonical form.
|
646 |
If no realField is given, a RealField corresponding to the maximum
|
647 |
precision of the coefficients is internally computed.
|
648 |
The real field is not returned but can be easily retrieved from
|
649 |
the polynomial itself.
|
650 |
ALGORITHM:
|
651 |
- (optional) compute the RealField of the coefficients;
|
652 |
- convert the Sollya expression into a Sage expression;
|
653 |
- convert the Sage expression into a Sage polynomial
|
654 |
TODO: the canonical thing for the polynomial.
|
655 |
"""
|
656 |
if realFieldSa is None: |
657 |
expressionPrecSa = pobyso_get_max_prec_of_exp_so_sa(polySo) |
658 |
realFieldSa = RealField(expressionPrecSa) |
659 |
#print "Sollya expression before...",
|
660 |
#pobyso_autoprint(polySo)
|
661 |
|
662 |
expressionSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, \ |
663 |
realFieldSa) |
664 |
#print "...Sollya expression after.",
|
665 |
#pobyso_autoprint(polySo)
|
666 |
polyVariableSa = expressionSa.variables()[0]
|
667 |
polyRingSa = realFieldSa[str(polyVariableSa)]
|
668 |
#print polyRingSa
|
669 |
# Do not use the polynomial(expressionSa, ring=polyRingSa) form!
|
670 |
polynomialSa = polyRingSa(expressionSa) |
671 |
return(polynomialSa)
|
672 |
# End pobyso_get_sage_poly_from_sollya_poly
|
673 |
|
674 |
def pobyso_get_subfunctions(expressionSo): |
675 |
""" Legacy function. See pobyso_get_subfunctions_so_sa. """
|
676 |
return(pobyso_get_subfunctions_so_sa(expressionSo))
|
677 |
|
678 |
def pobyso_get_subfunctions_so_sa(expressionSo): |
679 |
"""
|
680 |
Get the subfunctions of an expression.
|
681 |
Return the number of subfunctions and the list of subfunctions addresses.
|
682 |
S.T.: Could not figure out another way than that ugly list of declarations
|
683 |
to recover the addresses of the subfunctions.
|
684 |
We limit ourselves to arity 8 functions.
|
685 |
"""
|
686 |
subf0 = c_int(0)
|
687 |
subf1 = c_int(0)
|
688 |
subf2 = c_int(0)
|
689 |
subf3 = c_int(0)
|
690 |
subf4 = c_int(0)
|
691 |
subf5 = c_int(0)
|
692 |
subf6 = c_int(0)
|
693 |
subf7 = c_int(0)
|
694 |
subf8 = c_int(0)
|
695 |
arity = c_int(0)
|
696 |
nullPtr = POINTER(c_int)() |
697 |
sollya_lib_get_subfunctions(expressionSo, byref(arity), \ |
698 |
byref(subf0), byref(subf1), byref(subf2), byref(subf3), \ |
699 |
byref(subf4), byref(subf5),\ |
700 |
byref(subf6), byref(subf7), byref(subf8), nullPtr, None)
|
701 |
# byref(cast(subfunctions[0], POINTER(c_int))), \
|
702 |
# byref(cast(subfunctions[0], POINTER(c_int))), \
|
703 |
# byref(cast(subfunctions[2], POINTER(c_int))), \
|
704 |
# byref(cast(subfunctions[3], POINTER(c_int))), \
|
705 |
# byref(cast(subfunctions[4], POINTER(c_int))), \
|
706 |
# byref(cast(subfunctions[5], POINTER(c_int))), \
|
707 |
# byref(cast(subfunctions[6], POINTER(c_int))), \
|
708 |
# byref(cast(subfunctions[7], POINTER(c_int))), \
|
709 |
# byref(cast(subfunctions[8], POINTER(c_int))), nullPtr)
|
710 |
subfunctions = [subf0, subf1, subf2, subf3, subf4, subf5, subf6, subf7, \ |
711 |
subf8] |
712 |
subs = [] |
713 |
if arity.value > pobyso_max_arity:
|
714 |
return(0,[]) |
715 |
for i in xrange(arity.value): |
716 |
subs.append(int(subfunctions[i].value))
|
717 |
#print subs[i]
|
718 |
return(int(arity.value), subs) |
719 |
|
720 |
def pobyso_get_prec(): |
721 |
""" Legacy function. See pobyso_get_prec_so_sa(). """
|
722 |
return(pobyso_get_prec_so_sa())
|
723 |
|
724 |
def pobyso_get_prec_so(): |
725 |
"""
|
726 |
Get the current default precision in Sollya.
|
727 |
The return value is a Sollya object.
