Statistiques
| Révision :

root / src / lapack / double / dlaed6.f @ 9

Historique | Voir | Annoter | Télécharger (9,39 ko)

1
      SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
2
*
3
*  -- LAPACK routine (version 3.2) --
4
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
5
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6
*     February 2007
7
*
8
*     .. Scalar Arguments ..
9
      LOGICAL            ORGATI
10
      INTEGER            INFO, KNITER
11
      DOUBLE PRECISION   FINIT, RHO, TAU
12
*     ..
13
*     .. Array Arguments ..
14
      DOUBLE PRECISION   D( 3 ), Z( 3 )
15
*     ..
16
*
17
*  Purpose
18
*  =======
19
*
20
*  DLAED6 computes the positive or negative root (closest to the origin)
21
*  of
22
*                   z(1)        z(2)        z(3)
23
*  f(x) =   rho + --------- + ---------- + ---------
24
*                  d(1)-x      d(2)-x      d(3)-x
25
*
26
*  It is assumed that
27
*
28
*        if ORGATI = .true. the root is between d(2) and d(3);
29
*        otherwise it is between d(1) and d(2)
30
*
31
*  This routine will be called by DLAED4 when necessary. In most cases,
32
*  the root sought is the smallest in magnitude, though it might not be
33
*  in some extremely rare situations.
34
*
35
*  Arguments
36
*  =========
37
*
38
*  KNITER       (input) INTEGER
39
*               Refer to DLAED4 for its significance.
40
*
41
*  ORGATI       (input) LOGICAL
42
*               If ORGATI is true, the needed root is between d(2) and
43
*               d(3); otherwise it is between d(1) and d(2).  See
44
*               DLAED4 for further details.
45
*
46
*  RHO          (input) DOUBLE PRECISION
47
*               Refer to the equation f(x) above.
48
*
49
*  D            (input) DOUBLE PRECISION array, dimension (3)
50
*               D satisfies d(1) < d(2) < d(3).
51
*
52
*  Z            (input) DOUBLE PRECISION array, dimension (3)
53
*               Each of the elements in z must be positive.
54
*
55
*  FINIT        (input) DOUBLE PRECISION
56
*               The value of f at 0. It is more accurate than the one
57
*               evaluated inside this routine (if someone wants to do
58
*               so).
59
*
60
*  TAU          (output) DOUBLE PRECISION
61
*               The root of the equation f(x).
62
*
63
*  INFO         (output) INTEGER
64
*               = 0: successful exit
65
*               > 0: if INFO = 1, failure to converge
66
*
67
*  Further Details
68
*  ===============
69
*
70
*  30/06/99: Based on contributions by
71
*     Ren-Cang Li, Computer Science Division, University of California
72
*     at Berkeley, USA
73
*
74
*  10/02/03: This version has a few statements commented out for thread
75
*  safety (machine parameters are computed on each entry). SJH.
76
*
77
*  05/10/06: Modified from a new version of Ren-Cang Li, use
78
*     Gragg-Thornton-Warner cubic convergent scheme for better stability.
79
*
80
*  =====================================================================
81
*
82
*     .. Parameters ..
83
      INTEGER            MAXIT
84
      PARAMETER          ( MAXIT = 40 )
85
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, EIGHT
86
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
87
     $                   THREE = 3.0D0, FOUR = 4.0D0, EIGHT = 8.0D0 )
88
*     ..
89
*     .. External Functions ..
90
      DOUBLE PRECISION   DLAMCH
91
      EXTERNAL           DLAMCH
92
*     ..
93
*     .. Local Arrays ..
94
      DOUBLE PRECISION   DSCALE( 3 ), ZSCALE( 3 )
95
*     ..
96
*     .. Local Scalars ..
97
      LOGICAL            SCALE
98
      INTEGER            I, ITER, NITER
99
      DOUBLE PRECISION   A, B, BASE, C, DDF, DF, EPS, ERRETM, ETA, F,
100
     $                   FC, SCLFAC, SCLINV, SMALL1, SMALL2, SMINV1,
101
     $                   SMINV2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4, 
102
     $                   LBD, UBD
103
*     ..
104
*     .. Intrinsic Functions ..
105
      INTRINSIC          ABS, INT, LOG, MAX, MIN, SQRT
106
*     ..
107
*     .. Executable Statements ..
