root / src / blas / dspmv.f @ 8
Historique | Voir | Annoter | Télécharger (7,73 ko)
1 |
SUBROUTINE DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
DOUBLE PRECISION ALPHA,BETA |
4 |
INTEGER INCX,INCY,N |
5 |
CHARACTER UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
DOUBLE PRECISION AP(*),X(*),Y(*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* DSPMV performs the matrix-vector operation |
15 |
* |
16 |
* y := alpha*A*x + beta*y, |
17 |
* |
18 |
* where alpha and beta are scalars, x and y are n element vectors and |
19 |
* A is an n by n symmetric matrix, supplied in packed form. |
20 |
* |
21 |
* Arguments |
22 |
* ========== |
23 |
* |
24 |
* UPLO - CHARACTER*1. |
25 |
* On entry, UPLO specifies whether the upper or lower |
26 |
* triangular part of the matrix A is supplied in the packed |
27 |
* array AP as follows: |
28 |
* |
29 |
* UPLO = 'U' or 'u' The upper triangular part of A is |
30 |
* supplied in AP. |
31 |
* |
32 |
* UPLO = 'L' or 'l' The lower triangular part of A is |
33 |
* supplied in AP. |
34 |
* |
35 |
* Unchanged on exit. |
36 |
* |
37 |
* N - INTEGER. |
38 |
* On entry, N specifies the order of the matrix A. |
39 |
* N must be at least zero. |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* ALPHA - DOUBLE PRECISION. |
43 |
* On entry, ALPHA specifies the scalar alpha. |
44 |
* Unchanged on exit. |
45 |
* |
46 |
* AP - DOUBLE PRECISION array of DIMENSION at least |
47 |
* ( ( n*( n + 1 ) )/2 ). |
48 |
* Before entry with UPLO = 'U' or 'u', the array AP must |
49 |
* contain the upper triangular part of the symmetric matrix |
50 |
* packed sequentially, column by column, so that AP( 1 ) |
51 |
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) |
52 |
* and a( 2, 2 ) respectively, and so on. |
53 |
* Before entry with UPLO = 'L' or 'l', the array AP must |
54 |
* contain the lower triangular part of the symmetric matrix |
55 |
* packed sequentially, column by column, so that AP( 1 ) |
56 |
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) |
57 |
* and a( 3, 1 ) respectively, and so on. |
58 |
* Unchanged on exit. |
59 |
* |
60 |
* X - DOUBLE PRECISION array of dimension at least |
61 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
62 |
* Before entry, the incremented array X must contain the n |
63 |
* element vector x. |
64 |
* Unchanged on exit. |
65 |
* |
66 |
* INCX - INTEGER. |
67 |
* On entry, INCX specifies the increment for the elements of |
68 |
* X. INCX must not be zero. |
69 |
* Unchanged on exit. |
70 |
* |
71 |
* BETA - DOUBLE PRECISION. |
72 |
* On entry, BETA specifies the scalar beta. When BETA is |
73 |
* supplied as zero then Y need not be set on input. |
74 |
* Unchanged on exit. |
75 |
* |
76 |
* Y - DOUBLE PRECISION array of dimension at least |
77 |
* ( 1 + ( n - 1 )*abs( INCY ) ). |
78 |
* Before entry, the incremented array Y must contain the n |
79 |
* element vector y. On exit, Y is overwritten by the updated |
80 |
* vector y. |
81 |
* |
82 |
* INCY - INTEGER. |
83 |
* On entry, INCY specifies the increment for the elements of |
84 |
* Y. INCY must not be zero. |
85 |
* Unchanged on exit. |
86 |
* |
87 |
* |
88 |
* Level 2 Blas routine. |
89 |
* |
90 |
* -- Written on 22-October-1986. |
91 |
* Jack Dongarra, Argonne National Lab. |
92 |
* Jeremy Du Croz, Nag Central Office. |
93 |
* Sven Hammarling, Nag Central Office. |
94 |
* Richard Hanson, Sandia National Labs. |
95 |
* |
96 |
* |
97 |
* .. Parameters .. |
98 |
DOUBLE PRECISION ONE,ZERO |
99 |
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) |
100 |
* .. |
101 |
