root / src / blas / ztbsv.f @ 9
Historique | Voir | Annoter | Télécharger (12,42 ko)
1 |
SUBROUTINE ZTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
INTEGER INCX,K,LDA,N |
4 |
CHARACTER DIAG,TRANS,UPLO |
5 |
* .. |
6 |
* .. Array Arguments .. |
7 |
DOUBLE COMPLEX A(LDA,*),X(*) |
8 |
* .. |
9 |
* |
10 |
* Purpose |
11 |
* ======= |
12 |
* |
13 |
* ZTBSV solves one of the systems of equations |
14 |
* |
15 |
* A*x = b, or A'*x = b, or conjg( A' )*x = b, |
16 |
* |
17 |
* where b and x are n element vectors and A is an n by n unit, or |
18 |
* non-unit, upper or lower triangular band matrix, with ( k + 1 ) |
19 |
* diagonals. |
20 |
* |
21 |
* No test for singularity or near-singularity is included in this |
22 |
* routine. Such tests must be performed before calling this routine. |
23 |
* |
24 |
* Arguments |
25 |
* ========== |
26 |
* |
27 |
* UPLO - CHARACTER*1. |
28 |
* On entry, UPLO specifies whether the matrix is an upper or |
29 |
* lower triangular matrix as follows: |
30 |
* |
31 |
* UPLO = 'U' or 'u' A is an upper triangular matrix. |
32 |
* |
33 |
* UPLO = 'L' or 'l' A is a lower triangular matrix. |
34 |
* |
35 |
* Unchanged on exit. |
36 |
* |
37 |
* TRANS - CHARACTER*1. |
38 |
* On entry, TRANS specifies the equations to be solved as |
39 |
* follows: |
40 |
* |
41 |
* TRANS = 'N' or 'n' A*x = b. |
42 |
* |
43 |
* TRANS = 'T' or 't' A'*x = b. |
44 |
* |
45 |
* TRANS = 'C' or 'c' conjg( A' )*x = b. |
46 |
* |
47 |
* Unchanged on exit. |
48 |
* |
49 |
* DIAG - CHARACTER*1. |
50 |
* On entry, DIAG specifies whether or not A is unit |
51 |
* triangular as follows: |
52 |
* |
53 |
* DIAG = 'U' or 'u' A is assumed to be unit triangular. |
54 |
* |
55 |
* DIAG = 'N' or 'n' A is not assumed to be unit |
56 |
* triangular. |
57 |
* |
58 |
* Unchanged on exit. |
59 |
* |
60 |
* N - INTEGER. |
61 |
* On entry, N specifies the order of the matrix A. |
62 |
* N must be at least zero. |
63 |
* Unchanged on exit. |
64 |
* |
65 |
* K - INTEGER. |
66 |
* On entry with UPLO = 'U' or 'u', K specifies the number of |
67 |
* super-diagonals of the matrix A. |
68 |
* On entry with UPLO = 'L' or 'l', K specifies the number of |
69 |
* sub-diagonals of the matrix A. |
70 |
* K must satisfy 0 .le. K. |
71 |
* Unchanged on exit. |
72 |
* |
73 |
* A - COMPLEX*16 array of DIMENSION ( LDA, n ). |
74 |
* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) |
75 |
* by n part of the array A must contain the upper triangular |
76 |
* band part of the matrix of coefficients, supplied column by |
77 |
* column, with the leading diagonal of the matrix in row |
78 |
* ( k + 1 ) of the array, the first super-diagonal starting at |
79 |
* position 2 in row k, and so on. The top left k by k triangle |
80 |
* of the array A is not referenced. |
