root / pobysoPythonSage / src / sageSLZ / sageSLZ.sage @ 125
Historique | Voir | Annoter | Télécharger (45,8 ko)
1 | 115 | storres | r""" |
---|---|---|---|
2 | 115 | storres | Sage core functions needed for the implementation of SLZ. |
3 | 90 | storres | |
4 | 115 | storres | AUTHORS: |
5 | 115 | storres | - S.T. (2013-08): initial version |
6 | 90 | storres | |
7 | 115 | storres | Examples: |
8 | 119 | storres | |
9 | 119 | storres | TODO:: |
10 | 90 | storres | """ |
11 | 87 | storres | print "sageSLZ loading..." |
12 | 115 | storres | # |
13 | 115 | storres | def slz_check_htr_value(function, htrValue, lowerBound, upperBound, precision, \ |
14 | 115 | storres | degree, targetHardnessToRound, alpha): |
15 | 115 | storres | """ |
16 | 115 | storres | Check an Hard-to-round value. |
17 | 124 | storres | TODO:: |
18 | 124 | storres | Full rewriting: this is hardly a draft. |
19 | 115 | storres | """ |
20 | 115 | storres | polyApproxPrec = targetHardnessToRound + 1 |
21 | 115 | storres | polyTargetHardnessToRound = targetHardnessToRound + 1 |
22 | 115 | storres | internalSollyaPrec = ceil((RR('1.5') * targetHardnessToRound) / 64) * 64 |
23 | 115 | storres | RRR = htrValue.parent() |
24 | 115 | storres | # |
25 | 115 | storres | ## Compute the scaled function. |
26 | 115 | storres | fff = slz_compute_scaled_function(f, lowerBound, upperBound, precision)[0] |
27 | 115 | storres | print "Scaled function:", fff |
28 | 115 | storres | # |
29 | 115 | storres | ## Compute the scaling. |
30 | 115 | storres | boundsIntervalRifSa = RealIntervalField(precision) |
31 | 115 | storres | domainBoundsInterval = boundsIntervalRifSa(lowerBound, upperBound) |
32 | 115 | storres | scalingExpressions = \ |
33 | 115 | storres | slz_interval_scaling_expression(domainBoundsInterval, i) |
34 | 115 | storres | # |
35 | 115 | storres | ## Get the polynomials, bounds, etc. for all the interval. |
36 | 115 | storres | resultListOfTuplesOfSo = \ |
37 | 115 | storres | slz_get_intervals_and_polynomials(f, degree, lowerBound, upperBound, \ |
38 | 115 | storres | precision, internalSollyaPrec,\ |
39 | 115 | storres | 2^-(polyApproxPrec)) |
40 | 115 | storres | # |
41 | 115 | storres | ## We only want one interval. |
42 | 115 | storres | if len(resultListOfTuplesOfSo) > 1: |
43 | 115 | storres | print "Too many intervals! Aborting!" |
44 | 115 | storres | exit |
45 | 115 | storres | # |
46 | 115 | storres | ## Get the first tuple of Sollya objects as Sage objects. |
47 | 115 | storres | firstTupleSa = \ |
48 | 115 | storres | slz_interval_and_polynomial_to_sage(resultListOfTuplesOfSo[0]) |
49 | 115 | storres | pobyso_set_canonical_on() |
50 | 115 | storres | # |
51 | 115 | storres | print "Floatting point polynomial:", firstTupleSa[0] |
52 | 115 | storres | print "with coefficients precision:", firstTupleSa[0].base_ring().prec() |
53 | 115 | storres | # |
54 | 115 | storres | ## From a polynomial over a real ring, create a polynomial over the |
55 | 115 | storres | # rationals ring. |
56 | 115 | storres | rationalPolynomial = \ |
57 | 115 | storres | slz_float_poly_of_float_to_rat_poly_of_rat(firstTupleSa[0]) |
58 | 115 | storres | print "Rational polynomial:", rationalPolynomial |
59 | 115 | storres | # |
60 | 115 | storres | ## Create a polynomial over the rationals that will take integer |
61 | 115 | storres | # variables instead of rational. |
62 | 115 | storres | rationalPolynomialOfIntegers = \ |
63 | 115 | storres | slz_rat_poly_of_rat_to_rat_poly_of_int(rationalPolynomial, precision) |
64 | 115 | storres | print "Type:", type(rationalPolynomialOfIntegers) |
65 | 115 | storres | print "Rational polynomial of integers:", rationalPolynomialOfIntegers |
66 | 115 | storres | # |
67 | 115 | storres | ## Check the rational polynomial of integers variables. |
68 | 115 | storres | # (check against the scaled function). |
69 | 115 | storres | toIntegerFactor = 2^(precision-1) |
70 | 115 | storres | intervalCenterAsIntegerSa = int(firstTupleSa[3] * toIntegerFactor) |
71 | 115 | storres | print "Interval center as integer:", intervalCenterAsIntegerSa |
72 | 115 | storres | lowerBoundAsIntegerSa = int(firstTupleSa[2].endpoints()[0] * \ |
73 | 115 | storres | toIntegerFactor) - intervalCenterAsIntegerSa |
74 | 115 | storres | upperBoundAsIntegerSa = int(firstTupleSa[2].endpoints()[1] * \ |
75 | 115 | storres | toIntegerFactor) - intervalCenterAsIntegerSa |
76 | 115 | storres | print "Lower bound as integer:", lowerBoundAsIntegerSa |
77 | 115 | storres | print "Upper bound as integer:", upperBoundAsIntegerSa |
78 | 115 | storres | print "Image of the lower bound by the scaled function", \ |
79 | 115 | storres | fff(firstTupleSa[2].endpoints()[0]) |
80 | 115 | storres | print "Image of the lower bound by the approximation polynomial of ints:", \ |
81 | 115 | storres | RRR(rationalPolynomialOfIntegers(lowerBoundAsIntegerSa)) |
82 | 115 | storres | print "Image of the center by the scaled function", fff(firstTupleSa[3]) |
83 | 115 | storres | print "Image of the center by the approximation polynomial of ints:", \ |
84 | 115 | storres | RRR(rationalPolynomialOfIntegers(0)) |
85 | 115 | storres | print "Image of the upper bound by the scaled function", \ |
86 | 115 | storres | fff(firstTupleSa[2].endpoints()[1]) |
87 | 115 | storres | print "Image of the upper bound by the approximation polynomial of ints:", \ |
88 | 115 | storres | RRR(rationalPolynomialOfIntegers(upperBoundAsIntegerSa)) |
89 | 115 | storres | |
90 | 115 | storres | # End slz_check_htr_value. |
91 | 122 | storres | |
92 | 115 | storres | # |
93 | 121 | storres | def slz_compute_binade_bounds(number, emin, emax=sys.maxint): |
94 | 119 | storres | """ |
95 | 119 | storres | For given "real number", compute the bounds of the binade it belongs to. |
96 | 121 | storres | |
97 | 121 | storres | NOTE:: |
98 | 121 | storres | When number >= 2^(emax+1), we return the "fake" binade |
99 | 121 | storres | [2^(emax+1), +infinity]. Ditto for number <= -2^(emax+1) |
100 | 125 | storres | with interval [-infinity, -2^(emax+1)]. We want to distinguish |
101 | 125 | storres | this case from that of "really" invalid arguments. |
102 | 121 | storres | |
103 | 119 | storres | """ |
104 | 121 | storres | # Check the parameters. |
105 | 125 | storres | # RealNumbers or RealNumber offspring only. |
106 | 125 | storres | # The execption construction is necessary since not all objects have |
107 | 125 | storres | # the mro() method. sage.rings.real_mpfr.RealNumber do. |
108 | 124 | storres | try: |
109 | 124 | storres | classTree = [number.__class__] + number.mro() |
110 | 124 | storres | if not sage.rings.real_mpfr.RealNumber in classTree: |
111 | 124 | storres | return None |
112 | 124 | storres | except AttributeError: |
113 | 121 | storres | return None |
114 | 121 | storres | # Non zero negative integers only for emin. |
115 | 121 | storres | if emin >= 0 or int(emin) != emin: |
116 | 121 | storres | return None |
117 | 121 | storres | # Non zero positive integers only for emax. |
118 | 121 | storres | if emax <= 0 or int(emax) != emax: |
119 | 121 | storres | return None |
120 | 121 | storres | precision = number.precision() |
121 | 121 | storres | RF = RealField(precision) |
122 | 125 | storres | if number == 0: |
123 | 125 | storres | return (RF(0),RF(2^(emin)) - RF(2^(emin-precision))) |
124 | 121 | storres | # A more precise RealField is needed to avoid unwanted rounding effects |
