root / src / lapack / double / dlasda.f @ 8
Historique | Voir | Annoter | Télécharger (14,39 ko)
1 |
SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K, |
---|---|
2 |
$ DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, |
3 |
$ PERM, GIVNUM, C, S, WORK, IWORK, INFO ) |
4 |
* |
5 |
* -- LAPACK auxiliary routine (version 3.2.2) -- |
6 |
* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
7 |
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
8 |
* June 2010 |
9 |
* |
10 |
* .. Scalar Arguments .. |
11 |
INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE |
12 |
* .. |
13 |
* .. Array Arguments .. |
14 |
INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), |
15 |
$ K( * ), PERM( LDGCOL, * ) |
16 |
DOUBLE PRECISION C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ), |
17 |
$ E( * ), GIVNUM( LDU, * ), POLES( LDU, * ), |
18 |
$ S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ), |
19 |
$ Z( LDU, * ) |
20 |
* .. |
21 |
* |
22 |
* Purpose |
23 |
* ======= |
24 |
* |
25 |
* Using a divide and conquer approach, DLASDA computes the singular |
26 |
* value decomposition (SVD) of a real upper bidiagonal N-by-M matrix |
27 |
* B with diagonal D and offdiagonal E, where M = N + SQRE. The |
28 |
* algorithm computes the singular values in the SVD B = U * S * VT. |
29 |
* The orthogonal matrices U and VT are optionally computed in |
30 |
* compact form. |
31 |
* |
32 |
* A related subroutine, DLASD0, computes the singular values and |
33 |
* the singular vectors in explicit form. |
34 |
* |
35 |
* Arguments |
36 |
* ========= |
37 |
* |
38 |
* ICOMPQ (input) INTEGER |
39 |
* Specifies whether singular vectors are to be computed |
40 |
* in compact form, as follows |
41 |
* = 0: Compute singular values only. |
42 |
* = 1: Compute singular vectors of upper bidiagonal |
43 |
* matrix in compact form. |
44 |
* |
45 |
* SMLSIZ (input) INTEGER |
46 |
* The maximum size of the subproblems at the bottom of the |
47 |
* computation tree. |
48 |
* |
49 |
* N (input) INTEGER |
50 |
* The row dimension of the upper bidiagonal matrix. This is |
51 |
* also the dimension of the main diagonal array D. |
52 |
* |
53 |
* SQRE (input) INTEGER |
54 |
* Specifies the column dimension of the bidiagonal matrix. |
55 |
* = 0: The bidiagonal matrix has column dimension M = N; |
56 |
* = 1: The bidiagonal matrix has column dimension M = N + 1. |
57 |
* |
58 |
* D (input/output) DOUBLE PRECISION array, dimension ( N ) |
59 |
* On entry D contains the main diagonal of the bidiagonal |
60 |
* matrix. On exit D, if INFO = 0, contains its singular values. |
61 |
* |
62 |
* E (input) DOUBLE PRECISION array, dimension ( M-1 ) |
63 |
* Contains the subdiagonal entries of the bidiagonal matrix. |
64 |
* On exit, E has been destroyed. |
65 |
* |
66 |
* U (output) DOUBLE PRECISION array, |
67 |
* dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced |
68 |
* if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left |
69 |
* singular vector matrices of all subproblems at the bottom |
70 |
* level. |
71 |
* |
72 |
* LDU (input) INTEGER, LDU = > N. |
73 |
* The leading dimension of arrays U, VT, DIFL, DIFR, POLES, |
74 |
* GIVNUM, and Z. |
75 |
* |
76 |
* VT (output) DOUBLE PRECISION array, |
77 |
* dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced |
78 |
* if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right |
79 |
* singular vector matrices of all subproblems at the bottom |
80 |
* level. |
81 |
* |
82 |
* K (output) INTEGER array, |
83 |
* dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. |
84 |
* If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th |
85 |
* secular equation on the computation tree. |
86 |
* |
87 |
* DIFL (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ), |
