Statistiques
| Révision :

root / src / blas / dspmv.f @ 8

Historique | Voir | Annoter | Télécharger (7,73 ko)

1
      SUBROUTINE DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
2
*     .. Scalar Arguments ..
3
      DOUBLE PRECISION ALPHA,BETA
4
      INTEGER INCX,INCY,N
5
      CHARACTER UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      DOUBLE PRECISION AP(*),X(*),Y(*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  DSPMV  performs the matrix-vector operation
15
*
16
*     y := alpha*A*x + beta*y,
17
*
18
*  where alpha and beta are scalars, x and y are n element vectors and
19
*  A is an n by n symmetric matrix, supplied in packed form.
20
*
21
*  Arguments
22
*  ==========
23
*
24
*  UPLO   - CHARACTER*1.
25
*           On entry, UPLO specifies whether the upper or lower
26
*           triangular part of the matrix A is supplied in the packed
27
*           array AP as follows:
28
*
29
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30
*                                  supplied in AP.
31
*
32
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33
*                                  supplied in AP.
34
*
35
*           Unchanged on exit.
36
*
37
*  N      - INTEGER.
38
*           On entry, N specifies the order of the matrix A.
39
*           N must be at least zero.
40
*           Unchanged on exit.
41
*
42
*  ALPHA  - DOUBLE PRECISION.
43
*           On entry, ALPHA specifies the scalar alpha.
44
*           Unchanged on exit.
45
*
46
*  AP     - DOUBLE PRECISION array of DIMENSION at least
47
*           ( ( n*( n + 1 ) )/2 ).
48
*           Before entry with UPLO = 'U' or 'u', the array AP must
49
*           contain the upper triangular part of the symmetric matrix
50
*           packed sequentially, column by column, so that AP( 1 )
51
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
52
*           and a( 2, 2 ) respectively, and so on.
53
*           Before entry with UPLO = 'L' or 'l', the array AP must
54
*           contain the lower triangular part of the symmetric matrix
55
*           packed sequentially, column by column, so that AP( 1 )
56
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
57
*           and a( 3, 1 ) respectively, and so on.
58
*           Unchanged on exit.
59
*
60
*  X      - DOUBLE PRECISION array of dimension at least
61
*           ( 1 + ( n - 1 )*abs( INCX ) ).
62
*           Before entry, the incremented array X must contain the n
63
*           element vector x.
64
*           Unchanged on exit.
65
*
66
*  INCX   - INTEGER.
67
*           On entry, INCX specifies the increment for the elements of
68
*           X. INCX must not be zero.
69
*           Unchanged on exit.
70
*
71
*  BETA   - DOUBLE PRECISION.
72
*           On entry, BETA specifies the scalar beta. When BETA is
73
*           supplied as zero then Y need not be set on input.
74
*           Unchanged on exit.
75
*
76
*  Y      - DOUBLE PRECISION array of dimension at least
77
*           ( 1 + ( n - 1 )*abs( INCY ) ).
78
*           Before entry, the incremented array Y must contain the n
79
*           element vector y. On exit, Y is overwritten by the updated
80
*           vector y.
81
*
82
*  INCY   - INTEGER.
83
*           On entry, INCY specifies the increment for the elements of
84
*           Y. INCY must not be zero.
85
*           Unchanged on exit.
86
*
87
*
88
*  Level 2 Blas routine.
89
*
90
*  -- Written on 22-October-1986.
91
*     Jack Dongarra, Argonne National Lab.
92
*     Jeremy Du Croz, Nag Central Office.
93
*     Sven Hammarling, Nag Central Office.
94
*     Richard Hanson, Sandia National Labs.
95
*
96
*
97
*     .. Parameters ..
98
      DOUBLE PRECISION ONE,ZERO
99
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
100
*     ..
101
*     .. Local Scalars ..
102
      DOUBLE PRECISION TEMP1,TEMP2
103
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
104
*     ..
105
*     .. External Functions ..
106
      LOGICAL LSAME
107
      EXTERNAL LSAME
108
*     ..
109
*     .. External Subroutines ..
110
      EXTERNAL XERBLA
111
*     ..
112
*
113
*     Test the input parameters.
114
*
115
      INFO = 0
116
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
117
          INFO = 1
118
      ELSE IF (N.LT.0) THEN
119
          INFO = 2
120
      ELSE IF (INCX.EQ.0) THEN
121
          INFO = 6
122
      ELSE IF (INCY.EQ.0) THEN
123
          INFO = 9
124
      END IF
125
      IF (INFO.NE.0) THEN
126