|
728 |
Usefull when modifying the precision back and forth by avoiding
|
729 |
extra conversions.
|
730 |
"""
|
731 |
return(sollya_lib_get_prec(None)) |
732 |
|
733 |
def pobyso_get_prec_so_sa(): |
734 |
"""
|
735 |
Get the current default precision in Sollya.
|
736 |
The return value is Sage/Python int.
|
737 |
"""
|
738 |
precSo = sollya_lib_get_prec(None)
|
739 |
precSa = c_int(0)
|
740 |
sollya_lib_get_constant_as_int(byref(precSa), precSo) |
741 |
sollya_lib_clear_obj(precSo) |
742 |
return int(precSa.value) |
743 |
# End pobyso_get_prec_so_sa.
|
744 |
|
745 |
def pobyso_get_prec_of_constant(ctExpSo): |
746 |
""" Legacy function. See pobyso_get_prec_of_constant_so_sa. """
|
747 |
return(pobyso_get_prec_of_constant_so_sa(ctExpSo))
|
748 |
|
749 |
def pobyso_get_prec_of_constant_so_sa(ctExpSo): |
750 |
prec = c_int(0)
|
751 |
retc = sollya_lib_get_prec_of_constant(byref(prec), ctExpSo, None)
|
752 |
if retc == 0: |
753 |
return(None) |
754 |
return(int(prec.value)) |
755 |
|
756 |
def pobyso_get_prec_of_range_so_sa(rangeSo): |
757 |
prec = c_int(0)
|
758 |
retc = sollya_lib_get_prec_of_range(byref(prec), rangeSo, None)
|
759 |
if retc == 0: |
760 |
return(None) |
761 |
return(int(prec.value)) |
762 |
# End pobyso_get_prec_of_range_so_sa()
|
763 |
|
764 |
def pobyso_guess_degree_sa_sa(functionSa, intervalSa, errorSa, weightSa=None, \ |
765 |
degreeBoundSa=None):
|
766 |
functionAsStringSa = functionSa._assume_str() |
767 |
functionSo = pobyso_parse_string_sa_so(functionAsStringSa) |
768 |
rangeSo = pobyso_interval_to_range_sa_so(intervalSa) |
769 |
errorSo = pobyso_constant_sa_so(errorSa) |
770 |
if not weightSa is None: |
771 |
weightAsStringSa = weightSa._assume_str() |
772 |
weightSo = pobyso_parse_string_sa_so(weightAsStringSa) |
773 |
else:
|
774 |
weightSo = None
|
775 |
if not degreeBoundSa is None: |
776 |
degreeBoundSo = pobyso_constant_from_int_sa_so(degreeBoundSa) |
777 |
else:
|
778 |
degreeBoundSo = None
|
779 |
guessedDegreeSa = pobyso_guess_degree_so_sa(functionSo, |
780 |
rangeSo, |
781 |
errorSo, |
782 |
weightSo, |
783 |
degreeBoundSo) |
784 |
sollya_lib_clear_obj(functionSo) |
785 |
sollya_lib_clear_obj(rangeSo) |
786 |
sollya_lib_clear_obj(errorSo) |
787 |
if not weightSo is None: |
788 |
sollya_lib_clear_obj(weightSo) |
789 |
if not degreeBoundSo is None: |
790 |
sollya_lib_clear_obj(degreeBoundSo) |
791 |
return guessedDegreeSa
|
792 |
# End poyso_guess_degree_sa_sa
|
793 |
|
794 |
def pobyso_guess_degree_so_sa(functionSo, rangeSo, errorSo, weightSo=None, \ |
795 |
degreeBoundSo=None):
|
796 |
"""
|
797 |
Thin wrapper around the guessdegree function.
|
798 |
Nevertheless, some precision control stuff has been appended.
|
799 |
"""
|
800 |
# Deal with Sollya internal precision issues: if it is too small,
|
801 |
# compared with the error, increases it to about twice -log2(error).
|
802 |
errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(errorSo) |
803 |
log2ErrorSa = errorSa.log2() |
804 |
if log2ErrorSa < 0: |
805 |
neededPrecisionSa = int(2 * int(-log2ErrorSa) / 64) * 64 |
806 |
else:
|
807 |
neededPrecisionSa = int(2 * int(log2ErrorSa) / 64) * 64 |
808 |
#print "Needed precision:", neededPrecisionSa
|
809 |
currentPrecSa = pobyso_get_prec_so_sa() |
810 |
if neededPrecisionSa > currentPrecSa:
