root / src / lapack / double / dormrz.f @ 9
Historique | Voir | Annoter | Télécharger (8,26 ko)
1 |
SUBROUTINE DORMRZ( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, |
---|---|
2 |
$ WORK, LWORK, INFO ) |
3 |
* |
4 |
* -- LAPACK routine (version 3.2) -- |
5 |
* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
6 |
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
7 |
* January 2007 |
8 |
* |
9 |
* .. Scalar Arguments .. |
10 |
CHARACTER SIDE, TRANS |
11 |
INTEGER INFO, K, L, LDA, LDC, LWORK, M, N |
12 |
* .. |
13 |
* .. Array Arguments .. |
14 |
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) |
15 |
* .. |
16 |
* |
17 |
* Purpose |
18 |
* ======= |
19 |
* |
20 |
* DORMRZ overwrites the general real M-by-N matrix C with |
21 |
* |
22 |
* SIDE = 'L' SIDE = 'R' |
23 |
* TRANS = 'N': Q * C C * Q |
24 |
* TRANS = 'T': Q**T * C C * Q**T |
25 |
* |
26 |
* where Q is a real orthogonal matrix defined as the product of k |
27 |
* elementary reflectors |
28 |
* |
29 |
* Q = H(1) H(2) . . . H(k) |
30 |
* |
31 |
* as returned by DTZRZF. Q is of order M if SIDE = 'L' and of order N |
32 |
* if SIDE = 'R'. |
33 |
* |
34 |
* Arguments |
35 |
* ========= |
36 |
* |
37 |
* SIDE (input) CHARACTER*1 |
38 |
* = 'L': apply Q or Q**T from the Left; |
39 |
* = 'R': apply Q or Q**T from the Right. |
40 |
* |
41 |
* TRANS (input) CHARACTER*1 |
42 |
* = 'N': No transpose, apply Q; |
43 |
* = 'T': Transpose, apply Q**T. |
44 |
* |
45 |
* M (input) INTEGER |
46 |
* The number of rows of the matrix C. M >= 0. |
47 |
* |
48 |
* N (input) INTEGER |
49 |
* The number of columns of the matrix C. N >= 0. |
50 |
* |
51 |
* K (input) INTEGER |
52 |
* The number of elementary reflectors whose product defines |
53 |
* the matrix Q. |
54 |
* If SIDE = 'L', M >= K >= 0; |
55 |
* if SIDE = 'R', N >= K >= 0. |
56 |
* |
57 |
* L (input) INTEGER |
58 |
* The number of columns of the matrix A containing |
59 |
* the meaningful part of the Householder reflectors. |
60 |
* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. |
61 |
* |
62 |
* A (input) DOUBLE PRECISION array, dimension |
63 |
* (LDA,M) if SIDE = 'L', |
64 |
* (LDA,N) if SIDE = 'R' |
65 |
* The i-th row must contain the vector which defines the |
66 |
* elementary reflector H(i), for i = 1,2,...,k, as returned by |
67 |
* DTZRZF in the last k rows of its array argument A. |
68 |
* A is modified by the routine but restored on exit. |
69 |
* |
70 |
* LDA (input) INTEGER |
71 |
* The leading dimension of the array A. LDA >= max(1,K). |
72 |
* |
73 |
* TAU (input) DOUBLE PRECISION array, dimension (K) |
74 |
* TAU(i) must contain the scalar factor of the elementary |
75 |
* reflector H(i), as returned by DTZRZF. |
76 |
* |
77 |
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) |
78 |
* On entry, the M-by-N matrix C. |
79 |
* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. |
80 |
* |
81 |
* LDC (input) INTEGER |
82 |
