root / src / blas / stpsv.f @ 9
Historique | Voir | Annoter | Télécharger (9,08 ko)
1 |
SUBROUTINE STPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
INTEGER INCX,N |
4 |
CHARACTER DIAG,TRANS,UPLO |
5 |
* .. |
6 |
* .. Array Arguments .. |
7 |
REAL AP(*),X(*) |
8 |
* .. |
9 |
* |
10 |
* Purpose |
11 |
* ======= |
12 |
* |
13 |
* STPSV solves one of the systems of equations |
14 |
* |
15 |
* A*x = b, or A'*x = b, |
16 |
* |
17 |
* where b and x are n element vectors and A is an n by n unit, or |
18 |
* non-unit, upper or lower triangular matrix, supplied in packed form. |
19 |
* |
20 |
* No test for singularity or near-singularity is included in this |
21 |
* routine. Such tests must be performed before calling this routine. |
22 |
* |
23 |
* Arguments |
24 |
* ========== |
25 |
* |
26 |
* UPLO - CHARACTER*1. |
27 |
* On entry, UPLO specifies whether the matrix is an upper or |
28 |
* lower triangular matrix as follows: |
29 |
* |
30 |
* UPLO = 'U' or 'u' A is an upper triangular matrix. |
31 |
* |
32 |
* UPLO = 'L' or 'l' A is a lower triangular matrix. |
33 |
* |
34 |
* Unchanged on exit. |
35 |
* |
36 |
* TRANS - CHARACTER*1. |
37 |
* On entry, TRANS specifies the equations to be solved as |
38 |
* follows: |
39 |
* |
40 |
* TRANS = 'N' or 'n' A*x = b. |
41 |
* |
42 |
* TRANS = 'T' or 't' A'*x = b. |
43 |
* |
44 |
* TRANS = 'C' or 'c' A'*x = b. |
45 |
* |
46 |
* Unchanged on exit. |
47 |
* |
48 |
* DIAG - CHARACTER*1. |
49 |
* On entry, DIAG specifies whether or not A is unit |
50 |
* triangular as follows: |
51 |
* |
52 |
* DIAG = 'U' or 'u' A is assumed to be unit triangular. |
53 |
* |
54 |
* DIAG = 'N' or 'n' A is not assumed to be unit |
55 |
* triangular. |
56 |
* |
57 |
* Unchanged on exit. |
58 |
* |
59 |
* N - INTEGER. |
60 |
* On entry, N specifies the order of the matrix A. |
61 |
* N must be at least zero. |
62 |
* Unchanged on exit. |
63 |
* |
64 |
* AP - REAL array of DIMENSION at least |
65 |
* ( ( n*( n + 1 ) )/2 ). |
66 |
* Before entry with UPLO = 'U' or 'u', the array AP must |
67 |
* contain the upper triangular matrix packed sequentially, |
68 |
* column by column, so that AP( 1 ) contains a( 1, 1 ), |
69 |
* AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) |
70 |
* respectively, and so on. |
71 |
* Before entry with UPLO = 'L' or 'l', the array AP must |
72 |
* contain the lower triangular matrix packed sequentially, |
73 |
* column by column, so that AP( 1 ) contains a( 1, 1 ), |
74 |
* AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) |
75 |
* respectively, and so on. |
76 |
* Note that when DIAG = 'U' or 'u', the diagonal elements of |
77 |
* A are not referenced, but are assumed to be unity. |
78 |
* Unchanged on exit. |
79 |
* |
80 |