125 | 121 | storres | # when computing number.log2(). |
126 | 121 | storres | RRF = RealField(max(2048, 2 * precision)) |
127 | 121 | storres | # number = 0 special case, the binade bounds are |
128 | 121 | storres | # [0, 2^emin - 2^(emin-precision)] |
129 | 121 | storres | # Begin general case |
130 | 119 | storres | l2 = RRF(number).abs().log2() |
131 | 121 | storres | # Another special one: beyond largest representable -> "Fake" binade. |
132 | 121 | storres | if l2 >= emax + 1: |
133 | 121 | storres | if number > 0: |
134 | 125 | storres | return (RF(2^(emax+1)), RF(+infinity) ) |
135 | 121 | storres | else: |
136 | 121 | storres | return (RF(-infinity), -RF(2^(emax+1))) |
137 | 119 | storres | offset = int(l2) |
138 | 121 | storres | # number.abs() >= 1. |
139 | 119 | storres | if l2 >= 0: |
140 | 119 | storres | if number >= 0: |
141 | 119 | storres | lb = RF(2^offset) |
142 | 119 | storres | ub = RF(2^(offset + 1) - 2^(-precision+offset+1)) |
143 | 119 | storres | else: #number < 0 |
144 | 119 | storres | lb = -RF(2^(offset + 1) - 2^(-precision+offset+1)) |
145 | 119 | storres | ub = -RF(2^offset) |
146 | 121 | storres | else: # log2 < 0, number.abs() < 1. |
147 | 119 | storres | if l2 < emin: # Denormal |
148 | 121 | storres | # print "Denormal:", l2 |
149 | 119 | storres | if number >= 0: |
150 | 119 | storres | lb = RF(0) |
151 | 119 | storres | ub = RF(2^(emin)) - RF(2^(emin-precision)) |
152 | 119 | storres | else: # number <= 0 |
153 | 119 | storres | lb = - RF(2^(emin)) + RF(2^(emin-precision)) |
154 | 119 | storres | ub = RF(0) |
155 | 119 | storres | elif l2 > emin: # Normal number other than +/-2^emin. |
156 | 119 | storres | if number >= 0: |
157 | 121 | storres | if int(l2) == l2: |
158 | 121 | storres | lb = RF(2^(offset)) |
159 | 121 | storres | ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
160 | 121 | storres | else: |
161 | 121 | storres | lb = RF(2^(offset-1)) |
162 | 121 | storres | ub = RF(2^(offset)) - RF(2^(-precision+offset)) |
163 | 119 | storres | else: # number < 0 |
164 | 121 | storres | if int(l2) == l2: # Binade limit. |
165 | 121 | storres | lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
166 | 121 | storres | ub = -RF(2^(offset)) |
167 | 121 | storres | else: |
168 | 121 | storres | lb = -RF(2^(offset) - 2^(-precision+offset)) |
169 | 121 | storres | ub = -RF(2^(offset-1)) |
170 | 121 | storres | else: # l2== emin, number == +/-2^emin |
171 | 119 | storres | if number >= 0: |
172 | 119 | storres | lb = RF(2^(offset)) |
173 | 119 | storres | ub = RF(2^(offset+1)) - RF(2^(-precision+offset+1)) |
174 | 119 | storres | else: # number < 0 |
175 | 119 | storres | lb = -RF(2^(offset+1) - 2^(-precision+offset+1)) |
176 | 119 | storres | ub = -RF(2^(offset)) |
177 | 119 | storres | return (lb, ub) |
178 | 119 | storres | # End slz_compute_binade_bounds |
179 | 119 | storres | # |
180 | 123 | storres | def slz_compute_coppersmith_reduced_polynomials(inputPolynomial, |
181 | 123 | storres | alpha, |
182 | 123 | storres | N, |
183 | 123 | storres | iBound, |
184 | 123 | storres | tBound): |
185 | 123 | storres | """ |
186 | 123 | storres | For a given set of arguments (see below), compute a list |
187 | 123 | storres | of "reduced polynomials" that could be used to compute roots |
188 | 123 | storres | of the inputPolynomial. |
189 | 124 | storres | INPUT: |
190 | 124 | storres | |
191 | 124 | storres | - "inputPolynomial" -- (no default) a bivariate integer polynomial; |
192 | 124 | storres | - "alpha" -- the alpha parameter of the Coppersmith algorithm; |
193 | 124 | storres | - "N" -- the modulus; |
194 | 124 | storres | - "iBound" -- the bound on the first variable; |
195 | 124 | storres | - "tBound" -- the bound on the second variable. |
196 | 124 | storres | |
197 | 124 | storres | OUTPUT: |
198 | 124 | storres | |
199 | 124 | storres | A list of bivariate integer polynomial obtained using the Coppersmith |
200 | 124 | storres | algorithm. The polynomials correspond to the rows of the LLL-reduce |
201 | 124 | storres | reduced base that comply with the Coppersmith condition. |
202 | 123 | storres | """ |
203 | 123 | storres | # Arguments check. |
204 | 123 | storres | if iBound == 0 or tBound == 0: |
205 | 123 | storres | return () |
206 | 123 | storres | # End arguments check. |
207 | 123 | storres | nAtAlpha = N^alpha |
208 | 123 | storres | ## Building polynomials for matrix. |
209 | 123 | storres | polyRing = inputPolynomial.parent() |
210 | 123 | storres | # Whatever the 2 variables are actually called, we call them |
211 | 123 | storres | # 'i' and 't' in all the variable names. |
212 | 123 | storres | (iVariable, tVariable) = inputPolynomial.variables()[:2] |
213 | 123 | storres | #print polyVars[0], type(polyVars[0]) |
214 | 123 | storres | initialPolynomial = inputPolynomial.subs({iVariable:iVariable * iBound, |
215 | 123 | storres | tVariable:tVariable * tBound}) |
216 | 123 | storres | polynomialsList = \ |
217 | 123 | storres | spo_polynomial_to_polynomials_list_5(initialPolynomial, |
218 | 123 | storres | alpha, |
219 | 123 | storres | N, |
220 | 123 | storres | iBound, |
221 | 123 | storres | tBound, |
222 | 123 | storres | 0) |
223 | 123 | storres | #print "Polynomials list:", polynomialsList |
224 | 123 | storres | ## Building the proto matrix. |
225 | 123 | storres | knownMonomials = [] |
226 | 123 | storres | protoMatrix = [] |
227 | 123 | storres | for poly in polynomialsList: |
228 | 123 | storres | spo_add_polynomial_coeffs_to_matrix_row(poly, |
229 | 123 | storres | knownMonomials, |
230 | 123 | storres | protoMatrix, |
231 | 123 | storres | 0) |
232 | 123 | storres | matrixToReduce = spo_proto_to_row_matrix(protoMatrix) |
233 | 123 | storres | #print matrixToReduce |
234 | 123 | storres | ## Reduction and checking. |
235 | 123 | storres | reducedMatrix = matrixToReduce.LLL(fp='fp') |
236 | 123 | storres | isLLLReduced = reducedMatrix.is_LLL_reduced() |
237 | 123 | storres | if not isLLLReduced: |
238 | 125 | storres | return set() |
239 | 123 | storres | monomialsCount = len(knownMonomials) |
240 | 123 | storres | monomialsCountSqrt = sqrt(monomialsCount) |
241 | 123 | storres | #print "Monomials count:", monomialsCount, monomialsCountSqrt.n() |
242 | 123 | storres | #print reducedMatrix |
243 | 123 | storres | ## Check the Coppersmith condition for each row and build the reduced |
244 | 123 | storres | # polynomials. |
245 | 123 | storres | ccReducedPolynomialsList = [] |
246 | 123 | storres | for row in reducedMatrix.rows(): |
247 | 123 | storres | l2Norm = row.norm(2) |
248 | 123 | storres | if (l2Norm * monomialsCountSqrt) < nAtAlpha: |
249 | 123 | storres | #print (l2Norm * monomialsCountSqrt).n() |
250 | 125 | storres | #print l2Norm.n() |
251 | 123 | storres | ccReducedPolynomial = \ |
252 | 123 | storres | slz_compute_reduced_polynomial(row, |
253 | 123 | storres | knownMonomials, |
254 | 123 | storres | iVariable, |
255 | 123 | storres | iBound, |
256 | 123 | storres | tVariable, |
257 | 123 | storres | tBound) |
258 | 123 | storres | if not ccReducedPolynomial is None: |
259 | 123 | storres | ccReducedPolynomialsList.append(ccReducedPolynomial) |
260 | 123 | storres | else: |
261 | 125 | storres | #print l2Norm.n() , ">", nAtAlpha |
262 | 123 | storres | pass |
263 | 123 | storres | if len(ccReducedPolynomialsList) < 2: |
