Statistiques
| Révision :

root / src / lapack / double / dormrz.f @ 9

Historique | Voir | Annoter | Télécharger (8,26 ko)

1
      SUBROUTINE DORMRZ( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
2
     $                   WORK, LWORK, INFO )
3
*
4
*  -- LAPACK routine (version 3.2) --
5
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7
*     January 2007
8
*
9
*     .. Scalar Arguments ..
10
      CHARACTER          SIDE, TRANS
11
      INTEGER            INFO, K, L, LDA, LDC, LWORK, M, N
12
*     ..
13
*     .. Array Arguments ..
14
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
15
*     ..
16
*
17
*  Purpose
18
*  =======
19
*
20
*  DORMRZ overwrites the general real M-by-N matrix C with
21
*
22
*                  SIDE = 'L'     SIDE = 'R'
23
*  TRANS = 'N':      Q * C          C * Q
24
*  TRANS = 'T':      Q**T * C       C * Q**T
25
*
26
*  where Q is a real orthogonal matrix defined as the product of k
27
*  elementary reflectors
28
*
29
*        Q = H(1) H(2) . . . H(k)
30
*
31
*  as returned by DTZRZF. Q is of order M if SIDE = 'L' and of order N
32
*  if SIDE = 'R'.
33
*
34
*  Arguments
35
*  =========
36
*
37
*  SIDE    (input) CHARACTER*1
38
*          = 'L': apply Q or Q**T from the Left;
39
*          = 'R': apply Q or Q**T from the Right.
40
*
41
*  TRANS   (input) CHARACTER*1
42
*          = 'N':  No transpose, apply Q;
43
*          = 'T':  Transpose, apply Q**T.
44
*
45
*  M       (input) INTEGER
46
*          The number of rows of the matrix C. M >= 0.
47
*
48
*  N       (input) INTEGER
49
*          The number of columns of the matrix C. N >= 0.
50
*
51
*  K       (input) INTEGER
52
*          The number of elementary reflectors whose product defines
53
*          the matrix Q.
54
*          If SIDE = 'L', M >= K >= 0;
55
*          if SIDE = 'R', N >= K >= 0.
56
*
57
*  L       (input) INTEGER
58
*          The number of columns of the matrix A containing
59
*          the meaningful part of the Householder reflectors.
60
*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
61
*
62
*  A       (input) DOUBLE PRECISION array, dimension
63
*                               (LDA,M) if SIDE = 'L',
64
*                               (LDA,N) if SIDE = 'R'
65
*          The i-th row must contain the vector which defines the
66
*          elementary reflector H(i), for i = 1,2,...,k, as returned by
67
*          DTZRZF in the last k rows of its array argument A.
68
*          A is modified by the routine but restored on exit.
69
*
70
*  LDA     (input) INTEGER
71
*          The leading dimension of the array A. LDA >= max(1,K).
72
*
73
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
74
*          TAU(i) must contain the scalar factor of the elementary
75
*          reflector H(i), as returned by DTZRZF.
76
*
77
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
78
*          On entry, the M-by-N matrix C.
79
*          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
80
*
81
*  LDC     (input) INTEGER
82
*          The leading dimension of the array C. LDC >= max(1,M).
83
*
84
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
85
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
86
*
87
*  LWORK   (input) INTEGER
88
*          The dimension of the array WORK.
89
*          If SIDE = 'L', LWORK >= max(1,N);
90
*          if SIDE = 'R', LWORK >= max(1,M).
91
*          For optimum performance LWORK >= N*NB if SIDE = 'L', and
92
*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
93
*          blocksize.
94
*
95
*          If LWORK = -1, then a workspace query is assumed; the routine
96
*          only calculates the optimal size of the WORK array, returns
97
*          this value as the first entry of the WORK array, and no error
98
*          message related to LWORK is issued by XERBLA.
99
*
100
*  INFO    (output) INTEGER
101
*          = 0:  successful exit
102
*          < 0:  if INFO = -i, the i-th argument had an illegal value
103
*
104
*  Further Details
105
*  ===============
106
*
107
*  Based on contributions by
108
*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
109
*
110
*  =====================================================================
111
*
112
*     .. Parameters ..
113
      INTEGER            NBMAX, LDT
114
      PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
115
*     ..
116
*     .. Local Scalars ..
117
      LOGICAL            LEFT, LQUERY, NOTRAN
118
      CHARACTER          TRANST
119
      INTEGER            I, I1, I2, I3, IB, IC, IINFO, IWS, JA, JC,
120
     $                   LDWORK, LWKOPT, MI, NB, NBMIN, NI, NQ, NW
121
*     ..
122
*     .. Local Arrays ..
123
      DOUBLE PRECISION   T( LDT, NBMAX )
124
*     ..
125
*     .. External Functions ..
126
      LOGICAL            LSAME
127
      INTEGER            ILAENV