|
811 |
currentPrecSo = pobyso_get_prec_so() |
812 |
pobyso_set_prec_sa_so(neededPrecisionSa) |
813 |
# weightSo and degreeBoundsSo are optional arguments.
|
814 |
if weightSo is None: |
815 |
degreeRangeSo = sollya_lib_guessdegree(functionSo, rangeSo, errorSo, None)
|
816 |
elif degreeBoundSo is None: |
817 |
degreeRangeSo = sollya_lib_guessdegree(functionSo, rangeSo, \ |
818 |
errorSo, weightSo, None)
|
819 |
else:
|
820 |
degreeRangeSo = sollya_lib_guessdegree(functionSo, rangeSo, errorSo, \ |
821 |
weightSo, degreeBoundSo, None)
|
822 |
# Restore internal precision, if applicable.
|
823 |
if neededPrecisionSa > currentPrecSa:
|
824 |
pobyso_set_prec_so_so(currentPrecSo) |
825 |
sollya_lib_clear_obj(currentPrecSo) |
826 |
degreeIntervalSa = pobyso_range_to_interval_so_sa(degreeRangeSo) |
827 |
sollya_lib_clear_obj(degreeRangeSo) |
828 |
# When ok, both bounds match.
|
829 |
# When the degree bound is too low, the upper bound is the degree
|
830 |
# for which the error can be honored.
|
831 |
# When it really goes wrong, the upper bound is infinity.
|
832 |
if degreeIntervalSa.lower() == degreeIntervalSa.upper():
|
833 |
return int(degreeIntervalSa.lower()) |
834 |
else:
|
835 |
if degreeIntervalSa.upper().is_infinity():
|
836 |
return None |
837 |
else:
|
838 |
return int(degreeIntervalSa.upper()) |
839 |
# End pobyso_guess_degree_so_sa
|
840 |
|
841 |
def pobyso_infnorm_so_so(func, interval, file = None, intervalList = None): |
842 |
print "Do not use this function. User pobyso_supnorm_so_so instead." |
843 |
return(None) |
844 |
|
845 |
def pobyso_interval_to_range_sa_so(intervalSa, precisionSa=None): |
846 |
if precisionSa is None: |
847 |
precisionSa = intervalSa.parent().precision() |
848 |
intervalSo = pobyso_bounds_to_range_sa_so(intervalSa.lower(),\ |
849 |
intervalSa.upper(),\ |
850 |
precisionSa) |
851 |
return(intervalSo)
|
852 |
# End pobyso_interval_to_range_sa_so
|
853 |
|
854 |
def pobyso_lib_init(): |
855 |
sollya_lib_init(None)
|
856 |
|
857 |
def pobyso_lib_close(): |
858 |
sollya_lib_close(None)
|
859 |
|
860 |
def pobyso_name_free_variable(freeVariableNameSa): |
861 |
""" Legacy function. See pobyso_name_free_variable_sa_so. """
|
862 |
pobyso_name_free_variable_sa_so(freeVariableNameSa) |
863 |
|
864 |
def pobyso_name_free_variable_sa_so(freeVariableNameSa): |
865 |
"""
|
866 |
Set the free variable name in Sollya from a Sage string.
|
867 |
"""
|
868 |
sollya_lib_name_free_variable(freeVariableNameSa) |
869 |
|
870 |
def pobyso_parse_string(string): |
871 |
""" Legacy function. See pobyso_parse_string_sa_so. """
|
872 |
return(pobyso_parse_string_sa_so(string))
|
873 |
|
874 |
def pobyso_parse_string_sa_so(string): |
875 |
"""
|
876 |
Get the Sollya expression computed from a Sage string.
|
877 |
"""
|
878 |
return(sollya_lib_parse_string(string))
|
879 |
|
880 |
def pobyso_range(rnLowerBound, rnUpperBound): |
881 |
""" Legacy function. See pobyso_range_sa_so. """
|
882 |
return(pobyso_range_sa_so(rnLowerBound, rnUpperBound))
|
883 |
|
884 |
|
885 |
def pobyso_range_to_interval_so_sa(rangeSo, realIntervalFieldSa = None): |
886 |
"""
|
887 |
Get a Sage interval from a Sollya range.
|
888 |
If no realIntervalField is given as a parameter, the Sage interval
|
889 |
precision is that of the Sollya range.
|
890 |
Otherwise, the precision is that of the realIntervalField. In this case
|
891 |
rounding may happen.
