Révision 103

pobysoPythonSage/src/pobyso.py (revision 103)
1010 1010
        pobyso_get_list_elements_so_so(taylorFormSo)
1011 1011
    polySo = sollya_lib_copy_obj(taylorFormListSo[0])
1012 1012
    errorRangeSo = taylorFormListSo[2]
1013
    # No copy_obj needed here: a new object is created.
1013 1014
    maxErrorSo = sollya_lib_sup(errorRangeSo)
1014 1015
    # If changed, reset the Sollya working precision.
1015 1016
    if not sollyaPrecSo is None:
......
1018 1019
    if errorTypeIsNone:
1019 1020
        sollya_lib_clear_obj(errorTypeSo)
1020 1021
    sollya_lib_clear_obj(taylorFormSo)
1021
    # Do not clear maxErrorSo.
1022
    for element in taylorFormListSo:
1023
        sollya_lib_clear_obj(element)
1024
    # Those are cleared with taylorForSo.
1025
    #sollya_lib_clear_obj(numElementsSo)
1026
    #sollya_lib_clear_obj(isEndEllipticSo)
1022 1027
    return((polySo, intervalCenterSo, maxErrorSo))
1023 1028
# end pobyso_taylor_expansion_no_change_var_so_so
1024 1029

  
pobysoPythonSage/src/sageSLZ/sagePolynomialOperations.sage (revision 103)
140 140
        return norm
141 141
    # For other norms
142 142
    for coefficient in poly.coefficients():
143
        norm +=  (coefficient^p).abs()
143
        norm +=  coefficient.abs()^p
144 144
    return pow(norm, 1/p)
145 145
# end spo_norm
146 146

  
pobysoPythonSage/src/sageSLZ/sageMatrixOperations.sage (revision 103)
94 94
    return minNonNull
95 95
# End smo_min_non_null_abs
96 96

  
97
def smo_transformation_row_matrix_strings(varPrefixString,matrix):
97
def smo_transformation_row_matrix_strings(varPrefixString, matrix):
98 98
    m = matrix.nrows()
99 99
    if m == 0 :
100 100
        return None
pobysoPythonSage/src/sageSLZ/sageSLZ.sage (revision 103)
95 95
    scaled back by dividing by the "right" powers of the variables bounds.
96 96
    
97 97
    The elements in knownMonomials must be of the "right" polynomial type.
98
    They set the polynomial type of the output polynomials list.
98 99
    """
99 100
    
100 101
    # TODO: check input arguments.
......
467 468
    Makes a variable substitution into the input polynomial so that the output
468 469
    polynomial can take integer arguments.
469 470
    All variables of the input polynomial "have precision p". That is to say
470
    that they are rationals with denominator == 2^precision: x = y/2^precision
471
    that they are rationals with denominator == 2^(precision - 1): 
472
    x = y/2^(precision - 1).
471 473
    We "incorporate" these denominators into the coefficients with, 
472 474
    respectively, the "right" power.
473 475
    """

Formats disponibles : Unified diff