          CALL XERBLA('DSPMV ',INFO)
127
          RETURN
128
      END IF
129
*
130
*     Quick return if possible.
131
*
132
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
133
*
134
*     Set up the start points in  X  and  Y.
135
*
136
      IF (INCX.GT.0) THEN
137
          KX = 1
138
      ELSE
139
          KX = 1 - (N-1)*INCX
140
      END IF
141
      IF (INCY.GT.0) THEN
142
          KY = 1
143
      ELSE
144
          KY = 1 - (N-1)*INCY
145
      END IF
146
*
147
*     Start the operations. In this version the elements of the array AP
148
*     are accessed sequentially with one pass through AP.
149
*
150
*     First form  y := beta*y.
151
*
152
      IF (BETA.NE.ONE) THEN
153
          IF (INCY.EQ.1) THEN
154
              IF (BETA.EQ.ZERO) THEN
155
                  DO 10 I = 1,N
156
                      Y(I) = ZERO
157
   10             CONTINUE
158
              ELSE
159
                  DO 20 I = 1,N
160
                      Y(I) = BETA*Y(I)
161
   20             CONTINUE
162
              END IF
163
          ELSE
164
              IY = KY
165
              IF (BETA.EQ.ZERO) THEN
166
                  DO 30 I = 1,N
167
                      Y(IY) = ZERO
168
                      IY = IY + INCY
169
   30             CONTINUE
170
              ELSE
171
                  DO 40 I = 1,N
172
                      Y(IY) = BETA*Y(IY)
173
                      IY = IY + INCY
174
   40             CONTINUE
175
              END IF
176
          END IF
177
      END IF
178
      IF (ALPHA.EQ.ZERO) RETURN
179
      KK = 1
180
      IF (LSAME(UPLO,'U')) THEN
181
*
182
*        Form  y  when AP contains the upper triangle.
183
*
184
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
185
              DO 60 J = 1,N
186
                  TEMP1 = ALPHA*X(J)
187
                  TEMP2 = ZERO
188
                  K = KK
189
                  DO 50 I = 1,J - 1
190
                      Y(I) = Y(I) + TEMP1*AP(K)
191
                      TEMP2 = TEMP2 + AP(K)*X(I)
192
                      K = K + 1
193
   50             CONTINUE
194
                  Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
195
                  KK = KK + J
196
   60         CONTINUE
197
          ELSE
198
              JX = KX
199
              JY = KY
200
              DO 80 J = 1,N
201
                  TEMP1 = ALPHA*X(JX)
202
                  TEMP2 = ZERO
203
                  IX = KX
204
                  IY = KY
205
                  DO 70 K = KK,KK + J - 2
206
                      Y(IY) = Y(IY) + TEMP1*AP(K)
207
                      TEMP2 = TEMP2 + AP(K)*X(IX)
208
                      IX = IX + INCX
209
                      IY = IY + INCY
210
   70             CONTINUE
211
                  Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
212
                  JX = JX + INCX
213
                  JY = JY + INCY
214
                  KK = KK + J
215
   80         CONTINUE
216
          END IF
217
      ELSE
218
*
219
*        Form  y  when AP contains the lower triangle.
220
*
221
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
222
              DO 100 J = 1,N
223
                  TEMP1 = ALPHA*X(J)
224
                  TEMP2 = ZERO
225
                  Y(J) = Y(J) + TEMP1*AP(KK)
226
                  K = KK + 1
227
                  DO 90 I = J + 1,N
228
                      Y(I) = Y(I) + TEMP1*AP(K)
229
                      TEMP2 = TEMP2 + AP(K)*X(I)
230
                      K = K + 1
231
   90             CONTINUE
232
                  Y(J) = Y(J) + ALPHA*TEMP2
233
                  KK = KK + (N-J+1)
234
  100         CONTINUE
235
          ELSE
236
              JX = KX
237
              JY = KY
238
              DO 120 J = 1,N
239
                  TEMP1 = ALPHA*X(JX)
240
                  TEMP2 = ZERO
241
                  Y(JY) = Y(JY) + TEMP1*AP(KK)
242
                  IX = JX
243
                  IY = JY
244
                  DO 110 K = KK + 1,KK + N - J
245
                      IX = IX + INCX
246
                      IY = IY + INCY
247
                      Y(IY) = Y(IY) + TEMP1*AP(K)
248
                      TEMP2 = TEMP2 + AP(K)*X(IX)
249
  110             CONTINUE
250
                  Y(JY) = Y(JY) + ALPHA*TEMP2
251
                  JX = JX + INCX
252
                  JY = JY + INCY
253
                  KK = KK + (N-J+1)
254
  120         CONTINUE
255
          END IF
256
      END IF
257
*
258
      RETURN
259
*
260
*     End of DSPMV .
261
*
262
      END