|
892 |
"""
|
893 |
if realIntervalFieldSa is None: |
894 |
precSa = pobyso_get_prec_of_range_so_sa(rangeSo) |
895 |
realIntervalFieldSa = RealIntervalField(precSa) |
896 |
intervalSa = \ |
897 |
pobyso_get_interval_from_range_so_sa(rangeSo, realIntervalFieldSa) |
898 |
return(intervalSa)
|
899 |
|
900 |
def pobyso_remez_canonical_sa_sa(func, \ |
901 |
degree, \ |
902 |
lowerBound, \ |
903 |
upperBound, \ |
904 |
weight = None, \
|
905 |
quality = None):
|
906 |
"""
|
907 |
All arguments are Sage/Python.
|
908 |
The functions (func and weight) must be passed as expressions or strings.
|
909 |
Otherwise the function fails.
|
910 |
The return value is a Sage polynomial.
|
911 |
"""
|
912 |
var('zorglub') # Dummy variable name for type check only. Type of |
913 |
# zorglub is "symbolic expression".
|
914 |
polySo = pobyso_remez_canonical_sa_so(func, \ |
915 |
degree, \ |
916 |
lowerBound, \ |
917 |
upperBound, \ |
918 |
weight, \ |
919 |
quality) |
920 |
# String test
|
921 |
if parent(func) == parent("string"): |
922 |
functionSa = eval(func)
|
923 |
# Expression test.
|
924 |
elif type(func) == type(zorglub): |
925 |
functionSa = func |
926 |
else:
|
927 |
return None |
928 |
#
|
929 |
maxPrecision = 0
|
930 |
if polySo is None: |
931 |
return(None) |
932 |
maxPrecision = pobyso_get_max_prec_of_exp_so_sa(polySo) |
933 |
RRRRSa = RealField(maxPrecision) |
934 |
polynomialRingSa = RRRRSa[functionSa.variables()[0]]
|
935 |
expSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, RRRRSa) |
936 |
polySa = polynomial(expSa, polynomialRingSa) |
937 |
sollya_lib_clear_obj(polySo) |
938 |
return(polySa)
|
939 |
# End pobyso_remez_canonical_sa_sa
|
940 |
|
941 |
def pobyso_remez_canonical(func, \ |
942 |
degree, \ |
943 |
lowerBound, \ |
944 |
upperBound, \ |
945 |
weight = "1", \
|
946 |
quality = None):
|
947 |
""" Legacy function. See pobyso_remez_canonical_sa_so. """
|
948 |
return(pobyso_remez_canonical_sa_so(func, \
|
949 |
degree, \ |
950 |
lowerBound, \ |
951 |
upperBound, \ |
952 |
weight, \ |
953 |
quality)) |
954 |
def pobyso_remez_canonical_sa_so(func, \ |
955 |
degree, \ |
956 |
lowerBound, \ |
957 |
upperBound, \ |
958 |
weight = None, \
|
959 |
quality = None):
|
960 |
"""
|
961 |
All arguments are Sage/Python.
|
962 |
The functions (func and weight) must be passed as expressions or strings.
|
963 |
Otherwise the function fails.
|
964 |
The return value is a pointer to a Sollya function.
|
965 |
"""
|
966 |
var('zorglub') # Dummy variable name for type check only. Type of |
967 |
# zorglub is "symbolic expression".
|
968 |
currentVariableNameSa = None
|
969 |
# The func argument can be of different types (string,
|
970 |
# symbolic expression...)
|
971 |
if parent(func) == parent("string"): |
972 |
localFuncSa = eval(func)
|
973 |
if len(localFuncSa.variables()) > 0: |
974 |
currentVariableNameSa = localFuncSa.variables()[0]
|
975 |
sollya_lib_name_free_variable(str(currentVariableNameSa))