81 |
* The following program segment will transfer an upper |
82 |
* triangular band matrix from conventional full matrix storage |
83 |
* to band storage: |
84 |
* |
85 |
* DO 20, J = 1, N |
86 |
* M = K + 1 - J |
87 |
* DO 10, I = MAX( 1, J - K ), J |
88 |
* A( M + I, J ) = matrix( I, J ) |
89 |
* 10 CONTINUE |
90 |
* 20 CONTINUE |
91 |
* |
92 |
* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) |
93 |
* by n part of the array A must contain the lower triangular |
94 |
* band part of the matrix of coefficients, supplied column by |
95 |
* column, with the leading diagonal of the matrix in row 1 of |
96 |
* the array, the first sub-diagonal starting at position 1 in |
97 |
* row 2, and so on. The bottom right k by k triangle of the |
98 |
* array A is not referenced. |
99 |
* The following program segment will transfer a lower |
100 |
* triangular band matrix from conventional full matrix storage |
101 |
* to band storage: |
102 |
* |
103 |
* DO 20, J = 1, N |
104 |
* M = 1 - J |
105 |
* DO 10, I = J, MIN( N, J + K ) |
106 |
* A( M + I, J ) = matrix( I, J ) |
107 |
* 10 CONTINUE |
108 |
* 20 CONTINUE |
109 |
* |
110 |
* Note that when DIAG = 'U' or 'u' the elements of the array A |
111 |
* corresponding to the diagonal elements of the matrix are not |
112 |
* referenced, but are assumed to be unity. |
113 |
* Unchanged on exit. |
114 |
* |
115 |
* LDA - INTEGER. |
116 |
* On entry, LDA specifies the first dimension of A as declared |
117 |
* in the calling (sub) program. LDA must be at least |
118 |
* ( k + 1 ). |
119 |
* Unchanged on exit. |
120 |
* |
121 |
* X - COMPLEX*16 array of dimension at least |
122 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
123 |
* Before entry, the incremented array X must contain the n |
124 |
* element right-hand side vector b. On exit, X is overwritten |
125 |
* with the solution vector x. |
126 |
* |
127 |
* INCX - INTEGER. |
128 |
* On entry, INCX specifies the increment for the elements of |
129 |
* X. INCX must not be zero. |
130 |
* Unchanged on exit. |
131 |
* |
132 |
* |
133 |
* Level 2 Blas routine. |
134 |
* |
135 |
* -- Written on 22-October-1986. |
136 |
* Jack Dongarra, Argonne National Lab. |
137 |
* Jeremy Du Croz, Nag Central Office. |
138 |
* Sven Hammarling, Nag Central Office. |
139 |
* Richard Hanson, Sandia National Labs. |
140 |
* |
141 |
* |
142 |
* .. Parameters .. |
143 |
DOUBLE COMPLEX ZERO |
144 |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
145 |
* .. |
146 |
* .. Local Scalars .. |
147 |
DOUBLE COMPLEX TEMP |
148 |
INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L |
149 |
LOGICAL NOCONJ,NOUNIT |
150 |
* .. |
151 |
* .. External Functions .. |
152 |
LOGICAL LSAME |
153 |
EXTERNAL LSAME |
154 |
* .. |
155 |