108
*
109
      INFO = 0
110
*
111
      IF( ORGATI ) THEN
112
         LBD = D(2)
113
         UBD = D(3)
114
      ELSE
115
         LBD = D(1)
116
         UBD = D(2)
117
      END IF
118
      IF( FINIT .LT. ZERO )THEN
119
         LBD = ZERO
120
      ELSE
121
         UBD = ZERO 
122
      END IF
123
*
124
      NITER = 1
125
      TAU = ZERO
126
      IF( KNITER.EQ.2 ) THEN
127
         IF( ORGATI ) THEN
128
            TEMP = ( D( 3 )-D( 2 ) ) / TWO
129
            C = RHO + Z( 1 ) / ( ( D( 1 )-D( 2 ) )-TEMP )
130
            A = C*( D( 2 )+D( 3 ) ) + Z( 2 ) + Z( 3 )
131
            B = C*D( 2 )*D( 3 ) + Z( 2 )*D( 3 ) + Z( 3 )*D( 2 )
132
         ELSE
133
            TEMP = ( D( 1 )-D( 2 ) ) / TWO
134
            C = RHO + Z( 3 ) / ( ( D( 3 )-D( 2 ) )-TEMP )
135
            A = C*( D( 1 )+D( 2 ) ) + Z( 1 ) + Z( 2 )
136
            B = C*D( 1 )*D( 2 ) + Z( 1 )*D( 2 ) + Z( 2 )*D( 1 )
137
         END IF
138
         TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
139
         A = A / TEMP
140
         B = B / TEMP
141
         C = C / TEMP
142
         IF( C.EQ.ZERO ) THEN
143
            TAU = B / A
144
         ELSE IF( A.LE.ZERO ) THEN
145
            TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
146
         ELSE
147
            TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
148
         END IF
149
         IF( TAU .LT. LBD .OR. TAU .GT. UBD )
150
     $      TAU = ( LBD+UBD )/TWO
151
         IF( D(1).EQ.TAU .OR. D(2).EQ.TAU .OR. D(3).EQ.TAU ) THEN
152
            TAU = ZERO
153
         ELSE
154
            TEMP = FINIT + TAU*Z(1)/( D(1)*( D( 1 )-TAU ) ) +
155
     $                     TAU*Z(2)/( D(2)*( D( 2 )-TAU ) ) +
156
     $                     TAU*Z(3)/( D(3)*( D( 3 )-TAU ) )
157
            IF( TEMP .LE. ZERO )THEN
158
               LBD = TAU
159
            ELSE
160
               UBD = TAU
161
            END IF
162
            IF( ABS( FINIT ).LE.ABS( TEMP ) )
163
     $         TAU = ZERO
164
         END IF
165
      END IF
166
*
167
*     get machine parameters for possible scaling to avoid overflow
168
*
169
*     modified by Sven: parameters SMALL1, SMINV1, SMALL2,
170
*     SMINV2, EPS are not SAVEd anymore between one call to the
171
*     others but recomputed at each call
172
*
173
      EPS = DLAMCH( 'Epsilon' )
174
      BASE = DLAMCH( 'Base' )
175
      SMALL1 = BASE**( INT( LOG( DLAMCH( 'SafMin' ) ) / LOG( BASE ) /
176
     $         THREE ) )
177
      SMINV1 = ONE / SMALL1
178
      SMALL2 = SMALL1*SMALL1
179
      SMINV2 = SMINV1*SMINV1
180
*
181
*     Determine if scaling of inputs necessary to avoid overflow
182
*     when computing 1/TEMP**3
183
*
184
      IF( ORGATI ) THEN
185
         TEMP = MIN( ABS( D( 2 )-TAU ), ABS( D( 3 )-TAU ) )
186
      ELSE
187
         TEMP = MIN( ABS( D( 1 )-TAU ), ABS( D( 2 )-TAU ) )
188
      END IF
189
      SCALE = .FALSE.
190
      IF( TEMP.LE.SMALL1 ) THEN
191
         SCALE = .TRUE.