|
976 |
functionSo = sollya_lib_parse_string(localFuncSa._assume_str()) |
977 |
# Expression test.
|
978 |
elif type(func) == type(zorglub): |
979 |
# Until we are able to translate Sage expressions into Sollya
|
980 |
# expressions : parse the string version.
|
981 |
if len(func.variables()) > 0: |
982 |
currentVariableNameSa = func.variables()[0]
|
983 |
sollya_lib_name_free_variable(str(currentVariableNameSa))
|
984 |
functionSo = sollya_lib_parse_string(func._assume_str()) |
985 |
else:
|
986 |
return(None) |
987 |
if weight is None: # No weight given -> 1. |
988 |
weightSo = pobyso_constant_1_sa_so() |
989 |
elif parent(weight) == parent("string"): # Weight given as string: parse it. |
990 |
weightSo = sollya_lib_parse_string(func) |
991 |
elif type(weight) == type(zorglub): # Weight given as symbolice expression. |
992 |
functionSo = sollya_lib_parse_string_sa_so(weight._assume_str()) |
993 |
else:
|
994 |
return(None) |
995 |
degreeSo = pobyso_constant_from_int(degree) |
996 |
rangeSo = pobyso_bounds_to_range_sa_so(lowerBound, upperBound) |
997 |
if not quality is None: |
998 |
qualitySo= pobyso_constant_sa_so(quality) |
999 |
else:
|
1000 |
qualitySo = None
|
1001 |
|
1002 |
remezPolySo = sollya_lib_remez(functionSo, \ |
1003 |
degreeSo, \ |
1004 |
rangeSo, \ |
1005 |
weightSo, \ |
1006 |
qualitySo, \ |
1007 |
None)
|
1008 |
sollya_lib_clear_obj(functionSo) |
1009 |
sollya_lib_clear_obj(degreeSo) |
1010 |
sollya_lib_clear_obj(rangeSo) |
1011 |
sollya_lib_clear_obj(weightSo) |
1012 |
if not qualitySo is None: |
1013 |
sollya_lib_clear_obj(qualitySo) |
1014 |
return(remezPolySo)
|
1015 |
# End pobyso_remez_canonical_sa_so
|
1016 |
|
1017 |
def pobyso_remez_canonical_so_so(funcSo, \ |
1018 |
degreeSo, \ |
1019 |
rangeSo, \ |
1020 |
weightSo = pobyso_constant_1_sa_so(),\ |
1021 |
qualitySo = None):
|
1022 |
"""
|
1023 |
All arguments are pointers to Sollya objects.
|
1024 |
The return value is a pointer to a Sollya function.
|
1025 |
"""
|
1026 |
if not sollya_lib_obj_is_function(funcSo): |
1027 |
return(None) |
1028 |
return(sollya_lib_remez(funcSo, degreeSo, rangeSo, weightSo, qualitySo, None)) |
1029 |
|
1030 |
def pobyso_set_canonical_off(): |
1031 |
sollya_lib_set_canonical(sollya_lib_off()) |
1032 |
|
1033 |
def pobyso_set_canonical_on(): |
1034 |
sollya_lib_set_canonical(sollya_lib_on()) |
1035 |
|
1036 |
def pobyso_set_prec(p): |
1037 |
""" Legacy function. See pobyso_set_prec_sa_so. """
|
1038 |
pobyso_set_prec_sa_so(p) |
1039 |
|
1040 |
def pobyso_set_prec_sa_so(p): |
1041 |
a = c_int(p) |
1042 |
precSo = c_void_p(sollya_lib_constant_from_int(a)) |
1043 |
sollya_lib_set_prec(precSo, None)
|
1044 |
|
1045 |
def pobyso_set_prec_so_so(newPrecSo): |
1046 |
sollya_lib_set_prec(newPrecSo, None)
|
1047 |
|
1048 |
def pobyso_supnorm_so_so(polySo, funcSo, intervalSo, errorTypeSo = None,\ |
1049 |
accuracySo = None):
|
1050 |
"""
|
1051 |
Computes the supnorm of the approximation error between the given
|
1052 |
polynomial and function.
|
1053 |
errorTypeSo defaults to "absolute".
|
1054 |
accuracySo defaults to 2^(-40).
|
1055 |
"""
|
1056 |
if errorTypeSo is None: |
1057 |
errorTypeSo = sollya_lib_absolute(None)
|
1058 |
errorTypeIsNone = True
|
1059 |
else:
|
1060 |
errorTypeIsNone = False
|
1061 |
#
|
1062 |
if accuracySo is None: |
1063 |
# Notice the **!
|
1064 |
accuracySo = pobyso_constant_sa_so(RR(2**(-40))) |
1065 |
accuracyIsNone = True
|
1066 |
else:
|
1067 |
accuracyIsNone = False
|
1068 |
pobyso_autoprint(accuracySo) |
1069 |
resultSo = \ |
1070 |
sollya_lib_supnorm(polySo, funcSo, intervalSo, errorTypeSo, \ |
1071 |
accuracySo) |
1072 |
if errorTypeIsNone:
|
1073 |
sollya_lib_clear_obj(errorTypeSo) |
1074 |
if accuracyIsNone:
|
1075 |
sollya_lib_clear_obj(accuracySo) |
1076 |
return resultSo
|
1077 |
# End pobyso_supnorm_so_so
|
1078 |
|
1079 |
def pobyso_taylor_expansion_with_change_var_so_so(functionSo, degreeSo, \ |
1080 |
rangeSo, \ |
1081 |
errorTypeSo=None, \
|
1082 |
sollyaPrecSo=None):
|
1083 |
"""
|
1084 |
Compute the Taylor expansion with the variable change
|
1085 |
x -> (x-intervalCenter) included.