* X - REAL array of dimension at least |
81 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
82 |
* Before entry, the incremented array X must contain the n |
83 |
* element right-hand side vector b. On exit, X is overwritten |
84 |
* with the solution vector x. |
85 |
* |
86 |
* INCX - INTEGER. |
87 |
* On entry, INCX specifies the increment for the elements of |
88 |
* X. INCX must not be zero. |
89 |
* Unchanged on exit. |
90 |
* |
91 |
* |
92 |
* Level 2 Blas routine. |
93 |
* |
94 |
* -- Written on 22-October-1986. |
95 |
* Jack Dongarra, Argonne National Lab. |
96 |
* Jeremy Du Croz, Nag Central Office. |
97 |
* Sven Hammarling, Nag Central Office. |
98 |
* Richard Hanson, Sandia National Labs. |
99 |
* |
100 |
* |
101 |
* .. Parameters .. |
102 |
REAL ZERO |
103 |
PARAMETER (ZERO=0.0E+0) |
104 |
* .. |
105 |
* .. Local Scalars .. |
106 |
REAL TEMP |
107 |
INTEGER I,INFO,IX,J,JX,K,KK,KX |
108 |
LOGICAL NOUNIT |
109 |
* .. |
110 |
* .. External Functions .. |
111 |
LOGICAL LSAME |
112 |
EXTERNAL LSAME |
113 |
* .. |
114 |
* .. External Subroutines .. |
115 |
EXTERNAL XERBLA |
116 |
* .. |
117 |
* |
118 |
* Test the input parameters. |
119 |
* |
120 |
INFO = 0 |
121 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
122 |
INFO = 1 |
123 |
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
124 |
+ .NOT.LSAME(TRANS,'C')) THEN |
125 |
INFO = 2 |
126 |
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN |
127 |
INFO = 3 |
128 |
ELSE IF (N.LT.0) THEN |
129 |
INFO = 4 |
130 |
ELSE IF (INCX.EQ.0) THEN |
131 |
INFO = 7 |
132 |
END IF |
133 |
IF (INFO.NE.0) THEN |
134 |
CALL XERBLA('STPSV ',INFO) |
135 |
RETURN |
136 |
END IF |
137 |
* |
138 |
* Quick return if possible. |
139 |
* |
140 |
IF (N.EQ.0) RETURN |
141 |
* |
142 |
NOUNIT = LSAME(DIAG,'N') |
143 |
* |
144 |
* Set up the start point in X if the increment is not unity. This |
145 |
* will be ( N - 1 )*INCX too small for descending loops. |
146 |
* |
147 |
IF (INCX.LE.0) THEN |
148 |
KX = 1 - (N-1)*INCX |
149 |
ELSE IF (INCX.NE.1) THEN |
150 |
KX = 1 |
151 |
END IF |
152 |
* |
153 |
* Start the operations. In this version the elements of AP are |
154 |
* accessed sequentially with one pass through AP. |
155 |
* |
156 |
IF (LSAME(TRANS,'N')) THEN |
157 |
* |
158 |
* Form x := inv( A )*x. |
159 |
* |
160 |
IF (LSAME(UPLO,'U')) THEN |
161 |
KK = (N* (N+1))/2 |
162 |
IF (INCX.EQ.1) THEN |
163 |
DO 20 J = N,1,-1 |
164 |
IF (X(J).NE.ZERO) THEN |
165 |
IF (NOUNIT) X(J) = X(J)/AP(KK) |
166 |
TEMP = X(J) |
167 |
K = KK - 1 |
168 |
DO 10 I = J - 1,1,-1 |
169 |
X(I) = X(I) - TEMP*AP(K) |
170 |
K = K - 1 |
171 |
10 CONTINUE |
172 |
END IF |
173 |
KK = KK - J |
174 |
20 CONTINUE |
175 |
ELSE |
176 |
JX = KX + (N-1)*INCX |
177 |