88 |
* where NLVL = floor(log_2 (N/SMLSIZ))). |
89 |
* |
90 |
* DIFR (output) DOUBLE PRECISION array, |
91 |
* dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and |
92 |
* dimension ( N ) if ICOMPQ = 0. |
93 |
* If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) |
94 |
* record distances between singular values on the I-th |
95 |
* level and singular values on the (I -1)-th level, and |
96 |
* DIFR(1:N, 2 * I ) contains the normalizing factors for |
97 |
* the right singular vector matrix. See DLASD8 for details. |
98 |
* |
99 |
* Z (output) DOUBLE PRECISION array, |
100 |
* dimension ( LDU, NLVL ) if ICOMPQ = 1 and |
101 |
* dimension ( N ) if ICOMPQ = 0. |
102 |
* The first K elements of Z(1, I) contain the components of |
103 |
* the deflation-adjusted updating row vector for subproblems |
104 |
* on the I-th level. |
105 |
* |
106 |
* POLES (output) DOUBLE PRECISION array, |
107 |
* dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced |
108 |
* if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and |
109 |
* POLES(1, 2*I) contain the new and old singular values |
110 |
* involved in the secular equations on the I-th level. |
111 |
* |
112 |
* GIVPTR (output) INTEGER array, |
113 |
* dimension ( N ) if ICOMPQ = 1, and not referenced if |
114 |
* ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records |
115 |
* the number of Givens rotations performed on the I-th |
116 |
* problem on the computation tree. |
117 |
* |
118 |
* GIVCOL (output) INTEGER array, |
119 |
* dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not |
120 |
* referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, |
121 |
* GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations |
122 |
* of Givens rotations performed on the I-th level on the |
123 |
* computation tree. |
124 |
* |
125 |
* LDGCOL (input) INTEGER, LDGCOL = > N. |
126 |
* The leading dimension of arrays GIVCOL and PERM. |
127 |
* |
128 |
* PERM (output) INTEGER array, |
129 |
* dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced |
130 |
* if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records |
131 |
* permutations done on the I-th level of the computation tree. |
132 |
* |
133 |
* GIVNUM (output) DOUBLE PRECISION array, |
134 |
* dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not |
135 |
* referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, |
136 |
* GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- |
137 |
* values of Givens rotations performed on the I-th level on |
138 |
* the computation tree. |
139 |
* |
140 |
* C (output) DOUBLE PRECISION array, |
141 |
* dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. |
142 |
* If ICOMPQ = 1 and the I-th subproblem is not square, on exit, |
143 |
* C( I ) contains the C-value of a Givens rotation related to |
144 |
* the right null space of the I-th subproblem. |
145 |
* |
146 |
* S (output) DOUBLE PRECISION array, dimension ( N ) if |
147 |
* ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 |
148 |
* and the I-th subproblem is not square, on exit, S( I ) |
149 |
* contains the S-value of a Givens rotation related to |
150 |
* the right null space of the I-th subproblem. |
151 |
* |
152 |
* WORK (workspace) DOUBLE PRECISION array, dimension |
153 |
* (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). |
154 |
* |
155 |
* IWORK (workspace) INTEGER array. |
156 |
* Dimension must be at least (7 * N). |
157 |
* |
158 |
* INFO (output) INTEGER |
159 |
* = 0: successful exit. |
160 |
* < 0: if INFO = -i, the i-th argument had an illegal value. |
161 |
* > 0: if INFO = 1, a singular value did not converge |
162 |
* |
163 |
* Further Details |
164 |
* =============== |
165 |
* |
166 |