|
1086 |
"""
|
1087 |
# No global change of the working precision.
|
1088 |
if not sollyaPrecSo is None: |
1089 |
initialPrecSo = sollya_lib_get_prec(None)
|
1090 |
sollya_lib_set_prec(sollyaPrecSo) |
1091 |
#
|
1092 |
# Error type stuff: default to absolute.
|
1093 |
if errorTypeSo is None: |
1094 |
errorTypeIsNone = True
|
1095 |
errorTypeSo = sollya_lib_absolute(None)
|
1096 |
else:
|
1097 |
errorTypeIsNone = False
|
1098 |
intervalCenterSo = sollya_lib_mid(rangeSo) |
1099 |
taylorFormSo = sollya_lib_taylorform(functionSo, degreeSo, \ |
1100 |
intervalCenterSo, \ |
1101 |
rangeSo, errorTypeSo, None)
|
1102 |
# taylorFormListSaSo is a Python list of Sollya objects references that
|
1103 |
# are copies of the elements of taylorFormSo.
|
1104 |
# pobyso_get_list_elements_so_so clears taylorFormSo.
|
1105 |
(taylorFormListSo, numElements, isEndElliptic) = \ |
1106 |
pobyso_get_list_elements_so_so(taylorFormSo) |
1107 |
polySo = taylorFormListSo[0]
|
1108 |
errorRangeSo = taylorFormListSo[2]
|
1109 |
maxErrorSo = sollya_lib_sup(errorRangeSo) |
1110 |
changeVarExpSo = sollya_lib_build_function_sub(\ |
1111 |
sollya_lib_build_function_free_variable(),\ |
1112 |
sollya_lib_copy_obj(intervalCenterSo)) |
1113 |
polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpSo) |
1114 |
sollya_lib_clear_obj(changeVarExpSo) |
1115 |
# If changed, reset the Sollya working precision.
|
1116 |
if not sollyaPrecSo is None: |
1117 |
sollya_lib_set_prec(initialPrecSo) |
1118 |
sollya_lib_clear_obj(initialPrecSo) |
1119 |
if errorTypeIsNone:
|
1120 |
sollya_lib_clear_obj(errorTypeSo) |
1121 |
sollya_lib_clear_obj(taylorFormSo) |
1122 |
# Do not clear maxErrorSo.
|
1123 |
return((polyVarChangedSo, intervalCenterSo, maxErrorSo))
|
1124 |
# end pobyso_taylor_expansion_with_change_var_so_so
|
1125 |
|
1126 |
def pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, rangeSo, |
1127 |
errorTypeSo=None,
|
1128 |
sollyaPrecSo=None):
|
1129 |
"""
|
1130 |
Compute the Taylor expansion without the variable change
|
1131 |
x -> x-intervalCenter.
|
1132 |
"""
|
1133 |
# No global change of the working precision.
|
1134 |
if not sollyaPrecSo is None: |
1135 |
initialPrecSo = sollya_lib_get_prec(None)
|
1136 |
sollya_lib_set_prec(sollyaPrecSo) |
1137 |
# Error type stuff: default to absolute.
|
1138 |
if errorTypeSo is None: |
1139 |
errorTypeIsNone = True
|
1140 |
errorTypeSo = sollya_lib_absolute(None)
|
1141 |
else:
|
1142 |
errorTypeIsNone = False
|
1143 |
intervalCenterSo = sollya_lib_mid(rangeSo, None)
|
1144 |
taylorFormSo = sollya_lib_taylorform(functionSo, degreeSo, |
1145 |
intervalCenterSo, |
1146 |
rangeSo, errorTypeSo, None)
|
1147 |
# taylorFormListSaSo is a Python list of Sollya objects references that
|
1148 |
# are copies of the elements of taylorFormSo.
|
1149 |
# pobyso_get_list_elements_so_so clears taylorFormSo.
|
1150 |
(taylorFormListSaSo, numElementsSa, isEndEllipticSa) = \ |
1151 |
pobyso_get_list_elements_so_so(taylorFormSo) |
1152 |
polySo = sollya_lib_copy_obj(taylorFormListSaSo[0])
|
1153 |
#print "Num elements:", numElementsSa
|
1154 |
sollya_lib_clear_obj(taylorFormSo) |
1155 |
#polySo = taylorFormListSaSo[0]
|
1156 |
#errorRangeSo = sollya_lib_copy_obj(taylorFormListSaSo[2])
|
1157 |
errorRangeSo = taylorFormListSaSo[2]