* The leading dimension of the array C. LDC >= max(1,M). |
83 |
* |
84 |
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) |
85 |
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. |
86 |
* |
87 |
* LWORK (input) INTEGER |
88 |
* The dimension of the array WORK. |
89 |
* If SIDE = 'L', LWORK >= max(1,N); |
90 |
* if SIDE = 'R', LWORK >= max(1,M). |
91 |
* For optimum performance LWORK >= N*NB if SIDE = 'L', and |
92 |
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal |
93 |
* blocksize. |
94 |
* |
95 |
* If LWORK = -1, then a workspace query is assumed; the routine |
96 |
* only calculates the optimal size of the WORK array, returns |
97 |
* this value as the first entry of the WORK array, and no error |
98 |
* message related to LWORK is issued by XERBLA. |
99 |
* |
100 |
* INFO (output) INTEGER |
101 |
* = 0: successful exit |
102 |
* < 0: if INFO = -i, the i-th argument had an illegal value |
103 |
* |
104 |
* Further Details |
105 |
* =============== |
106 |
* |
107 |
* Based on contributions by |
108 |
* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA |
109 |
* |
110 |
* ===================================================================== |
111 |
* |
112 |
* .. Parameters .. |
113 |
INTEGER NBMAX, LDT |
114 |
PARAMETER ( NBMAX = 64, LDT = NBMAX+1 ) |
115 |
* .. |
116 |
* .. Local Scalars .. |
117 |
LOGICAL LEFT, LQUERY, NOTRAN |
118 |
CHARACTER TRANST |
119 |
INTEGER I, I1, I2, I3, IB, IC, IINFO, IWS, JA, JC, |
120 |
$ LDWORK, LWKOPT, MI, NB, NBMIN, NI, NQ, NW |
121 |
* .. |
122 |
* .. Local Arrays .. |
123 |
DOUBLE PRECISION T( LDT, NBMAX ) |
124 |
* .. |
125 |
* .. External Functions .. |
126 |
LOGICAL LSAME |
127 |
INTEGER ILAENV |
128 |
EXTERNAL LSAME, ILAENV |
129 |
* .. |
130 |
* .. External Subroutines .. |
131 |
EXTERNAL DLARZB, DLARZT, DORMR3, XERBLA |
132 |
* .. |
133 |
* .. Intrinsic Functions .. |
134 |
INTRINSIC MAX, MIN |
135 |
* .. |
136 |
* .. Executable Statements .. |
137 |
* |
138 |
* Test the input arguments |
139 |
* |
140 |
INFO = 0 |
141 |
LEFT = LSAME( SIDE, 'L' ) |
142 |
NOTRAN = LSAME( TRANS, 'N' ) |
143 |
LQUERY = ( LWORK.EQ.-1 ) |
144 |
* |
145 |
* NQ is the order of Q and NW is the minimum dimension of WORK |
146 |
* |
147 |
IF( LEFT ) THEN |
148 |
NQ = M |
149 |
NW = MAX( 1, N ) |
150 |
ELSE |
151 |
NQ = N |
152 |
NW = MAX( 1, M ) |
153 |
END IF |
154 |
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN |
155 |
INFO = -1 |
156 |
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN |
157 |
INFO = -2 |
158 |
ELSE IF( M.LT.0 ) THEN |
159 |
INFO = -3 |
160 |
ELSE IF( N.LT.0 ) THEN |
161 |
INFO = -4 |
162 |
ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN |
163 |
INFO = -5 |
164 |
ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR. |
165 |
$ ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN |
166 |
INFO = -6 |
167 |
ELSE IF( LDA.LT.MAX( 1, K ) ) THEN |
168 |
INFO = -8 |
169 |