* Based on contributions by |
167 |
* Ming Gu and Huan Ren, Computer Science Division, University of |
168 |
* California at Berkeley, USA |
169 |
* |
170 |
* ===================================================================== |
171 |
* |
172 |
* .. Parameters .. |
173 |
DOUBLE PRECISION ZERO, ONE |
174 |
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) |
175 |
* .. |
176 |
* .. Local Scalars .. |
177 |
INTEGER I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK, |
178 |
$ J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML, |
179 |
$ NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU, |
180 |
$ NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI |
181 |
DOUBLE PRECISION ALPHA, BETA |
182 |
* .. |
183 |
* .. External Subroutines .. |
184 |
EXTERNAL DCOPY, DLASD6, DLASDQ, DLASDT, DLASET, XERBLA |
185 |
* .. |
186 |
* .. Executable Statements .. |
187 |
* |
188 |
* Test the input parameters. |
189 |
* |
190 |
INFO = 0 |
191 |
* |
192 |
IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN |
193 |
INFO = -1 |
194 |
ELSE IF( SMLSIZ.LT.3 ) THEN |
195 |
INFO = -2 |
196 |
ELSE IF( N.LT.0 ) THEN |
197 |
INFO = -3 |
198 |
ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN |
199 |
INFO = -4 |
200 |
ELSE IF( LDU.LT.( N+SQRE ) ) THEN |
201 |
INFO = -8 |
202 |
ELSE IF( LDGCOL.LT.N ) THEN |
203 |
INFO = -17 |
204 |
END IF |
205 |
IF( INFO.NE.0 ) THEN |
206 |
CALL XERBLA( 'DLASDA', -INFO ) |
207 |
RETURN |
208 |
END IF |
209 |
* |
210 |
M = N + SQRE |
211 |
* |
212 |
* If the input matrix is too small, call DLASDQ to find the SVD. |
213 |
* |
214 |
IF( N.LE.SMLSIZ ) THEN |
215 |
IF( ICOMPQ.EQ.0 ) THEN |
216 |
CALL DLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, LDU, |
217 |
$ U, LDU, WORK, INFO ) |
218 |
ELSE |
219 |
CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU, |
220 |
$ U, LDU, WORK, INFO ) |
221 |
END IF |
222 |
RETURN |
223 |
END IF |
224 |
* |
225 |
* Book-keeping and set up the computation tree. |
226 |
* |
227 |
INODE = 1 |
228 |
NDIML = INODE + N |
229 |
NDIMR = NDIML + N |
230 |
IDXQ = NDIMR + N |
231 |
IWK = IDXQ + N |
232 |
* |
233 |
NCC = 0 |
234 |
NRU = 0 |
235 |
* |
236 |
SMLSZP = SMLSIZ + 1 |
237 |
VF = 1 |
238 |
VL = VF + M |
239 |
NWORK1 = VL + M |
240 |
NWORK2 = NWORK1 + SMLSZP*SMLSZP |
241 |
* |
242 |
CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ), |
243 |
$ IWORK( NDIMR ), SMLSIZ ) |
244 |
* |
245 |
* for the nodes on bottom level of the tree, solve |
246 |
* their subproblems by DLASDQ. |
247 |
* |
248 |
NDB1 = ( ND+1 ) / 2 |
249 |
DO 30 I = NDB1, ND |
250 |
* |
251 |
* IC : center row of each node |
252 |
* NL : number of rows of left subproblem |
253 |
* NR : number of rows of right subproblem |
254 |
* NLF: starting row of the left subproblem |
255 |
* NRF: starting row of the right subproblem |
256 |
* |
257 |
I1 = I - 1 |
258 |
IC = IWORK( INODE+I1 ) |
259 |
NL = IWORK( NDIML+I1 ) |
260 |
NLP1 = NL + 1 |
261 |
NR = IWORK( NDIMR+I1 ) |
262 |
NLF = IC - NL |
263 |
NRF = IC + 1 |
264 |
IDXQI = IDXQ + NLF - 2 |
265 |
VFI = VF + NLF - 1 |
266 |
VLI = VL + NLF - 1 |
267 |
SQREI = 1 |
268 |
IF( ICOMPQ.EQ.0 ) THEN |
269 |
CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ), |
270 |
$ SMLSZP ) |
271 |
CALL DLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ), |
272 |
$ E( NLF ), WORK( NWORK1 ), SMLSZP, |
273 |
$ WORK( NWORK2 ), NL, WORK( NWORK2 ), NL, |
274 |
$ WORK( NWORK2 ), INFO ) |
275 |
ITEMP = NWORK1 + NL*SMLSZP |
276 |
CALL DCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 ) |
277 |
CALL DCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 ) |
278 |
ELSE |
279 |
CALL DLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU ) |
280 |
CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU ) |