|
1158 |
# No copy_obj needed here: a new object is created.
|
1159 |
maxErrorSo = sollya_lib_sup(errorRangeSo) |
1160 |
# If changed, reset the Sollya working precision.
|
1161 |
if not sollyaPrecSo is None: |
1162 |
sollya_lib_set_prec(initialPrecSo) |
1163 |
sollya_lib_clear_obj(initialPrecSo) |
1164 |
if errorTypeIsNone:
|
1165 |
sollya_lib_clear_obj(errorTypeSo) |
1166 |
pobyso_clear_taylorform_sa_so(taylorFormListSaSo) |
1167 |
return((polySo, intervalCenterSo, maxErrorSo))
|
1168 |
# end pobyso_taylor_expansion_no_change_var_so_so
|
1169 |
|
1170 |
def pobyso_taylor(function, degree, point): |
1171 |
""" Legacy function. See pobysoTaylor_so_so. """
|
1172 |
return(pobyso_taylor_so_so(function, degree, point))
|
1173 |
|
1174 |
def pobyso_taylor_so_so(functionSo, degreeSo, pointSo): |
1175 |
return(sollya_lib_taylor(functionSo, degreeSo, pointSo))
|
1176 |
|
1177 |
def pobyso_taylorform(function, degree, point = None, |
1178 |
interval = None, errorType=None): |
1179 |
""" Legacy function. See pobyso_taylorform_sa_sa;"""
|
1180 |
|
1181 |
def pobyso_taylorform_sa_sa(functionSa, \ |
1182 |
degreeSa, \ |
1183 |
pointSa, \ |
1184 |
intervalSa=None, \
|
1185 |
errorTypeSa=None, \
|
1186 |
precisionSa=None):
|
1187 |
"""
|
1188 |
Compute the Taylor form of 'degreeSa' for 'functionSa' at 'pointSa'
|
1189 |
for 'intervalSa' with 'errorTypeSa' (a string) using 'precisionSa'.
|
1190 |
point: must be a Real or a Real interval.
|
1191 |
return the Taylor form as an array
|
1192 |
TODO: take care of the interval and of the point when it is an interval;
|
1193 |
when errorType is not None;
|
1194 |
take care of the other elements of the Taylor form (coefficients
|
1195 |
errors and delta.
|
1196 |
"""
|
1197 |
# Absolute as the default error.
|
1198 |
if errorTypeSa is None: |
1199 |
errorTypeSo = sollya_lib_absolute() |
1200 |
elif errorTypeSa == "relative": |
1201 |
errorTypeSo = sollya_lib_relative() |
1202 |
elif errortypeSa == "absolute": |
1203 |
errorTypeSo = sollya_lib_absolute() |
1204 |
else:
|
1205 |
# No clean up needed.
|
1206 |
return None |
1207 |
# Global precision stuff
|
1208 |
precisionChangedSa = False
|
1209 |
currentSollyaPrecSo = pobyso_get_prec_so() |
1210 |
currentSollyaPrecSa = pobyso_constant_from_int_so_sa(currentSollyaPrecSo) |
1211 |
if not precisionSa is None: |
1212 |
if precisionSa > currentSollyaPrecSa:
|
1213 |
pobyso_set_prec_sa_so(precisionSa) |
1214 |
precisionChangedSa = True
|
1215 |
|
1216 |
if len(functionSa.variables()) > 0: |
1217 |
varSa = functionSa.variables()[0]
|
1218 |
pobyso_name_free_variable_sa_so(str(varSa))
|
1219 |
# In any case (point or interval) the parent of pointSa has a precision
|
1220 |
# method.
|
1221 |
pointPrecSa = pointSa.parent().precision() |
1222 |
if precisionSa > pointPrecSa:
|
1223 |
pointPrecSa = precisionSa |
1224 |
# In any case (point or interval) pointSa has a base_ring() method.
|
1225 |
pointBaseRingString = str(pointSa.base_ring())