264 | 125 | storres | print "Less than 2 Coppersmith condition compliant vectors." |
265 | 123 | storres | return () |
266 | 125 | storres | |
267 | 125 | storres | #print ccReducedPolynomialsList |
268 | 123 | storres | return ccReducedPolynomialsList |
269 | 123 | storres | # End slz_compute_coppersmith_reduced_polynomials |
270 | 123 | storres | |
271 | 122 | storres | def slz_compute_integer_polynomial_modular_roots(inputPolynomial, |
272 | 122 | storres | alpha, |
273 | 122 | storres | N, |
274 | 122 | storres | iBound, |
275 | 122 | storres | tBound): |
276 | 122 | storres | """ |
277 | 123 | storres | For a given set of arguments (see below), compute the polynomial modular |
278 | 122 | storres | roots, if any. |
279 | 124 | storres | |
280 | 122 | storres | """ |
281 | 123 | storres | # Arguments check. |
282 | 123 | storres | if iBound == 0 or tBound == 0: |
283 | 123 | storres | return set() |
284 | 123 | storres | # End arguments check. |
285 | 122 | storres | nAtAlpha = N^alpha |
286 | 122 | storres | ## Building polynomials for matrix. |
287 | 122 | storres | polyRing = inputPolynomial.parent() |
288 | 122 | storres | # Whatever the 2 variables are actually called, we call them |
289 | 122 | storres | # 'i' and 't' in all the variable names. |
290 | 122 | storres | (iVariable, tVariable) = inputPolynomial.variables()[:2] |
291 | 125 | storres | ccReducedPolynomialsList = \ |
292 | 125 | storres | slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
293 | 125 | storres | alpha, |
294 | 125 | storres | N, |
295 | 125 | storres | iBound, |
296 | 125 | storres | tBound) |
297 | 125 | storres | if len(ccReducedPolynomialsList) == 0: |
298 | 125 | storres | return set() |
299 | 122 | storres | ## Create the valid (poly1 and poly2 are algebraically independent) |
300 | 122 | storres | # resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
301 | 122 | storres | # Try to mix and match all the polynomial pairs built from the |
302 | 122 | storres | # ccReducedPolynomialsList to obtain non zero resultants. |
303 | 122 | storres | resultantsInITuplesList = [] |
304 | 122 | storres | for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
305 | 122 | storres | for polyInnerIndex in xrange(polyOuterIndex+1, |
306 | 122 | storres | len(ccReducedPolynomialsList)): |
307 | 122 | storres | # Compute the resultant in resultants in the |
308 | 122 | storres | # first variable (is it the optimal choice?). |
309 | 122 | storres | resultantInI = \ |
310 | 122 | storres | ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
311 | 122 | storres | ccReducedPolynomialsList[0].parent(str(iVariable))) |
312 | 122 | storres | #print "Resultant", resultantInI |
313 | 122 | storres | # Test algebraic independence. |
314 | 122 | storres | if not resultantInI.is_zero(): |
315 | 122 | storres | resultantsInITuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
316 | 122 | storres | ccReducedPolynomialsList[polyInnerIndex], |
317 | 122 | storres | resultantInI)) |
318 | 122 | storres | # If no non zero resultant was found: we can't get no algebraically |
319 | 122 | storres | # independent polynomials pair. Give up! |
320 | 122 | storres | if len(resultantsInITuplesList) == 0: |
321 | 123 | storres | return set() |
322 | 123 | storres | #print resultantsInITuplesList |
323 | 122 | storres | # Compute the roots. |
324 | 122 | storres | Zi = ZZ[str(iVariable)] |
325 | 122 | storres | Zt = ZZ[str(tVariable)] |
326 | 122 | storres | polynomialRootsSet = set() |
327 | 122 | storres | # First, solve in the second variable since resultants are in the first |
328 | 122 | storres | # variable. |
329 | 122 | storres | for resultantInITuple in resultantsInITuplesList: |
330 | 122 | storres | tRootsList = Zt(resultantInITuple[2]).roots() |
331 | 122 | storres | # For each tRoot, compute the corresponding iRoots and check |
332 | 123 | storres | # them in the input polynomial. |
333 | 122 | storres | for tRoot in tRootsList: |
334 | 123 | storres | #print "tRoot:", tRoot |
335 | 122 | storres | # Roots returned by root() are (value, multiplicity) tuples. |
336 | 122 | storres | iRootsList = \ |
337 | 122 | storres | Zi(resultantInITuple[0].subs({resultantInITuple[0].variables()[1]:tRoot[0]})).roots() |
338 | 123 | storres | print iRootsList |
339 | 122 | storres | # The iRootsList can be empty, hence the test. |
340 | 122 | storres | if len(iRootsList) != 0: |
341 | 122 | storres | for iRoot in iRootsList: |
342 | 122 | storres | polyEvalModN = inputPolynomial(iRoot[0], tRoot[0]) / N |
343 | 122 | storres | # polyEvalModN must be an integer. |
344 | 122 | storres | if polyEvalModN == int(polyEvalModN): |
345 | 122 | storres | polynomialRootsSet.add((iRoot[0],tRoot[0])) |
346 | 122 | storres | return polynomialRootsSet |
347 | 122 | storres | # End slz_compute_integer_polynomial_modular_roots. |
348 | 122 | storres | # |
349 | 125 | storres | def slz_compute_integer_polynomial_modular_roots_2(inputPolynomial, |
350 | 125 | storres | alpha, |
351 | 125 | storres | N, |
352 | 125 | storres | iBound, |
353 | 125 | storres | tBound): |
354 | 125 | storres | """ |
355 | 125 | storres | For a given set of arguments (see below), compute the polynomial modular |
356 | 125 | storres | roots, if any. |
357 | 125 | storres | This version differs in the way resultants are computed. |
358 | 125 | storres | """ |
359 | 125 | storres | # Arguments check. |
360 | 125 | storres | if iBound == 0 or tBound == 0: |
361 | 125 | storres | return set() |
362 | 125 | storres | # End arguments check. |
363 | 125 | storres | nAtAlpha = N^alpha |
364 | 125 | storres | ## Building polynomials for matrix. |
365 | 125 | storres | polyRing = inputPolynomial.parent() |
366 | 125 | storres | # Whatever the 2 variables are actually called, we call them |
367 | 125 | storres | # 'i' and 't' in all the variable names. |
368 | 125 | storres | (iVariable, tVariable) = inputPolynomial.variables()[:2] |
369 | 125 | storres | #print polyVars[0], type(polyVars[0]) |
370 | 125 | storres | ccReducedPolynomialsList = \ |
371 | 125 | storres | slz_compute_coppersmith_reduced_polynomials (inputPolynomial, |
372 | 125 | storres | alpha, |
373 | 125 | storres | N, |
374 | 125 | storres | iBound, |
375 | 125 | storres | tBound) |
376 | 125 | storres | if len(ccReducedPolynomialsList) == 0: |
377 | 125 | storres | return set() |
378 | 125 | storres | ## Create the valid (poly1 and poly2 are algebraically independent) |
379 | 125 | storres | # resultant tuples (poly1, poly2, resultant(poly1, poly2)). |
380 | 125 | storres | # Try to mix and match all the polynomial pairs built from the |
381 | 125 | storres | # ccReducedPolynomialsList to obtain non zero resultants. |
382 | 125 | storres | resultantsInTTuplesList = [] |
383 | 125 | storres | for polyOuterIndex in xrange(0, len(ccReducedPolynomialsList)-1): |
384 | 125 | storres | for polyInnerIndex in xrange(polyOuterIndex+1, |
385 | 125 | storres | len(ccReducedPolynomialsList)): |
386 | 125 | storres | # Compute the resultant in resultants in the |
387 | 125 | storres | # first variable (is it the optimal choice?). |
388 | 125 | storres | resultantInT = \ |
389 | 125 | storres | ccReducedPolynomialsList[polyOuterIndex].resultant(ccReducedPolynomialsList[polyInnerIndex], |
390 | 125 | storres | ccReducedPolynomialsList[0].parent(str(tVariable))) |
391 | 125 | storres | #print "Resultant", resultantInT |