192
         IF( TEMP.LE.SMALL2 ) THEN
193
*
194
*        Scale up by power of radix nearest 1/SAFMIN**(2/3)
195
*
196
            SCLFAC = SMINV2
197
            SCLINV = SMALL2
198
         ELSE
199
*
200
*        Scale up by power of radix nearest 1/SAFMIN**(1/3)
201
*
202
            SCLFAC = SMINV1
203
            SCLINV = SMALL1
204
         END IF
205
*
206
*        Scaling up safe because D, Z, TAU scaled elsewhere to be O(1)
207
*
208
         DO 10 I = 1, 3
209
            DSCALE( I ) = D( I )*SCLFAC
210
            ZSCALE( I ) = Z( I )*SCLFAC
211
   10    CONTINUE
212
         TAU = TAU*SCLFAC
213
         LBD = LBD*SCLFAC
214
         UBD = UBD*SCLFAC
215
      ELSE
216
*
217
*        Copy D and Z to DSCALE and ZSCALE
218
*
219
         DO 20 I = 1, 3
220
            DSCALE( I ) = D( I )
221
            ZSCALE( I ) = Z( I )
222
   20    CONTINUE
223
      END IF
224
*
225
      FC = ZERO
226
      DF = ZERO
227
      DDF = ZERO
228
      DO 30 I = 1, 3
229
         TEMP = ONE / ( DSCALE( I )-TAU )
230
         TEMP1 = ZSCALE( I )*TEMP
231
         TEMP2 = TEMP1*TEMP
232
         TEMP3 = TEMP2*TEMP
233
         FC = FC + TEMP1 / DSCALE( I )
234
         DF = DF + TEMP2
235
         DDF = DDF + TEMP3
236
   30 CONTINUE
237
      F = FINIT + TAU*FC
238
*
239
      IF( ABS( F ).LE.ZERO )
240
     $   GO TO 60
241
      IF( F .LE. ZERO )THEN
242
         LBD = TAU
243
      ELSE
244
         UBD = TAU
245
      END IF
246
*
247
*        Iteration begins -- Use Gragg-Thornton-Warner cubic convergent
248
*                            scheme
249
*
250
*     It is not hard to see that
251
*
252
*           1) Iterations will go up monotonically
253
*              if FINIT < 0;
254
*
255
*           2) Iterations will go down monotonically
256
*              if FINIT > 0.
257
*
258
      ITER = NITER + 1
259
*
260
      DO 50 NITER = ITER, MAXIT
261
*
262
         IF( ORGATI ) THEN
263
            TEMP1 = DSCALE( 2 ) - TAU
264
            TEMP2 = DSCALE( 3 ) - TAU
265
         ELSE
266
            TEMP1 = DSCALE( 1 ) - TAU
267
            TEMP2 = DSCALE( 2 ) - TAU
268
         END IF
269
         A = ( TEMP1+TEMP2 )*F - TEMP1*TEMP2*DF
270
         B = TEMP1*TEMP2*F
271
         C = F - ( TEMP1+TEMP2 )*DF + TEMP1*TEMP2*DDF
272
         TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
273
         A = A / TEMP
274
         B = B / TEMP
275
         C = C / TEMP
276
         IF( C.EQ.ZERO ) THEN
277
            ETA = B / A
278
         ELSE IF( A.LE.ZERO ) THEN
279
            ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
280
         ELSE
281
            ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
282
         END IF
283
         IF( F*ETA.GE.ZERO ) THEN
284
            ETA = -F / DF
285
         END IF
286
*
287
         TAU = TAU + ETA
288
         IF( TAU .LT. LBD .OR. TAU .GT. UBD )
289
     $      TAU = ( LBD + UBD )/TWO 
290
*
291
         FC = ZERO
292
         ERRETM = ZERO
293
         DF = ZERO
294
         DDF = ZERO
295
         DO 40 I = 1, 3
296
            TEMP = ONE / ( DSCALE( I )-TAU )
297
            TEMP1 = ZSCALE( I )*TEMP
298
            TEMP2 = TEMP1*TEMP
299
            TEMP3 = TEMP2*TEMP
300
            TEMP4 = TEMP1 / DSCALE( I )
301
            FC = FC + TEMP4
302
            ERRETM = ERRETM + ABS( TEMP4 )
303
            DF = DF + TEMP2
304
            DDF = DDF + TEMP3
305
   40    CONTINUE
306
         F = FINIT + TAU*FC
307
         ERRETM = EIGHT*( ABS( FINIT )+ABS( TAU )*ERRETM ) +
308
     $            ABS( TAU )*DF
309
         IF( ABS( F ).LE.EPS*ERRETM )
310
     $      GO TO 60
311
         IF( F .LE. ZERO )THEN
312
            LBD = TAU
313
         ELSE
314
            UBD = TAU
315
         END IF
316
   50 CONTINUE
317
      INFO = 1
318
   60 CONTINUE
319
*
320
*     Undo scaling
321
*
322
      IF( SCALE )
323
     $   TAU = TAU*SCLINV
324
      RETURN
325
*
326
*     End of DLAED6
327
*
328
      END