DO 40 J = N,1,-1 |
178 |
IF (X(JX).NE.ZERO) THEN |
179 |
IF (NOUNIT) X(JX) = X(JX)/AP(KK) |
180 |
TEMP = X(JX) |
181 |
IX = JX |
182 |
DO 30 K = KK - 1,KK - J + 1,-1 |
183 |
IX = IX - INCX |
184 |
X(IX) = X(IX) - TEMP*AP(K) |
185 |
30 CONTINUE |
186 |
END IF |
187 |
JX = JX - INCX |
188 |
KK = KK - J |
189 |
40 CONTINUE |
190 |
END IF |
191 |
ELSE |
192 |
KK = 1 |
193 |
IF (INCX.EQ.1) THEN |
194 |
DO 60 J = 1,N |
195 |
IF (X(J).NE.ZERO) THEN |
196 |
IF (NOUNIT) X(J) = X(J)/AP(KK) |
197 |
TEMP = X(J) |
198 |
K = KK + 1 |
199 |
DO 50 I = J + 1,N |
200 |
X(I) = X(I) - TEMP*AP(K) |
201 |
K = K + 1 |
202 |
50 CONTINUE |
203 |
END IF |
204 |
KK = KK + (N-J+1) |
205 |
60 CONTINUE |
206 |
ELSE |
207 |
JX = KX |
208 |
DO 80 J = 1,N |
209 |
IF (X(JX).NE.ZERO) THEN |
210 |
IF (NOUNIT) X(JX) = X(JX)/AP(KK) |
211 |
TEMP = X(JX) |
212 |
IX = JX |
213 |
DO 70 K = KK + 1,KK + N - J |
214 |
IX = IX + INCX |
215 |
X(IX) = X(IX) - TEMP*AP(K) |
216 |
70 CONTINUE |
217 |
END IF |
218 |
JX = JX + INCX |
219 |
KK = KK + (N-J+1) |
220 |
80 CONTINUE |
221 |
END IF |
222 |
END IF |
223 |
ELSE |
224 |
* |
225 |
* Form x := inv( A' )*x. |
226 |
* |
227 |
IF (LSAME(UPLO,'U')) THEN |
228 |
KK = 1 |
229 |
IF (INCX.EQ.1) THEN |
230 |
DO 100 J = 1,N |
231 |
TEMP = X(J) |
232 |
K = KK |
233 |
DO 90 I = 1,J - 1 |
234 |
TEMP = TEMP - AP(K)*X(I) |
235 |
K = K + 1 |
236 |
90 CONTINUE |
237 |
IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) |
238 |
X(J) = TEMP |
239 |
KK = KK + J |
240 |
100 CONTINUE |
241 |
ELSE |
242 |
JX = KX |
243 |
DO 120 J = 1,N |
244 |
TEMP = X(JX) |
245 |
IX = KX |
246 |
DO 110 K = KK,KK + J - 2 |
247 |
TEMP = TEMP - AP(K)*X(IX) |
248 |
IX = IX + INCX |
249 |
110 CONTINUE |
250 |
IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) |
251 |
X(JX) = TEMP |
252 |
JX = JX + INCX |
253 |
KK = KK + J |
254 |
120 CONTINUE |
255 |
END IF |
256 |
ELSE |
257 |
KK = (N* (N+1))/2 |
258 |
IF (INCX.EQ.1) THEN |
259 |
DO 140 J = N,1,-1 |
260 |
TEMP = X(J) |
261 |
K = KK |
262 |
DO 130 I = N,J + 1,-1 |
263 |
TEMP = TEMP - AP(K)*X(I) |
264 |
K = K - 1 |
265 |
130 CONTINUE |
266 |
IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) |
267 |
X(J) = TEMP |
268 |
KK = KK - (N-J+1) |
269 |
140 CONTINUE |
270 |
ELSE |
271 |
KX = KX + (N-1)*INCX |
272 |
JX = KX |
273 |
DO 160 J = N,1,-1 |
274 |
TEMP = X(JX) |
275 |
IX = KX |
276 |
DO 150 K = KK,KK - (N- (J+1)),-1 |
277 |
TEMP = TEMP - AP(K)*X(IX) |
278 |
IX = IX - INCX |
279 |
150 CONTINUE |
280 |
IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) |
281 |
X(JX) = TEMP |
282 |
JX = JX - INCX |
283 |
KK = KK - (N-J+1) |
284 |
160 CONTINUE |
285 |
END IF |
286 |
END IF |
287 |
END IF |
288 |
* |
289 |
RETURN |
290 |
* |
291 |
* End of STPSV . |
292 |
* |
293 |
END |