392 | 125 | storres | # Test algebraic independence. |
393 | 125 | storres | if not resultantInT.is_zero(): |
394 | 125 | storres | resultantsInTTuplesList.append((ccReducedPolynomialsList[polyOuterIndex], |
395 | 125 | storres | ccReducedPolynomialsList[polyInnerIndex], |
396 | 125 | storres | resultantInT)) |
397 | 125 | storres | # If no non zero resultant was found: we can't get no algebraically |
398 | 125 | storres | # independent polynomials pair. Give up! |
399 | 125 | storres | if len(resultantsInTTuplesList) == 0: |
400 | 125 | storres | return set() |
401 | 125 | storres | #print resultantsInITuplesList |
402 | 125 | storres | # Compute the roots. |
403 | 125 | storres | Zi = ZZ[str(iVariable)] |
404 | 125 | storres | Zt = ZZ[str(tVariable)] |
405 | 125 | storres | polynomialRootsSet = set() |
406 | 125 | storres | # First, solve in the second variable since resultants are in the first |
407 | 125 | storres | # variable. |
408 | 125 | storres | for resultantInTTuple in resultantsInTTuplesList: |
409 | 125 | storres | iRootsList = Zi(resultantInTTuple[2]).roots() |
410 | 125 | storres | # For each iRoot, compute the corresponding tRoots and check |
411 | 125 | storres | # them in the input polynomial. |
412 | 125 | storres | for iRoot in iRootsList: |
413 | 125 | storres | #print "iRoot:", iRoot |
414 | 125 | storres | # Roots returned by root() are (value, multiplicity) tuples. |
415 | 125 | storres | tRootsList = \ |
416 | 125 | storres | Zt(resultantInTTuple[0].subs({resultantInTTuple[0].variables()[0]:iRoot[0]})).roots() |
417 | 125 | storres | print tRootsList |
418 | 125 | storres | # The tRootsList can be empty, hence the test. |
419 | 125 | storres | if len(tRootsList) != 0: |
420 | 125 | storres | for tRoot in tRootsList: |
421 | 125 | storres | polyEvalModN = inputPolynomial(iRoot[0],tRoot[0]) / N |
422 | 125 | storres | # polyEvalModN must be an integer. |
423 | 125 | storres | if polyEvalModN == int(polyEvalModN): |
424 | 125 | storres | polynomialRootsSet.add((iRoot[0],tRoot[0])) |
425 | 125 | storres | return polynomialRootsSet |
426 | 125 | storres | # End slz_compute_integer_polynomial_modular_roots_2. |
427 | 125 | storres | # |
428 | 61 | storres | def slz_compute_polynomial_and_interval(functionSo, degreeSo, lowerBoundSa, |
429 | 61 | storres | upperBoundSa, approxPrecSa, |
430 | 61 | storres | sollyaPrecSa=None): |
431 | 61 | storres | """ |
432 | 61 | storres | Under the assumptions listed for slz_get_intervals_and_polynomials, compute |
433 | 61 | storres | a polynomial that approximates the function on a an interval starting |
434 | 61 | storres | at lowerBoundSa and finishing at a value that guarantees that the polynomial |
435 | 61 | storres | approximates with the expected precision. |
436 | 61 | storres | The interval upper bound is lowered until the expected approximation |
437 | 61 | storres | precision is reached. |
438 | 61 | storres | The polynomial, the bounds, the center of the interval and the error |
439 | 61 | storres | are returned. |
440 | 124 | storres | OUTPU: |
441 | 124 | storres | A tuple made of 4 Sollya objects: |
442 | 124 | storres | - a polynomial; |
443 | 124 | storres | - an range (an interval, not in the sense of number given as an interval); |
444 | 124 | storres | - the center of the interval; |
445 | 124 | storres | - the maximum error in the approximation of the input functionSo by the |
446 | 124 | storres | output polynomial ; this error <= approxPrecSaS. |
447 | 124 | storres | |
448 | 61 | storres | """ |
449 | 61 | storres | RRR = lowerBoundSa.parent() |
450 | 61 | storres | intervalShrinkConstFactorSa = RRR('0.5') |
451 | 61 | storres | absoluteErrorTypeSo = pobyso_absolute_so_so() |
452 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(lowerBoundSa, upperBoundSa) |
453 | 61 | storres | currentUpperBoundSa = upperBoundSa |
454 | 61 | storres | currentLowerBoundSa = lowerBoundSa |
455 | 61 | storres | # What we want here is the polynomial without the variable change, |
456 | 61 | storres | # since our actual variable will be x-intervalCenter defined over the |
457 | 61 | storres | # domain [lowerBound-intervalCenter , upperBound-intervalCenter]. |
458 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
459 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
460 | 61 | storres | currentRangeSo, |
461 | 61 | storres | absoluteErrorTypeSo) |
462 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
463 | 61 | storres | while maxErrorSa > approxPrecSa: |
464 | 101 | storres | #print "++Approximation error:", maxErrorSa |
465 | 81 | storres | sollya_lib_clear_obj(polySo) |
466 | 81 | storres | sollya_lib_clear_obj(intervalCenterSo) |
467 | 120 | storres | sollya_lib_clear_obj(maxErrorSo) |
468 | 101 | storres | shrinkFactorSa = RRR('5')/(maxErrorSa/approxPrecSa).log2().abs() |
469 | 81 | storres | #shrinkFactorSa = 1.5/(maxErrorSa/approxPrecSa) |
470 | 81 | storres | #errorRatioSa = approxPrecSa/maxErrorSa |
471 | 61 | storres | #print "Error ratio: ", errorRatioSa |
472 | 81 | storres | if shrinkFactorSa > intervalShrinkConstFactorSa: |
473 | 81 | storres | actualShrinkFactorSa = intervalShrinkConstFactorSa |
474 | 81 | storres | #print "Fixed" |
475 | 61 | storres | else: |
476 | 81 | storres | actualShrinkFactorSa = shrinkFactorSa |
477 | 81 | storres | #print "Computed",shrinkFactorSa,maxErrorSa |
478 | 81 | storres | #print shrinkFactorSa, maxErrorSa |
479 | 101 | storres | #print "Shrink factor", actualShrinkFactorSa |
480 | 81 | storres | currentUpperBoundSa = currentLowerBoundSa + \ |
481 | 61 | storres | (currentUpperBoundSa - currentLowerBoundSa) * \ |
482 | 81 | storres | actualShrinkFactorSa |
483 | 71 | storres | #print "Current upper bound:", currentUpperBoundSa |
484 | 61 | storres | sollya_lib_clear_obj(currentRangeSo) |
485 | 101 | storres | if currentUpperBoundSa <= currentLowerBoundSa or \ |
486 | 101 | storres | currentUpperBoundSa == currentLowerBoundSa.nextabove(): |
487 | 86 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
488 | 86 | storres | print "Can't find an interval." |
489 | 86 | storres | print "Use either or both a higher polynomial degree or a higher", |
490 | 86 | storres | print "internal precision." |
491 | 86 | storres | print "Aborting!" |
492 | 86 | storres | return (None, None, None, None) |
493 | 61 | storres | currentRangeSo = pobyso_bounds_to_range_sa_so(currentLowerBoundSa, |
494 | 61 | storres | currentUpperBoundSa) |
495 | 86 | storres | # print "New interval:", |
496 | 86 | storres | # pobyso_autoprint(currentRangeSo) |
497 | 120 | storres | #print "Second Taylor expansion call." |
498 | 61 | storres | (polySo, intervalCenterSo, maxErrorSo) = \ |
499 | 61 | storres | pobyso_taylor_expansion_no_change_var_so_so(functionSo, degreeSo, |
500 | 61 | storres | currentRangeSo, |
501 | 61 | storres | absoluteErrorTypeSo) |
502 | 61 | storres | #maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo, RRR) |
503 | 85 | storres | #print "Max errorSo:", |
504 | 85 | storres | #pobyso_autoprint(maxErrorSo) |
505 | 61 | storres | maxErrorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
506 | 85 | storres | #print "Max errorSa:", maxErrorSa |
507 | 85 | storres | #print "Sollya prec:", |
508 | 85 | storres | #pobyso_autoprint(sollya_lib_get_prec(None)) |
509 | 61 | storres | sollya_lib_clear_obj(absoluteErrorTypeSo) |