* .. External Subroutines .. |
156 |
EXTERNAL XERBLA |
157 |
* .. |
158 |
* .. Intrinsic Functions .. |
159 |
INTRINSIC DCONJG,MAX,MIN |
160 |
* .. |
161 |
* |
162 |
* Test the input parameters. |
163 |
* |
164 |
INFO = 0 |
165 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
166 |
INFO = 1 |
167 |
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
168 |
+ .NOT.LSAME(TRANS,'C')) THEN |
169 |
INFO = 2 |
170 |
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN |
171 |
INFO = 3 |
172 |
ELSE IF (N.LT.0) THEN |
173 |
INFO = 4 |
174 |
ELSE IF (K.LT.0) THEN |
175 |
INFO = 5 |
176 |
ELSE IF (LDA.LT. (K+1)) THEN |
177 |
INFO = 7 |
178 |
ELSE IF (INCX.EQ.0) THEN |
179 |
INFO = 9 |
180 |
END IF |
181 |
IF (INFO.NE.0) THEN |
182 |
CALL XERBLA('ZTBSV ',INFO) |
183 |
RETURN |
184 |
END IF |
185 |
* |
186 |
* Quick return if possible. |
187 |
* |
188 |
IF (N.EQ.0) RETURN |
189 |
* |
190 |
NOCONJ = LSAME(TRANS,'T') |
191 |
NOUNIT = LSAME(DIAG,'N') |
192 |
* |
193 |
* Set up the start point in X if the increment is not unity. This |
194 |
* will be ( N - 1 )*INCX too small for descending loops. |
195 |
* |
196 |
IF (INCX.LE.0) THEN |
197 |
KX = 1 - (N-1)*INCX |
198 |
ELSE IF (INCX.NE.1) THEN |
199 |
KX = 1 |
200 |
END IF |
201 |
* |
202 |
* Start the operations. In this version the elements of A are |
203 |
* accessed by sequentially with one pass through A. |
204 |
* |
205 |
IF (LSAME(TRANS,'N')) THEN |
206 |
* |
207 |
* Form x := inv( A )*x. |
208 |
* |
209 |
IF (LSAME(UPLO,'U')) THEN |
210 |
KPLUS1 = K + 1 |
211 |
IF (INCX.EQ.1) THEN |
212 |
DO 20 J = N,1,-1 |
213 |
IF (X(J).NE.ZERO) THEN |
214 |
L = KPLUS1 - J |
215 |
IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J) |
216 |
TEMP = X(J) |
217 |
DO 10 I = J - 1,MAX(1,J-K),-1 |
218 |
X(I) = X(I) - TEMP*A(L+I,J) |
219 |
10 CONTINUE |
220 |
END IF |
221 |
20 CONTINUE |
222 |
ELSE |
223 |
KX = KX + (N-1)*INCX |
224 |
JX = KX |
225 |
DO 40 J = N,1,-1 |
226 |
KX = KX - INCX |
227 |
IF (X(JX).NE.ZERO) THEN |
228 |
IX = KX |
229 |
L = KPLUS1 - J |
230 |
IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J) |
231 |
TEMP = X(JX) |
232 |
DO 30 I = J - 1,MAX(1,J-K),-1 |
233 |
X(IX) = X(IX) - TEMP*A(L+I,J) |
234 |
IX = IX - INCX |
235 |
30 CONTINUE |
236 |
END IF |
237 |
JX = JX - INCX |
238 |
40 CONTINUE |
239 |
END IF |
240 |
ELSE |
241 |
IF (INCX.EQ.1) THEN |
242 |
DO 60 J = 1,N |
243 |
IF (X(J).NE.ZERO) THEN |
244 |
L = 1 - J |
245 |
IF (NOUNIT) X(J) = X(J)/A(1,J) |
246 |
TEMP = X(J) |
247 |
DO 50 I = J + 1,MIN(N,J+K) |
248 |
X(I) = X(I) - TEMP*A(L+I,J) |
249 |
50 CONTINUE |
250 |
END IF |
251 |
60 CONTINUE |
252 |
ELSE |
253 |
JX = KX |
254 |
DO 80 J = 1,N |
255 |
KX = KX + INCX |
256 |
IF (X(JX).NE.ZERO) THEN |
257 |
IX = KX |
258 |
L = 1 - J |
259 |
IF (NOUNIT) X(JX) = X(JX)/A(1,J) |