128
      EXTERNAL           LSAME, ILAENV
129
*     ..
130
*     .. External Subroutines ..
131
      EXTERNAL           DLARZB, DLARZT, DORMR3, XERBLA
132
*     ..
133
*     .. Intrinsic Functions ..
134
      INTRINSIC          MAX, MIN
135
*     ..
136
*     .. Executable Statements ..
137
*
138
*     Test the input arguments
139
*
140
      INFO = 0
141
      LEFT = LSAME( SIDE, 'L' )
142
      NOTRAN = LSAME( TRANS, 'N' )
143
      LQUERY = ( LWORK.EQ.-1 )
144
*
145
*     NQ is the order of Q and NW is the minimum dimension of WORK
146
*
147
      IF( LEFT ) THEN
148
         NQ = M
149
         NW = MAX( 1, N )
150
      ELSE
151
         NQ = N
152
         NW = MAX( 1, M )
153
      END IF
154
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
155
         INFO = -1
156
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
157
         INFO = -2
158
      ELSE IF( M.LT.0 ) THEN
159
         INFO = -3
160
      ELSE IF( N.LT.0 ) THEN
161
         INFO = -4
162
      ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
163
         INFO = -5
164
      ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR.
165
     $         ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
166
         INFO = -6
167
      ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
168
         INFO = -8
169
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
170
         INFO = -11
171
      END IF
172
*
173
      IF( INFO.EQ.0 ) THEN
174
         IF( M.EQ.0 .OR. N.EQ.0 ) THEN
175
            LWKOPT = 1
176
         ELSE
177
*
178
*           Determine the block size.  NB may be at most NBMAX, where
179
*           NBMAX is used to define the local array T.
180
*
181
            NB = MIN( NBMAX, ILAENV( 1, 'DORMRQ', SIDE // TRANS, M, N,
182
     $                               K, -1 ) )
183
            LWKOPT = NW*NB
184
         END IF
185
         WORK( 1 ) = LWKOPT
186
*
187
         IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
188
            INFO = -13
189
         END IF
190
      END IF
191
*
192
      IF( INFO.NE.0 ) THEN
193
         CALL XERBLA( 'DORMRZ', -INFO )
194
         RETURN
195
      ELSE IF( LQUERY ) THEN
196
         RETURN
197
      END IF
198
*
199
*     Quick return if possible
200
*
201
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
202
         WORK( 1 ) = 1
203
         RETURN
204
      END IF
205
*
206
      NBMIN = 2
207
      LDWORK = NW
208
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
209
         IWS = NW*NB
210
         IF( LWORK.LT.IWS ) THEN
211
            NB = LWORK / LDWORK
212
            NBMIN = MAX( 2, ILAENV( 2, 'DORMRQ', SIDE // TRANS, M, N, K,
213
     $              -1 ) )
214
         END IF
215
      ELSE
216
         IWS = NW
217
      END IF
218
*
219
      IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
220
*
221
*        Use unblocked code
222
*
223
         CALL DORMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
224
     $                WORK, IINFO )
225
      ELSE
226
*
227
*        Use blocked code
228
*
229
         IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
230
     $       ( .NOT.LEFT .AND. NOTRAN ) ) THEN
231
            I1 = 1
232
            I2 = K
233
            I3 = NB
234
         ELSE
235
            I1 = ( ( K-1 ) / NB )*NB + 1
236
            I2 = 1
237
            I3 = -NB
238
         END IF
239
*
240
         IF( LEFT ) THEN
241
            NI = N
242
            JC = 1
243
            JA = M - L + 1
244
         ELSE
245
            MI = M
246
            IC = 1
247
            JA = N - L + 1
248
         END IF
249
*
250
         IF( NOTRAN ) THEN
251
            TRANST = 'T'
252
         ELSE
253
            TRANST = 'N'
254
         END IF
255
*
256
         DO 10 I = I1, I2, I3
257
            IB = MIN( NB, K-I+1 )
258
*
259
*           Form the triangular factor of the block reflector
260
*           H = H(i+ib-1) . . . H(i+1) H(i)
261
*
262
            CALL DLARZT( 'Backward', 'Rowwise', L, IB, A( I, JA ), LDA,
263
     $                   TAU( I ), T, LDT )
264
*
265
            IF( LEFT ) THEN
266
*
267
*              H or H' is applied to C(i:m,1:n)
268
*
269
               MI = M - I + 1
270
               IC = I
271
            ELSE
272
*
273
*              H or H' is applied to C(1:m,i:n)
274
*
275
               NI = N - I + 1
276
               JC = I
277
            END IF
278
*
279
*           Apply H or H'
280
*
281
            CALL DLARZB( SIDE, TRANST, 'Backward', 'Rowwise', MI, NI,
282
     $                   IB, L, A( I, JA ), LDA, T, LDT, C( IC, JC ),
283
     $                   LDC, WORK, LDWORK )
284
   10    CONTINUE
285
*
286
      END IF
287
*
288
      WORK( 1 ) = LWKOPT
289
*
290
      RETURN
291
*
292
*     End of DORMRZ
293
*
294
      END