510 | 61 | storres | return((polySo, currentRangeSo, intervalCenterSo, maxErrorSo)) |
511 | 81 | storres | # End slz_compute_polynomial_and_interval |
512 | 61 | storres | |
513 | 122 | storres | def slz_compute_reduced_polynomial(matrixRow, |
514 | 98 | storres | knownMonomials, |
515 | 106 | storres | var1, |
516 | 98 | storres | var1Bound, |
517 | 106 | storres | var2, |
518 | 99 | storres | var2Bound): |
519 | 98 | storres | """ |
520 | 125 | storres | Compute a polynomial from a single reduced matrix row. |
521 | 122 | storres | This function was introduced in order to avoid the computation of the |
522 | 125 | storres | all the polynomials from the full matrix (even those built from rows |
523 | 125 | storres | that do no verify the Coppersmith condition) as this may involves |
524 | 125 | storres | expensive operations over (large) integer. |
525 | 122 | storres | """ |
526 | 122 | storres | ## Check arguments. |
527 | 122 | storres | if len(knownMonomials) == 0: |
528 | 122 | storres | return None |
529 | 122 | storres | # varNounds can be zero since 0^0 returns 1. |
530 | 122 | storres | if (var1Bound < 0) or (var2Bound < 0): |
531 | 122 | storres | return None |
532 | 122 | storres | ## Initialisations. |
533 | 122 | storres | polynomialRing = knownMonomials[0].parent() |
534 | 122 | storres | currentPolynomial = polynomialRing(0) |
535 | 123 | storres | # TODO: use zip instead of indices. |
536 | 122 | storres | for colIndex in xrange(0, len(knownMonomials)): |
537 | 122 | storres | currentCoefficient = matrixRow[colIndex] |
538 | 122 | storres | if currentCoefficient != 0: |
539 | 122 | storres | #print "Current coefficient:", currentCoefficient |
540 | 122 | storres | currentMonomial = knownMonomials[colIndex] |
541 | 122 | storres | #print "Monomial as multivariate polynomial:", \ |
542 | 122 | storres | #currentMonomial, type(currentMonomial) |
543 | 122 | storres | degreeInVar1 = currentMonomial.degree(var1) |
544 | 123 | storres | #print "Degree in var1", var1, ":", degreeInVar1 |
545 | 122 | storres | degreeInVar2 = currentMonomial.degree(var2) |
546 | 123 | storres | #print "Degree in var2", var2, ":", degreeInVar2 |
547 | 122 | storres | if degreeInVar1 > 0: |
548 | 122 | storres | currentCoefficient = \ |
549 | 123 | storres | currentCoefficient / (var1Bound^degreeInVar1) |
550 | 122 | storres | #print "varBound1 in degree:", var1Bound^degreeInVar1 |
551 | 122 | storres | #print "Current coefficient(1)", currentCoefficient |
552 | 122 | storres | if degreeInVar2 > 0: |
553 | 122 | storres | currentCoefficient = \ |
554 | 123 | storres | currentCoefficient / (var2Bound^degreeInVar2) |
555 | 122 | storres | #print "Current coefficient(2)", currentCoefficient |
556 | 122 | storres | #print "Current reduced monomial:", (currentCoefficient * \ |
557 | 122 | storres | # currentMonomial) |
558 | 122 | storres | currentPolynomial += (currentCoefficient * currentMonomial) |
559 | 122 | storres | #print "Current polynomial:", currentPolynomial |
560 | 122 | storres | # End if |
561 | 122 | storres | # End for colIndex. |
562 | 122 | storres | #print "Type of the current polynomial:", type(currentPolynomial) |
563 | 122 | storres | return(currentPolynomial) |
564 | 122 | storres | # End slz_compute_reduced_polynomial |
565 | 122 | storres | # |
566 | 122 | storres | def slz_compute_reduced_polynomials(reducedMatrix, |
567 | 122 | storres | knownMonomials, |
568 | 122 | storres | var1, |
569 | 122 | storres | var1Bound, |
570 | 122 | storres | var2, |
571 | 122 | storres | var2Bound): |
572 | 122 | storres | """ |
573 | 122 | storres | Legacy function, use slz_compute_reduced_polynomials_list |
574 | 122 | storres | """ |
575 | 122 | storres | return(slz_compute_reduced_polynomials_list(reducedMatrix, |
576 | 122 | storres | knownMonomials, |
577 | 122 | storres | var1, |
578 | 122 | storres | var1Bound, |
579 | 122 | storres | var2, |
580 | 122 | storres | var2Bound) |
581 | 122 | storres | ) |
582 | 122 | storres | def slz_compute_reduced_polynomials_list(reducedMatrix, |
583 | 122 | storres | knownMonomials, |
584 | 122 | storres | var1, |
585 | 122 | storres | var1Bound, |
586 | 122 | storres | var2, |
587 | 122 | storres | var2Bound): |
588 | 122 | storres | """ |
589 | 98 | storres | From a reduced matrix, holding the coefficients, from a monomials list, |
590 | 98 | storres | from the bounds of each variable, compute the corresponding polynomials |
591 | 98 | storres | scaled back by dividing by the "right" powers of the variables bounds. |
592 | 99 | storres | |
593 | 99 | storres | The elements in knownMonomials must be of the "right" polynomial type. |
594 | 103 | storres | They set the polynomial type of the output polynomials list. |
595 | 98 | storres | """ |
596 | 99 | storres | |
597 | 98 | storres | # TODO: check input arguments. |
598 | 98 | storres | reducedPolynomials = [] |
599 | 106 | storres | #print "type var1:", type(var1), " - type var2:", type(var2) |
600 | 98 | storres | for matrixRow in reducedMatrix.rows(): |
601 | 102 | storres | currentPolynomial = 0 |
602 | 98 | storres | for colIndex in xrange(0, len(knownMonomials)): |
603 | 98 | storres | currentCoefficient = matrixRow[colIndex] |
604 | 106 | storres | if currentCoefficient != 0: |
605 | 106 | storres | #print "Current coefficient:", currentCoefficient |
606 | 106 | storres | currentMonomial = knownMonomials[colIndex] |
607 | 106 | storres | parentRing = currentMonomial.parent() |
608 | 106 | storres | #print "Monomial as multivariate polynomial:", \ |
609 | 106 | storres | #currentMonomial, type(currentMonomial) |
610 | 106 | storres | degreeInVar1 = currentMonomial.degree(parentRing(var1)) |
611 | 106 | storres | #print "Degree in var", var1, ":", degreeInVar1 |
612 | 106 | storres | degreeInVar2 = currentMonomial.degree(parentRing(var2)) |
613 | 106 | storres | #print "Degree in var", var2, ":", degreeInVar2 |
614 | 106 | storres | if degreeInVar1 > 0: |
615 | 106 | storres | currentCoefficient = \ |
616 | 106 | storres | currentCoefficient / var1Bound^degreeInVar1 |
617 | 106 | storres | #print "varBound1 in degree:", var1Bound^degreeInVar1 |
618 | 106 | storres | #print "Current coefficient(1)", currentCoefficient |
619 | 106 | storres | if degreeInVar2 > 0: |
620 | 106 | storres | currentCoefficient = \ |
621 | 106 | storres | currentCoefficient / var2Bound^degreeInVar2 |
622 | 106 | storres | #print "Current coefficient(2)", currentCoefficient |
623 | 106 | storres | #print "Current reduced monomial:", (currentCoefficient * \ |
624 | 106 | storres | # currentMonomial) |
625 | 106 | storres | currentPolynomial += (currentCoefficient * currentMonomial) |
626 | 106 | storres | #print "Current polynomial:", currentPolynomial |
627 | 106 | storres | # End if |
628 | 106 | storres | # End for colIndex. |
629 | 99 | storres | #print "Type of the current polynomial:", type(currentPolynomial) |
630 | 99 | storres | reducedPolynomials.append(currentPolynomial) |
631 | 98 | storres | return reducedPolynomials |
632 | 99 | storres | # End slz_compute_reduced_polynomials. |
633 | 98 | storres | |
634 | 114 | storres | def slz_compute_scaled_function(functionSa, |
635 | 114 | storres | lowerBoundSa, |
636 | 114 | storres | upperBoundSa, |
637 | 114 | storres | floatingPointPrecSa): |
638 | 72 | storres | """ |
639 | 72 | storres | From a function, compute the scaled function whose domain |