260 |
TEMP = X(JX) |
261 |
DO 70 I = J + 1,MIN(N,J+K) |
262 |
X(IX) = X(IX) - TEMP*A(L+I,J) |
263 |
IX = IX + INCX |
264 |
70 CONTINUE |
265 |
END IF |
266 |
JX = JX + INCX |
267 |
80 CONTINUE |
268 |
END IF |
269 |
END IF |
270 |
ELSE |
271 |
* |
272 |
* Form x := inv( A' )*x or x := inv( conjg( A') )*x. |
273 |
* |
274 |
IF (LSAME(UPLO,'U')) THEN |
275 |
KPLUS1 = K + 1 |
276 |
IF (INCX.EQ.1) THEN |
277 |
DO 110 J = 1,N |
278 |
TEMP = X(J) |
279 |
L = KPLUS1 - J |
280 |
IF (NOCONJ) THEN |
281 |
DO 90 I = MAX(1,J-K),J - 1 |
282 |
TEMP = TEMP - A(L+I,J)*X(I) |
283 |
90 CONTINUE |
284 |
IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) |
285 |
ELSE |
286 |
DO 100 I = MAX(1,J-K),J - 1 |
287 |
TEMP = TEMP - DCONJG(A(L+I,J))*X(I) |
288 |
100 CONTINUE |
289 |
IF (NOUNIT) TEMP = TEMP/DCONJG(A(KPLUS1,J)) |
290 |
END IF |
291 |
X(J) = TEMP |
292 |
110 CONTINUE |
293 |
ELSE |
294 |
JX = KX |
295 |
DO 140 J = 1,N |
296 |
TEMP = X(JX) |
297 |
IX = KX |
298 |
L = KPLUS1 - J |
299 |
IF (NOCONJ) THEN |
300 |
DO 120 I = MAX(1,J-K),J - 1 |
301 |
TEMP = TEMP - A(L+I,J)*X(IX) |
302 |
IX = IX + INCX |
303 |
120 CONTINUE |
304 |
IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) |
305 |
ELSE |
306 |
DO 130 I = MAX(1,J-K),J - 1 |
307 |
TEMP = TEMP - DCONJG(A(L+I,J))*X(IX) |
308 |
IX = IX + INCX |
309 |
130 CONTINUE |
310 |
IF (NOUNIT) TEMP = TEMP/DCONJG(A(KPLUS1,J)) |
311 |
END IF |
312 |
X(JX) = TEMP |
313 |
JX = JX + INCX |
314 |
IF (J.GT.K) KX = KX + INCX |
315 |
140 CONTINUE |
316 |
END IF |
317 |
ELSE |
318 |
IF (INCX.EQ.1) THEN |
319 |
DO 170 J = N,1,-1 |
320 |
TEMP = X(J) |
321 |
L = 1 - J |
322 |
IF (NOCONJ) THEN |
323 |
DO 150 I = MIN(N,J+K),J + 1,-1 |
324 |
TEMP = TEMP - A(L+I,J)*X(I) |
325 |
150 CONTINUE |
326 |
IF (NOUNIT) TEMP = TEMP/A(1,J) |
327 |
ELSE |
328 |
DO 160 I = MIN(N,J+K),J + 1,-1 |
329 |
TEMP = TEMP - DCONJG(A(L+I,J))*X(I) |
330 |
160 CONTINUE |
331 |
IF (NOUNIT) TEMP = TEMP/DCONJG(A(1,J)) |
332 |
END IF |
333 |
X(J) = TEMP |
334 |
170 CONTINUE |
335 |
ELSE |
336 |
KX = KX + (N-1)*INCX |
337 |
JX = KX |
338 |
DO 200 J = N,1,-1 |
339 |
TEMP = X(JX) |
340 |
IX = KX |
341 |
L = 1 - J |
342 |
IF (NOCONJ) THEN |
343 |
DO 180 I = MIN(N,J+K),J + 1,-1 |
344 |
TEMP = TEMP - A(L+I,J)*X(IX) |
345 |
IX = IX - INCX |
346 |
180 CONTINUE |
347 |
IF (NOUNIT) TEMP = TEMP/A(1,J) |
348 |
ELSE |
349 |
DO 190 I = MIN(N,J+K),J + 1,-1 |
350 |
TEMP = TEMP - DCONJG(A(L+I,J))*X(IX) |
351 |
IX = IX - INCX |
352 |
190 CONTINUE |
353 |
IF (NOUNIT) TEMP = TEMP/DCONJG(A(1,J)) |
354 |
END IF |
355 |
X(JX) = TEMP |
356 |
JX = JX - INCX |
357 |
IF ((N-J).GE.K) KX = KX - INCX |
358 |
200 CONTINUE |
359 |
END IF |
360 |
END IF |
361 |
END IF |
362 |
* |
363 |
RETURN |
364 |
* |
365 |
* End of ZTBSV . |
366 |
* |
367 |
END |