|
1226 |
if re.search('Interval', pointBaseRingString) is None: # Point |
1227 |
pointSo = pobyso_constant_sa_so(pointSa, pointPrecSa) |
1228 |
else: # Interval. |
1229 |
pointSo = pobyso_interval_to_range_sa_so(pointSa, pointPrecSa) |
1230 |
# Sollyafy the function.
|
1231 |
functionSo = pobyso_parse_string_sa_so(functionSa._assume_str()) |
1232 |
if sollya_lib_obj_is_error(functionSo):
|
1233 |
print "pobyso_tailorform: function string can't be parsed!" |
1234 |
return None |
1235 |
# Sollyafy the degree
|
1236 |
degreeSo = sollya_lib_constant_from_int(int(degreeSa))
|
1237 |
# Sollyafy the point
|
1238 |
# Call Sollya
|
1239 |
taylorFormSo = \ |
1240 |
sollya_lib_taylorform(functionSo, degreeSo, pointSo, errorTypeSo,\ |
1241 |
None)
|
1242 |
sollya_lib_clear_obj(functionSo) |
1243 |
sollya_lib_clear_obj(degreeSo) |
1244 |
sollya_lib_clear_obj(pointSo) |
1245 |
sollya_lib_clear_obj(errorTypeSo) |
1246 |
(tfsAsList, numElements, isEndElliptic) = \ |
1247 |
pobyso_get_list_elements_so_so(taylorFormSo) |
1248 |
polySo = tfsAsList[0]
|
1249 |
maxPrecision = pobyso_get_max_prec_of_exp_so_sa(polySo) |
1250 |
polyRealField = RealField(maxPrecision) |
1251 |
expSa = pobyso_get_sage_exp_from_sollya_exp_so_sa(polySo, polyRealField) |
1252 |
if precisionChangedSa:
|
1253 |
sollya_lib_set_prec(currentSollyaPrecSo) |
1254 |
sollya_lib_clear_obj(currentSollyaPrecSo) |
1255 |
polynomialRing = polyRealField[str(varSa)]
|
1256 |
polySa = polynomial(expSa, polynomialRing) |
1257 |
taylorFormSa = [polySa] |
1258 |
# Final clean-up.
|
1259 |
sollya_lib_clear_obj(taylorFormSo) |
1260 |
return(taylorFormSa)
|
1261 |
# End pobyso_taylor_form_sa_sa
|
1262 |
|
1263 |
def pobyso_taylorform_so_so(functionSo, degreeSo, pointSo, intervalSo=None, \ |
1264 |
errorTypeSo=None):
|
1265 |
createdErrorType = False
|
1266 |
if errorTypeSo is None: |
1267 |
errorTypeSo = sollya_lib_absolute() |
1268 |
createdErrorType = True
|
1269 |
else:
|
1270 |
#TODO: deal with the other case.
|
1271 |
pass
|
1272 |
if intervalSo is None: |
1273 |
resultSo = sollya_lib_taylorform(functionSo, degreeSo, pointSo, \ |
1274 |
errorTypeSo, None)
|
1275 |
else:
|
1276 |
resultSo = sollya_lib_taylorform(functionSo, degreeSo, pointSo, \ |
1277 |
intervalSo, errorTypeSo, None)
|
1278 |
if createdErrorType:
|
1279 |
sollya_lib_clear_obj(errorTypeSo) |
1280 |
return(resultSo)
|
1281 |
|
1282 |
|
1283 |
def pobyso_univar_polynomial_print_reverse(polySa): |
1284 |
""" Legacy function. See pobyso_univar_polynomial_print_reverse_sa_sa. """
|
1285 |
return(pobyso_univar_polynomial_print_reverse_sa_sa(polySa))
|
1286 |
|
1287 |
def pobyso_univar_polynomial_print_reverse_sa_sa(polySa): |
1288 |
"""
|
1289 |
Return the string representation of a univariate polynomial with
|
1290 |
monomials ordered in the x^0..x^n order of the monomials.
|
1291 |
Remember: Sage
|
1292 |
"""
|
1293 |
polynomialRing = polySa.base_ring() |
1294 |
# A very expensive solution:
|
1295 |
# -create a fake multivariate polynomial field with only one variable,
|
1296 |
# specifying a negative lexicographical order;
|
1297 |
mpolynomialRing = PolynomialRing(polynomialRing.base(), \ |
1298 |
polynomialRing.variable_name(), \ |
1299 |
1, order='neglex') |
1300 |
# - convert the univariate argument polynomial into a multivariate
|
1301 |
# version;
|
1302 |
p = mpolynomialRing(polySa) |
1303 |
# - return the string representation of the converted form.
|
1304 |
# There is no simple str() method defined for p's class.
|
1305 |
return(p.__str__())
|
1306 |
#
|
1307 |
print pobyso_get_prec()
|
1308 |
pobyso_set_prec(165)
|
1309 |
print pobyso_get_prec()
|
1310 |
a=100
|
1311 |
print type(a) |
1312 |
id(a)
|
1313 |
print "Max arity: ", pobyso_max_arity |
1314 |
print "Function tripleDouble (43) as a string: ", pobyso_function_type_as_string(43) |
1315 |
print "Function None (44) as a string: ", pobyso_function_type_as_string(44) |
1316 |
print "...Pobyso check done" |