640 | 72 | storres | is included in [1, 2) and whose image is also included in [1,2). |
641 | 72 | storres | Return a tuple: |
642 | 72 | storres | [0]: the scaled function |
643 | 72 | storres | [1]: the scaled domain lower bound |
644 | 72 | storres | [2]: the scaled domain upper bound |
645 | 72 | storres | [3]: the scaled image lower bound |
646 | 72 | storres | [4]: the scaled image upper bound |
647 | 72 | storres | """ |
648 | 80 | storres | x = functionSa.variables()[0] |
649 | 80 | storres | # Reassert f as a function (an not a mere expression). |
650 | 80 | storres | |
651 | 72 | storres | # Scalling the domain -> [1,2[. |
652 | 72 | storres | boundsIntervalRifSa = RealIntervalField(floatingPointPrecSa) |
653 | 72 | storres | domainBoundsIntervalSa = boundsIntervalRifSa(lowerBoundSa, upperBoundSa) |
654 | 72 | storres | (domainScalingExpressionSa, invDomainScalingExpressionSa) = \ |
655 | 80 | storres | slz_interval_scaling_expression(domainBoundsIntervalSa, x) |
656 | 72 | storres | print "domainScalingExpression for argument :", domainScalingExpressionSa |
657 | 72 | storres | print "f: ", f |
658 | 72 | storres | ff = f.subs({x : domainScalingExpressionSa}) |
659 | 72 | storres | #ff = f.subs_expr(x==domainScalingExpressionSa) |
660 | 80 | storres | domainScalingFunction(x) = invDomainScalingExpressionSa |
661 | 80 | storres | scaledLowerBoundSa = domainScalingFunction(lowerBoundSa).n() |
662 | 80 | storres | scaledUpperBoundSa = domainScalingFunction(upperBoundSa).n() |
663 | 72 | storres | print 'ff:', ff, "- Domain:", scaledLowerBoundSa, scaledUpperBoundSa |
664 | 72 | storres | # |
665 | 72 | storres | # Scalling the image -> [1,2[. |
666 | 72 | storres | flbSa = f(lowerBoundSa).n() |
667 | 72 | storres | fubSa = f(upperBoundSa).n() |
668 | 72 | storres | if flbSa <= fubSa: # Increasing |
669 | 72 | storres | imageBinadeBottomSa = floor(flbSa.log2()) |
670 | 72 | storres | else: # Decreasing |
671 | 72 | storres | imageBinadeBottomSa = floor(fubSa.log2()) |
672 | 72 | storres | print 'ff:', ff, '- Image:', flbSa, fubSa, imageBinadeBottomSa |
673 | 72 | storres | imageBoundsIntervalSa = boundsIntervalRifSa(flbSa, fubSa) |
674 | 72 | storres | (imageScalingExpressionSa, invImageScalingExpressionSa) = \ |
675 | 80 | storres | slz_interval_scaling_expression(imageBoundsIntervalSa, x) |
676 | 72 | storres | iis = invImageScalingExpressionSa.function(x) |
677 | 72 | storres | fff = iis.subs({x:ff}) |
678 | 72 | storres | print "fff:", fff, |
679 | 72 | storres | print " - Image:", fff(scaledLowerBoundSa), fff(scaledUpperBoundSa) |
680 | 72 | storres | return([fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
681 | 72 | storres | fff(scaledLowerBoundSa), fff(scaledUpperBoundSa)]) |
682 | 72 | storres | |
683 | 79 | storres | def slz_float_poly_of_float_to_rat_poly_of_rat(polyOfFloat): |
684 | 79 | storres | # Create a polynomial over the rationals. |
685 | 79 | storres | polynomialRing = QQ[str(polyOfFloat.variables()[0])] |
686 | 79 | storres | return(polynomialRing(polyOfFloat)) |
687 | 86 | storres | # End slz_float_poly_of_float_to_rat_poly_of_rat. |
688 | 81 | storres | |
689 | 80 | storres | def slz_get_intervals_and_polynomials(functionSa, degreeSa, |
690 | 63 | storres | lowerBoundSa, |
691 | 60 | storres | upperBoundSa, floatingPointPrecSa, |
692 | 64 | storres | internalSollyaPrecSa, approxPrecSa): |
693 | 60 | storres | """ |
694 | 60 | storres | Under the assumption that: |
695 | 60 | storres | - functionSa is monotonic on the [lowerBoundSa, upperBoundSa] interval; |
696 | 60 | storres | - lowerBound and upperBound belong to the same binade. |
697 | 60 | storres | from a: |
698 | 60 | storres | - function; |
699 | 60 | storres | - a degree |
700 | 60 | storres | - a pair of bounds; |
701 | 60 | storres | - the floating-point precision we work on; |
702 | 60 | storres | - the internal Sollya precision; |
703 | 64 | storres | - the requested approximation error |
704 | 61 | storres | The initial interval is, possibly, splitted into smaller intervals. |
705 | 61 | storres | It return a list of tuples, each made of: |
706 | 72 | storres | - a first polynomial (without the changed variable f(x) = p(x-x0)); |
707 | 79 | storres | - a second polynomial (with a changed variable f(x) = q(x)) |
708 | 61 | storres | - the approximation interval; |
709 | 72 | storres | - the center, x0, of the interval; |
710 | 61 | storres | - the corresponding approximation error. |
711 | 100 | storres | TODO: fix endless looping for some parameters sets. |
712 | 60 | storres | """ |
713 | 120 | storres | resultArray = [] |
714 | 101 | storres | # Set Sollya to the necessary internal precision. |
715 | 120 | storres | precChangedSa = False |
716 | 85 | storres | currentSollyaPrecSo = pobyso_get_prec_so() |
717 | 85 | storres | currentSollyaPrecSa = pobyso_constant_from_int_so_sa(currentSollyaPrecSo) |
718 | 85 | storres | if internalSollyaPrecSa > currentSollyaPrecSa: |
719 | 85 | storres | pobyso_set_prec_sa_so(internalSollyaPrecSa) |
720 | 120 | storres | precChangedSa = True |
721 | 101 | storres | # |
722 | 80 | storres | x = functionSa.variables()[0] # Actual variable name can be anything. |
723 | 101 | storres | # Scaled function: [1=,2] -> [1,2]. |
724 | 115 | storres | (fff, scaledLowerBoundSa, scaledUpperBoundSa, \ |
725 | 115 | storres | scaledLowerBoundImageSa, scaledUpperBoundImageSa) = \ |
726 | 115 | storres | slz_compute_scaled_function(functionSa, \ |
727 | 115 | storres | lowerBoundSa, \ |
728 | 115 | storres | upperBoundSa, \ |
729 | 80 | storres | floatingPointPrecSa) |
730 | 60 | storres | # |
731 | 60 | storres | print "Approximation precision: ", RR(approxPrecSa) |
732 | 61 | storres | # Prepare the arguments for the Taylor expansion computation with Sollya. |
733 | 62 | storres | functionSo = pobyso_parse_string_sa_so(fff._assume_str()) |
734 | 60 | storres | degreeSo = pobyso_constant_from_int_sa_so(degreeSa) |
735 | 61 | storres | scaledBoundsSo = pobyso_bounds_to_range_sa_so(scaledLowerBoundSa, |
736 | 61 | storres | scaledUpperBoundSa) |
737 | 61 | storres | # Compute the first Taylor expansion. |
738 | 60 | storres | (polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
739 | 60 | storres | slz_compute_polynomial_and_interval(functionSo, degreeSo, |
740 | 60 | storres | scaledLowerBoundSa, scaledUpperBoundSa, |
741 | 60 | storres | approxPrecSa, internalSollyaPrecSa) |
742 | 86 | storres | if polySo is None: |
743 | 101 | storres | print "slz_get_intervals_and_polynomials: Aborting and returning None!" |
744 | 120 | storres | if precChangedSa: |
745 | 120 | storres | pobyso_set_prec_so_so(currentSollyaPrecSo) |
746 | 115 | storres | sollya_lib_clear_obj(currentSollyaPrecSo) |
747 | 115 | storres | sollya_lib_clear_obj(functionSo) |
748 | 115 | storres | sollya_lib_clear_obj(degreeSo) |
749 | 115 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
750 | 86 | storres | return None |
751 | 60 | storres | realIntervalField = RealIntervalField(max(lowerBoundSa.parent().precision(), |
752 | 60 | storres | upperBoundSa.parent().precision())) |
753 | 61 | storres | boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
754 | 101 | storres | errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
755 | 101 | storres | #print "First approximation error:", errorSa |
756 | 101 | storres | # If the error and interval are OK a the first try, just return. |