281 |
CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), |
282 |
$ E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU, |
283 |
$ U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO ) |
284 |
CALL DCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 ) |
285 |
CALL DCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 ) |
286 |
END IF |
287 |
IF( INFO.NE.0 ) THEN |
288 |
RETURN |
289 |
END IF |
290 |
DO 10 J = 1, NL |
291 |
IWORK( IDXQI+J ) = J |
292 |
10 CONTINUE |
293 |
IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN |
294 |
SQREI = 0 |
295 |
ELSE |
296 |
SQREI = 1 |
297 |
END IF |
298 |
IDXQI = IDXQI + NLP1 |
299 |
VFI = VFI + NLP1 |
300 |
VLI = VLI + NLP1 |
301 |
NRP1 = NR + SQREI |
302 |
IF( ICOMPQ.EQ.0 ) THEN |
303 |
CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ), |
304 |
$ SMLSZP ) |
305 |
CALL DLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ), |
306 |
$ E( NRF ), WORK( NWORK1 ), SMLSZP, |
307 |
$ WORK( NWORK2 ), NR, WORK( NWORK2 ), NR, |
308 |
$ WORK( NWORK2 ), INFO ) |
309 |
ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP |
310 |
CALL DCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 ) |
311 |
CALL DCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 ) |
312 |
ELSE |
313 |
CALL DLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU ) |
314 |
CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU ) |
315 |
CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), |
316 |
$ E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU, |
317 |
$ U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO ) |
318 |
CALL DCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 ) |
319 |
CALL DCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 ) |
320 |
END IF |
321 |
IF( INFO.NE.0 ) THEN |
322 |
RETURN |
323 |
END IF |
324 |
DO 20 J = 1, NR |
325 |
IWORK( IDXQI+J ) = J |
326 |
20 CONTINUE |
327 |
30 CONTINUE |
328 |
* |
329 |
* Now conquer each subproblem bottom-up. |
330 |
* |
331 |
J = 2**NLVL |
332 |
DO 50 LVL = NLVL, 1, -1 |
333 |
LVL2 = LVL*2 - 1 |
334 |
* |
335 |
* Find the first node LF and last node LL on |
336 |
* the current level LVL. |
337 |
* |
338 |
IF( LVL.EQ.1 ) THEN |
339 |
LF = 1 |
340 |
LL = 1 |
341 |
ELSE |
342 |
LF = 2**( LVL-1 ) |
343 |
LL = 2*LF - 1 |
344 |
END IF |
345 |
DO 40 I = LF, LL |
346 |
IM1 = I - 1 |
347 |
IC = IWORK( INODE+IM1 ) |
348 |
NL = IWORK( NDIML+IM1 ) |
349 |
NR = IWORK( NDIMR+IM1 ) |
350 |
NLF = IC - NL |
351 |
NRF = IC + 1 |
352 |
IF( I.EQ.LL ) THEN |
353 |
SQREI = SQRE |
354 |
ELSE |
355 |
SQREI = 1 |
356 |
END IF |
357 |
VFI = VF + NLF - 1 |
358 |
VLI = VL + NLF - 1 |
359 |
IDXQI = IDXQ + NLF - 1 |
360 |
ALPHA = D( IC ) |
361 |
BETA = E( IC ) |
362 |
IF( ICOMPQ.EQ.0 ) THEN |
363 |
CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ), |
364 |
$ WORK( VFI ), WORK( VLI ), ALPHA, BETA, |
365 |
$ IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL, |
366 |
$ LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z, |
367 |
$ K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ), |
368 |
$ IWORK( IWK ), INFO ) |
369 |
ELSE |
370 |
J = J - 1 |
371 |
CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ), |
372 |
$ WORK( VFI ), WORK( VLI ), ALPHA, BETA, |
373 |
$ IWORK( IDXQI ), PERM( NLF, LVL ), |
374 |
$ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL, |
375 |
$ GIVNUM( NLF, LVL2 ), LDU, |
376 |
$ POLES( NLF, LVL2 ), DIFL( NLF, LVL ), |
377 |
$ DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ), |
378 |
$ C( J ), S( J ), WORK( NWORK1 ), |
379 |
$ IWORK( IWK ), INFO ) |
380 |
END IF |
381 |
IF( INFO.NE.0 ) THEN |
382 |
RETURN |
383 |
END IF |
384 |
40 CONTINUE |
385 |
50 CONTINUE |
386 |
* |
387 |
RETURN |
388 |
* |
389 |
* End of DLASDA |
390 |
* |
391 |
END |