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN |
170 |
INFO = -11 |
171 |
END IF |
172 |
* |
173 |
IF( INFO.EQ.0 ) THEN |
174 |
IF( M.EQ.0 .OR. N.EQ.0 ) THEN |
175 |
LWKOPT = 1 |
176 |
ELSE |
177 |
* |
178 |
* Determine the block size. NB may be at most NBMAX, where |
179 |
* NBMAX is used to define the local array T. |
180 |
* |
181 |
NB = MIN( NBMAX, ILAENV( 1, 'DORMRQ', SIDE // TRANS, M, N, |
182 |
$ K, -1 ) ) |
183 |
LWKOPT = NW*NB |
184 |
END IF |
185 |
WORK( 1 ) = LWKOPT |
186 |
* |
187 |
IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN |
188 |
INFO = -13 |
189 |
END IF |
190 |
END IF |
191 |
* |
192 |
IF( INFO.NE.0 ) THEN |
193 |
CALL XERBLA( 'DORMRZ', -INFO ) |
194 |
RETURN |
195 |
ELSE IF( LQUERY ) THEN |
196 |
RETURN |
197 |
END IF |
198 |
* |
199 |
* Quick return if possible |
200 |
* |
201 |
IF( M.EQ.0 .OR. N.EQ.0 ) THEN |
202 |
WORK( 1 ) = 1 |
203 |
RETURN |
204 |
END IF |
205 |
* |
206 |
NBMIN = 2 |
207 |
LDWORK = NW |
208 |
IF( NB.GT.1 .AND. NB.LT.K ) THEN |
209 |
IWS = NW*NB |
210 |
IF( LWORK.LT.IWS ) THEN |
211 |
NB = LWORK / LDWORK |
212 |
NBMIN = MAX( 2, ILAENV( 2, 'DORMRQ', SIDE // TRANS, M, N, K, |
213 |
$ -1 ) ) |
214 |
END IF |
215 |
ELSE |
216 |
IWS = NW |
217 |
END IF |
218 |
* |
219 |
IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN |
220 |
* |
221 |
* Use unblocked code |
222 |
* |
223 |
CALL DORMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, |
224 |
$ WORK, IINFO ) |
225 |
ELSE |
226 |
* |
227 |
* Use blocked code |
228 |
* |
229 |
IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. |
230 |
$ ( .NOT.LEFT .AND. NOTRAN ) ) THEN |
231 |
I1 = 1 |
232 |
I2 = K |
233 |
I3 = NB |
234 |
ELSE |
235 |
I1 = ( ( K-1 ) / NB )*NB + 1 |
236 |
I2 = 1 |
237 |
I3 = -NB |
238 |
END IF |
239 |
* |
240 |
IF( LEFT ) THEN |
241 |
NI = N |
242 |
JC = 1 |
243 |
JA = M - L + 1 |
244 |
ELSE |
245 |
MI = M |
246 |
IC = 1 |
247 |
JA = N - L + 1 |
248 |
END IF |
249 |
* |
250 |
IF( NOTRAN ) THEN |
251 |
TRANST = 'T' |
252 |
ELSE |
253 |
TRANST = 'N' |
254 |
END IF |
255 |
* |
256 |
DO 10 I = I1, I2, I3 |
257 |
IB = MIN( NB, K-I+1 ) |
258 |
* |
259 |
* Form the triangular factor of the block reflector |
260 |
* H = H(i+ib-1) . . . H(i+1) H(i) |
261 |
* |
262 |
CALL DLARZT( 'Backward', 'Rowwise', L, IB, A( I, JA ), LDA, |
263 |
$ TAU( I ), T, LDT ) |
264 |
* |
265 |
IF( LEFT ) THEN |
266 |
* |
267 |
* H or H' is applied to C(i:m,1:n) |
268 |
* |
269 |
MI = M - I + 1 |
270 |
IC = I |
271 |
ELSE |
272 |
* |
273 |
* H or H' is applied to C(1:m,i:n) |
274 |
* |
275 |
NI = N - I + 1 |
276 |
JC = I |
277 |
END IF |
278 |
* |
279 |
* Apply H or H' |
280 |
* |
281 |
CALL DLARZB( SIDE, TRANST, 'Backward', 'Rowwise', MI, NI, |
282 |
$ IB, L, A( I, JA ), LDA, T, LDT, C( IC, JC ), |
283 |
$ LDC, WORK, LDWORK ) |
284 |
10 CONTINUE |
285 |
* |
286 |
END IF |
287 |
* |
288 |
WORK( 1 ) = LWKOPT |
289 |
* |
290 |
RETURN |
291 |
* |
292 |
* End of DORMRZ |
293 |
* |
294 |
END |