757 | 101 | storres | if boundsSa.endpoints()[1] >= scaledUpperBoundSa: |
758 | 101 | storres | # Change variable stuff in Sollya x -> x0-x. |
759 | 101 | storres | changeVarExpressionSo = sollya_lib_build_function_sub( \ |
760 | 101 | storres | sollya_lib_build_function_free_variable(), \ |
761 | 101 | storres | sollya_lib_copy_obj(intervalCenterSo)) |
762 | 101 | storres | polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
763 | 115 | storres | sollya_lib_clear_obj(changeVarExpressionSo) |
764 | 101 | storres | resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
765 | 101 | storres | intervalCenterSo, maxErrorSo)) |
766 | 101 | storres | if internalSollyaPrecSa != currentSollyaPrecSa: |
767 | 101 | storres | pobyso_set_prec_sa_so(currentSollyaPrecSa) |
768 | 115 | storres | sollya_lib_clear_obj(currentSollyaPrecSo) |
769 | 101 | storres | sollya_lib_clear_obj(functionSo) |
770 | 101 | storres | sollya_lib_clear_obj(degreeSo) |
771 | 101 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
772 | 101 | storres | #print "Approximation error:", errorSa |
773 | 101 | storres | return resultArray |
774 | 120 | storres | # The returned interval upper bound does not reach the requested upper |
775 | 120 | storres | # upper bound: compute the next upper bound. |
776 | 101 | storres | # The following ratio is always >= 1 |
777 | 81 | storres | currentErrorRatio = approxPrecSa / errorSa |
778 | 101 | storres | # Starting point for the next upper bound. |
779 | 81 | storres | currentScaledUpperBoundSa = boundsSa.endpoints()[1] |
780 | 101 | storres | boundsWidthSa = boundsSa.endpoints()[1] - boundsSa.endpoints()[0] |
781 | 101 | storres | # Compute the increment. |
782 | 101 | storres | if currentErrorRatio > RR('1000'): # ]1.5, infinity[ |
783 | 81 | storres | currentScaledUpperBoundSa += \ |
784 | 101 | storres | currentErrorRatio * boundsWidthSa * 2 |
785 | 101 | storres | else: # [1, 1.5] |
786 | 81 | storres | currentScaledUpperBoundSa += \ |
787 | 101 | storres | (RR('1.0') + currentErrorRatio.log() / 500) * boundsWidthSa |
788 | 101 | storres | # Take into account the original interval upper bound. |
789 | 81 | storres | if currentScaledUpperBoundSa > scaledUpperBoundSa: |
790 | 81 | storres | currentScaledUpperBoundSa = scaledUpperBoundSa |
791 | 61 | storres | # Compute the other expansions. |
792 | 60 | storres | while boundsSa.endpoints()[1] < scaledUpperBoundSa: |
793 | 60 | storres | currentScaledLowerBoundSa = boundsSa.endpoints()[1] |
794 | 60 | storres | (polySo, boundsSo, intervalCenterSo, maxErrorSo) = \ |
795 | 60 | storres | slz_compute_polynomial_and_interval(functionSo, degreeSo, |
796 | 60 | storres | currentScaledLowerBoundSa, |
797 | 81 | storres | currentScaledUpperBoundSa, |
798 | 81 | storres | approxPrecSa, |
799 | 60 | storres | internalSollyaPrecSa) |
800 | 101 | storres | errorSa = pobyso_get_constant_as_rn_with_rf_so_sa(maxErrorSo) |
801 | 101 | storres | if errorSa < approxPrecSa: |
802 | 101 | storres | # Change variable stuff |
803 | 101 | storres | #print "Approximation error:", errorSa |
804 | 101 | storres | changeVarExpressionSo = sollya_lib_build_function_sub( |
805 | 101 | storres | sollya_lib_build_function_free_variable(), |
806 | 101 | storres | sollya_lib_copy_obj(intervalCenterSo)) |
807 | 101 | storres | polyVarChangedSo = sollya_lib_evaluate(polySo, changeVarExpressionSo) |
808 | 115 | storres | sollya_lib_clear_obj(changeVarExpressionSo) |
809 | 101 | storres | resultArray.append((polySo, polyVarChangedSo, boundsSo, \ |
810 | 101 | storres | intervalCenterSo, maxErrorSo)) |
811 | 61 | storres | boundsSa = pobyso_range_to_interval_so_sa(boundsSo, realIntervalField) |
812 | 81 | storres | # Compute the next upper bound. |
813 | 101 | storres | # The following ratio is always >= 1 |
814 | 81 | storres | currentErrorRatio = approxPrecSa / errorSa |
815 | 101 | storres | # Starting point for the next upper bound. |
816 | 101 | storres | currentScaledUpperBoundSa = boundsSa.endpoints()[1] |
817 | 101 | storres | boundsWidthSa = boundsSa.endpoints()[1] - boundsSa.endpoints()[0] |
818 | 101 | storres | # Compute the increment. |
819 | 101 | storres | if currentErrorRatio > RR('1000'): # ]1.5, infinity[ |
820 | 101 | storres | currentScaledUpperBoundSa += \ |
821 | 101 | storres | currentErrorRatio * boundsWidthSa * 2 |
822 | 101 | storres | else: # [1, 1.5] |
823 | 101 | storres | currentScaledUpperBoundSa += \ |
824 | 101 | storres | (RR('1.0') + currentErrorRatio.log()/500) * boundsWidthSa |
825 | 101 | storres | #print "currentErrorRatio:", currentErrorRatio |
826 | 101 | storres | #print "currentScaledUpperBoundSa", currentScaledUpperBoundSa |
827 | 85 | storres | # Test for insufficient precision. |
828 | 85 | storres | if currentScaledUpperBoundSa == scaledLowerBoundSa: |
829 | 85 | storres | print "Can't shrink the interval anymore!" |
830 | 85 | storres | print "You should consider increasing the Sollya internal precision" |
831 | 85 | storres | print "or the polynomial degree." |
832 | 85 | storres | print "Giving up!" |
833 | 101 | storres | if internalSollyaPrecSa != currentSollyaPrecSa: |
834 | 101 | storres | pobyso_set_prec_sa_so(currentSollyaPrecSa) |
835 | 115 | storres | sollya_lib_clear_obj(currentSollyaPrecSo) |
836 | 85 | storres | sollya_lib_clear_obj(functionSo) |
837 | 85 | storres | sollya_lib_clear_obj(degreeSo) |
838 | 85 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
839 | 85 | storres | return None |
840 | 81 | storres | if currentScaledUpperBoundSa > scaledUpperBoundSa: |
841 | 81 | storres | currentScaledUpperBoundSa = scaledUpperBoundSa |
842 | 115 | storres | if internalSollyaPrecSa > currentSollyaPrecSa: |
843 | 115 | storres | pobyso_set_prec_so_so(currentSollyaPrecSo) |
844 | 115 | storres | sollya_lib_clear_obj(currentSollyaPrecSo) |
845 | 60 | storres | sollya_lib_clear_obj(functionSo) |
846 | 60 | storres | sollya_lib_clear_obj(degreeSo) |
847 | 60 | storres | sollya_lib_clear_obj(scaledBoundsSo) |
848 | 60 | storres | return(resultArray) |
849 | 81 | storres | # End slz_get_intervals_and_polynomials |
850 | 60 | storres | |
851 | 81 | storres | |
852 | 80 | storres | def slz_interval_scaling_expression(boundsInterval, expVar): |
853 | 61 | storres | """ |
854 | 114 | storres | Compute the scaling expression to map an interval that span at most |
855 | 114 | storres | a single binade to [1, 2) and the inverse expression as well. |
856 | 62 | storres | Not very sure that the transformation makes sense for negative numbers. |
857 | 61 | storres | """ |
858 | 62 | storres | # The scaling offset is only used for negative numbers. |
859 | 61 | storres | if abs(boundsInterval.endpoints()[0]) < 1: |
860 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
861 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
862 | 62 | storres | invScalingCoeff = 1/scalingCoeff |
863 | 80 | storres | return((scalingCoeff * expVar, |
864 | 80 | storres | invScalingCoeff * expVar)) |
865 | 60 | storres | else: |
866 | 62 | storres | scalingCoeff = \ |
867 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[0]).log2()) - 1) |
868 | 62 | storres | scalingOffset = -3 * scalingCoeff |
869 | 80 | storres | return((scalingCoeff * expVar + scalingOffset, |
870 | 80 | storres | 1/scalingCoeff * expVar + 3)) |
871 | 61 | storres | else: |
