Statistiques
| Révision :

root / src / blas / cher.f @ 9

Historique | Voir | Annoter | Télécharger (6,44 ko)

1
      SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
2
*     .. Scalar Arguments ..
3
      REAL ALPHA
4
      INTEGER INCX,LDA,N
5
      CHARACTER UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      COMPLEX A(LDA,*),X(*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  CHER   performs the hermitian rank 1 operation
15
*
16
*     A := alpha*x*conjg( x' ) + A,
17
*
18
*  where alpha is a real scalar, x is an n element vector and A is an
19
*  n by n hermitian matrix.
20
*
21
*  Arguments
22
*  ==========
23
*
24
*  UPLO   - CHARACTER*1.
25
*           On entry, UPLO specifies whether the upper or lower
26
*           triangular part of the array A is to be referenced as
27
*           follows:
28
*
29
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
30
*                                  is to be referenced.
31
*
32
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
33
*                                  is to be referenced.
34
*
35
*           Unchanged on exit.
36
*
37
*  N      - INTEGER.
38
*           On entry, N specifies the order of the matrix A.
39
*           N must be at least zero.
40
*           Unchanged on exit.
41
*
42
*  ALPHA  - REAL            .
43
*           On entry, ALPHA specifies the scalar alpha.
44
*           Unchanged on exit.
45
*
46
*  X      - COMPLEX          array of dimension at least
47
*           ( 1 + ( n - 1 )*abs( INCX ) ).
48
*           Before entry, the incremented array X must contain the n
49
*           element vector x.
50
*           Unchanged on exit.
51
*
52
*  INCX   - INTEGER.
53
*           On entry, INCX specifies the increment for the elements of
54
*           X. INCX must not be zero.
55
*           Unchanged on exit.
56
*
57
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
58
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
59
*           upper triangular part of the array A must contain the upper
60
*           triangular part of the hermitian matrix and the strictly
61
*           lower triangular part of A is not referenced. On exit, the
62
*           upper triangular part of the array A is overwritten by the
63
*           upper triangular part of the updated matrix.
64
*           Before entry with UPLO = 'L' or 'l', the leading n by n
65
*           lower triangular part of the array A must contain the lower
66
*           triangular part of the hermitian matrix and the strictly
67
*           upper triangular part of A is not referenced. On exit, the
68
*           lower triangular part of the array A is overwritten by the
69
*           lower triangular part of the updated matrix.
70
*           Note that the imaginary parts of the diagonal elements need
71
*           not be set, they are assumed to be zero, and on exit they
72
*           are set to zero.
73
*
74
*  LDA    - INTEGER.
75
*           On entry, LDA specifies the first dimension of A as declared
76
*           in the calling (sub) program. LDA must be at least
77
*           max( 1, n ).
78
*           Unchanged on exit.
79
*
80
*
81
*  Level 2 Blas routine.
82
*
83
*  -- Written on 22-October-1986.
84
*     Jack Dongarra, Argonne National Lab.
85
*     Jeremy Du Croz, Nag Central Office.
86
*     Sven Hammarling, Nag Central Office.
87
*     Richard Hanson, Sandia National Labs.
88
*
89
*
90
*     .. Parameters ..
91
      COMPLEX ZERO
92
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
93
*     ..
94
*     .. Local Scalars ..
95
      COMPLEX TEMP
96
      INTEGER I,INFO,IX,J,JX,KX
97
*     ..
98
*     .. External Functions ..
99
      LOGICAL LSAME
100
      EXTERNAL LSAME
101
*     ..
102
*     .. External Subroutines ..
103
      EXTERNAL XERBLA
104
*     ..
105
*     .. Intrinsic Functions ..
106
      INTRINSIC CONJG,MAX,REAL
107
*     ..
108
*
109
*     Test the input parameters.
110
*
111
      INFO = 0
112
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
113
          INFO = 1
114
      ELSE IF (N.LT.0) THEN
115
          INFO = 2
116
      ELSE IF (INCX.EQ.0) THEN
117
          INFO = 5
118
      ELSE IF (LDA.LT.MAX(1,N)) THEN
119
          INFO = 7
120
      END IF
121
      IF (INFO.NE.0) THEN
122
          CALL XERBLA('CHER  ',INFO)
123
          RETURN
124
      END IF
125
*
126
*     Quick return if possible.
127
*
128
      IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
129
*
130
*     Set the start point in X if the increment is not unity.
131
*
132
      IF (INCX.LE.0) THEN
133
          KX = 1 - (N-1)*INCX
134
      ELSE IF (INCX.NE.1) THEN
135
          KX = 1
136
      END IF
137
*
138
*     Start the operations. In this version the elements of A are
139
*     accessed sequentially with one pass through the triangular part
140
*     of A.
141
*
142
      IF (LSAME(UPLO,'U')) THEN
143
*
144
*        Form  A  when A is stored in upper triangle.
145
*
146
          IF (INCX.EQ.1) THEN
147
              DO 20 J = 1,N
148
                  IF (X(J).NE.ZERO) THEN
149
                      TEMP = ALPHA*CONJG(X(J))
150
                      DO 10 I = 1,J - 1
151
                          A(I,J) = A(I,J) + X(I)*TEMP
152
   10                 CONTINUE
153
                      A(J,J) = REAL(A(J,J)) + REAL(X(J)*TEMP)
154
                  ELSE
155
                      A(J,J) = REAL(A(J,J))
156
                  END IF
157
   20         CONTINUE
158
          ELSE
159
              JX = KX
160
              DO 40 J = 1,N
161
                  IF (X(JX).NE.ZERO) THEN
162
                      TEMP = ALPHA*CONJG(X(JX))
163
                      IX = KX
164
                      DO 30 I = 1,J - 1
165
                          A(I,J) = A(I,J) + X(IX)*TEMP
166
                          IX = IX + INCX
167
   30                 CONTINUE
168
                      A(J,J) = REAL(A(J,J)) + REAL(X(JX)*TEMP)
169
                  ELSE
170
                      A(J,J) = REAL(A(J,J))
171
                  END IF
172
                  JX = JX + INCX
173
   40         CONTINUE
174
          END IF
175
      ELSE
176
*
177
*        Form  A  when A is stored in lower triangle.
178
*
179
          IF (INCX.EQ.1) THEN
180
              DO 60 J = 1,N
181
                  IF (X(J).NE.ZERO) THEN
182
                      TEMP = ALPHA*CONJG(X(J))
183
                      A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(J))
184
                      DO 50 I = J + 1,N
185
                          A(I,J) = A(I,J) + X(I)*TEMP
186
   50                 CONTINUE
187
                  ELSE
188
                      A(J,J) = REAL(A(J,J))
189
                  END IF
190
   60         CONTINUE
191
          ELSE
192
              JX = KX
193
              DO 80 J = 1,N
194
                  IF (X(JX).NE.ZERO) THEN
195
                      TEMP = ALPHA*CONJG(X(JX))
196
                      A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(JX))
197
                      IX = JX
198
                      DO 70 I = J + 1,N
199
                          IX = IX + INCX
200
                          A(I,J) = A(I,J) + X(IX)*TEMP
201
   70                 CONTINUE
202
                  ELSE
203
                      A(J,J) = REAL(A(J,J))
204
                  END IF
205
                  JX = JX + INCX
206
   80         CONTINUE
207
          END IF
208
      END IF
209
*
210
      RETURN
211
*
212
*     End of CHER  .
213
*
214
      END