872 | 61 | storres | if boundsInterval.endpoints()[0] >= 0: |
873 | 62 | storres | scalingCoeff = 2^floor(boundsInterval.endpoints()[0].log2()) |
874 | 61 | storres | scalingOffset = 0 |
875 | 80 | storres | return((scalingCoeff * expVar, |
876 | 80 | storres | 1/scalingCoeff * expVar)) |
877 | 61 | storres | else: |
878 | 62 | storres | scalingCoeff = \ |
879 | 62 | storres | 2^(floor((-boundsInterval.endpoints()[1]).log2())) |
880 | 62 | storres | scalingOffset = -3 * scalingCoeff |
881 | 62 | storres | #scalingOffset = 0 |
882 | 80 | storres | return((scalingCoeff * expVar + scalingOffset, |
883 | 80 | storres | 1/scalingCoeff * expVar + 3)) |
884 | 61 | storres | |
885 | 61 | storres | |
886 | 83 | storres | def slz_interval_and_polynomial_to_sage(polyRangeCenterErrorSo): |
887 | 72 | storres | """ |
888 | 72 | storres | Compute the Sage version of the Taylor polynomial and it's |
889 | 72 | storres | companion data (interval, center...) |
890 | 72 | storres | The input parameter is a five elements tuple: |
891 | 79 | storres | - [0]: the polyomial (without variable change), as polynomial over a |
892 | 79 | storres | real ring; |
893 | 79 | storres | - [1]: the polyomial (with variable change done in Sollya), as polynomial |
894 | 79 | storres | over a real ring; |
895 | 72 | storres | - [2]: the interval (as Sollya range); |
896 | 72 | storres | - [3]: the interval center; |
897 | 72 | storres | - [4]: the approximation error. |
898 | 72 | storres | |
899 | 72 | storres | The function return a 5 elements tuple: formed with all the |
900 | 72 | storres | input elements converted into their Sollya counterpart. |
901 | 72 | storres | """ |
902 | 60 | storres | polynomialSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[0]) |
903 | 64 | storres | polynomialChangedVarSa = pobyso_get_poly_so_sa(polyRangeCenterErrorSo[1]) |
904 | 60 | storres | intervalSa = \ |
905 | 64 | storres | pobyso_get_interval_from_range_so_sa(polyRangeCenterErrorSo[2]) |
906 | 60 | storres | centerSa = \ |
907 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[3]) |
908 | 60 | storres | errorSa = \ |
909 | 64 | storres | pobyso_get_constant_as_rn_with_rf_so_sa(polyRangeCenterErrorSo[4]) |
910 | 64 | storres | return((polynomialSa, polynomialChangedVarSa, intervalSa, centerSa, errorSa)) |
911 | 83 | storres | # End slz_interval_and_polynomial_to_sage |
912 | 62 | storres | |
913 | 80 | storres | def slz_rat_poly_of_int_to_poly_for_coppersmith(ratPolyOfInt, |
914 | 80 | storres | precision, |
915 | 80 | storres | targetHardnessToRound, |
916 | 80 | storres | variable1, |
917 | 80 | storres | variable2): |
918 | 80 | storres | """ |
919 | 90 | storres | Creates a new multivariate polynomial with integer coefficients for use |
920 | 90 | storres | with the Coppersmith method. |
921 | 80 | storres | A the same time it computes : |
922 | 80 | storres | - 2^K (N); |
923 | 90 | storres | - 2^k (bound on the second variable) |
924 | 80 | storres | - lcm |
925 | 90 | storres | |
926 | 90 | storres | :param ratPolyOfInt: a polynomial with rational coefficients and integer |
927 | 90 | storres | variables. |
928 | 90 | storres | :param precision: the precision of the floating-point coefficients. |
929 | 90 | storres | :param targetHardnessToRound: the hardness to round we want to check. |
930 | 90 | storres | :param variable1: the first variable of the polynomial (an expression). |
931 | 90 | storres | :param variable2: the second variable of the polynomial (an expression). |
932 | 90 | storres | |
933 | 90 | storres | :returns: a 4 elements tuple: |
934 | 90 | storres | - the polynomial; |
935 | 91 | storres | - the modulus (N); |
936 | 91 | storres | - the t bound; |
937 | 90 | storres | - the lcm used to compute the integral coefficients and the |
938 | 90 | storres | module. |
939 | 80 | storres | """ |
940 | 80 | storres | # Create a new integer polynomial ring. |
941 | 80 | storres | IP = PolynomialRing(ZZ, name=str(variable1) + "," + str(variable2)) |
942 | 80 | storres | # Coefficients are issued in the increasing power order. |
943 | 80 | storres | ratPolyCoefficients = ratPolyOfInt.coefficients() |
944 | 91 | storres | # Print the reversed list for debugging. |
945 | 94 | storres | print "Rational polynomial coefficients:", ratPolyCoefficients[::-1] |
946 | 94 | storres | # Build the list of number we compute the lcm of. |
947 | 80 | storres | coefficientDenominators = sro_denominators(ratPolyCoefficients) |
948 | 80 | storres | coefficientDenominators.append(2^precision) |
949 | 80 | storres | coefficientDenominators.append(2^(targetHardnessToRound + 1)) |
950 | 87 | storres | leastCommonMultiple = lcm(coefficientDenominators) |
951 | 80 | storres | # Compute the expression corresponding to the new polynomial |
952 | 80 | storres | coefficientNumerators = sro_numerators(ratPolyCoefficients) |
953 | 91 | storres | #print coefficientNumerators |
954 | 80 | storres | polynomialExpression = 0 |
955 | 80 | storres | power = 0 |
956 | 80 | storres | # Iterate over two lists at the same time, stop when the shorter is |
957 | 80 | storres | # exhausted. |
958 | 80 | storres | for numerator, denominator in \ |
959 | 94 | storres | zip(coefficientNumerators, coefficientDenominators): |
960 | 80 | storres | multiplicator = leastCommonMultiple / denominator |
961 | 80 | storres | newCoefficient = numerator * multiplicator |
962 | 80 | storres | polynomialExpression += newCoefficient * variable1^power |
963 | 80 | storres | power +=1 |
964 | 80 | storres | polynomialExpression += - variable2 |
965 | 80 | storres | return (IP(polynomialExpression), |
966 | 80 | storres | leastCommonMultiple / 2^precision, # 2^K or N. |
967 | 91 | storres | leastCommonMultiple / 2^(targetHardnessToRound + 1), # tBound |
968 | 91 | storres | leastCommonMultiple) # If we want to make test computations. |
969 | 80 | storres | |
970 | 80 | storres | # End slz_ratPoly_of_int_to_poly_for_coppersmith |
971 | 79 | storres | |
972 | 79 | storres | def slz_rat_poly_of_rat_to_rat_poly_of_int(ratPolyOfRat, |
973 | 79 | storres | precision): |
974 | 79 | storres | """ |
975 | 79 | storres | Makes a variable substitution into the input polynomial so that the output |
976 | 79 | storres | polynomial can take integer arguments. |
977 | 79 | storres | All variables of the input polynomial "have precision p". That is to say |
978 | 103 | storres | that they are rationals with denominator == 2^(precision - 1): |
979 | 103 | storres | x = y/2^(precision - 1). |
980 | 79 | storres | We "incorporate" these denominators into the coefficients with, |
981 | 79 | storres | respectively, the "right" power. |
982 | 79 | storres | """ |
983 | 79 | storres | polynomialField = ratPolyOfRat.parent() |
984 | 91 | storres | polynomialVariable = ratPolyOfRat.variables()[0] |
985 | 91 | storres | #print "The polynomial field is:", polynomialField |
986 | 79 | storres | return \ |
987 | 91 | storres | polynomialField(ratPolyOfRat.subs({polynomialVariable : \ |
988 | 79 | storres | polynomialVariable/2^(precision-1)})) |
989 | 79 | storres | |
990 | 79 | storres | # Return a tuple: |
991 | 79 | storres | # - the bivariate integer polynomial in (i,j); |
992 | 79 | storres | # - 2^K |
993 | 79 | storres | # End slz_rat_poly_of_rat_to_rat_poly_of_int |
994 | 79 | storres | |
995 | 115 | storres | |
996 | 87 | storres | print "\t...sageSLZ loaded" |
997 | 122 | storres |