* .. Local Scalars .. |
102 |
DOUBLE PRECISION TEMP1,TEMP2 |
103 |
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY |
104 |
* .. |
105 |
* .. External Functions .. |
106 |
LOGICAL LSAME |
107 |
EXTERNAL LSAME |
108 |
* .. |
109 |
* .. External Subroutines .. |
110 |
EXTERNAL XERBLA |
111 |
* .. |
112 |
* |
113 |
* Test the input parameters. |
114 |
* |
115 |
INFO = 0 |
116 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
117 |
INFO = 1 |
118 |
ELSE IF (N.LT.0) THEN |
119 |
INFO = 2 |
120 |
ELSE IF (INCX.EQ.0) THEN |
121 |
INFO = 6 |
122 |
ELSE IF (INCY.EQ.0) THEN |
123 |
INFO = 9 |
124 |
END IF |
125 |
IF (INFO.NE.0) THEN |
126 |
CALL XERBLA('DSPMV ',INFO) |
127 |
RETURN |
128 |
END IF |
129 |
* |
130 |
* Quick return if possible. |
131 |
* |
132 |
IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN |
133 |
* |
134 |
* Set up the start points in X and Y. |
135 |
* |
136 |
IF (INCX.GT.0) THEN |
137 |
KX = 1 |
138 |
ELSE |
139 |
KX = 1 - (N-1)*INCX |
140 |
END IF |
141 |
IF (INCY.GT.0) THEN |
142 |
KY = 1 |
143 |
ELSE |
144 |
KY = 1 - (N-1)*INCY |
145 |
END IF |
146 |
* |
147 |
* Start the operations. In this version the elements of the array AP |
148 |
* are accessed sequentially with one pass through AP. |
149 |
* |
150 |
* First form y := beta*y. |
151 |
* |
152 |
IF (BETA.NE.ONE) THEN |
153 |
IF (INCY.EQ.1) THEN |
154 |
IF (BETA.EQ.ZERO) THEN |
155 |
DO 10 I = 1,N |
156 |
Y(I) = ZERO |
157 |
10 CONTINUE |
158 |
ELSE |
159 |
DO 20 I = 1,N |
160 |
Y(I) = BETA*Y(I) |
161 |
20 CONTINUE |
162 |
END IF |
163 |
ELSE |
164 |
IY = KY |
165 |
IF (BETA.EQ.ZERO) THEN |
166 |
DO 30 I = 1,N |
167 |
Y(IY) = ZERO |
168 |
IY = IY + INCY |
169 |
30 CONTINUE |
170 |
ELSE |
171 |
DO 40 I = 1,N |
172 |
Y(IY) = BETA*Y(IY) |
173 |
IY = IY + INCY |
174 |
40 CONTINUE |
175 |
END IF |
176 |
END IF |
177 |
END IF |
178 |
IF (ALPHA.EQ.ZERO) RETURN |
179 |
KK = 1 |
180 |
IF (LSAME(UPLO,'U')) THEN |
181 |
* |
182 |
* Form y when AP contains the upper triangle. |
183 |
* |
184 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
185 |
DO 60 J = 1,N |
186 |
TEMP1 = ALPHA*X(J) |
187 |
TEMP2 = ZERO |
188 |
K = KK |
189 |
DO 50 I = 1,J - 1 |
190 |
Y(I) = Y(I) + TEMP1*AP(K) |
191 |
TEMP2 = TEMP2 + AP(K)*X(I) |
192 |
K = K + 1 |
193 |
50 CONTINUE |
194 |
Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2 |
195 |
KK = KK + J |
196 |
60 CONTINUE |
197 |
ELSE |
198 |
JX = KX |
199 |
JY = KY |
200 |
DO 80 J = 1,N |
201 |
TEMP1 = ALPHA*X(JX) |
202 |
TEMP2 = ZERO |
203 |
IX = KX |
204 |
IY = KY |
205 |
DO 70 K = KK,KK + J - 2 |
206 |
Y(IY) = Y(IY) + TEMP1*AP(K) |
207 |
TEMP2 = TEMP2 + AP(K)*X(IX) |
208 |
IX = IX + INCX |
209 |
IY = IY + INCY |
210 |
70 CONTINUE |
211 |
Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2 |
212 |
JX = JX + INCX |
213 |
JY = JY + INCY |
214 |
KK = KK + J |
215 |
80 CONTINUE |
216 |
END IF |
217 |
ELSE |
218 |
* |
219 |
* Form y when AP contains the lower triangle. |
220 |
* |
221 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
222 |
DO 100 J = 1,N |
223 |
TEMP1 = ALPHA*X(J) |
224 |
TEMP2 = ZERO |
225 |
Y(J) = Y(J) + TEMP1*AP(KK) |
226 |
K = KK + 1 |
227 |
DO 90 I = J + 1,N |
228 |
Y(I) = Y(I) + TEMP1*AP(K) |
229 |
TEMP2 = TEMP2 + AP(K)*X(I) |
230 |
K = K + 1 |
231 |
90 CONTINUE |
232 |
Y(J) = Y(J) + ALPHA*TEMP2 |
233 |
KK = KK + (N-J+1) |
234 |
100 CONTINUE |
235 |
ELSE |
236 |
JX = KX |
237 |
JY = KY |
238 |
DO 120 J = 1,N |
239 |
TEMP1 = ALPHA*X(JX) |
240 |
TEMP2 = ZERO |
241 |
Y(JY) = Y(JY) + TEMP1*AP(KK) |
242 |
IX = JX |
243 |
IY = JY |
244 |
DO 110 K = KK + 1,KK + N - J |
245 |
IX = IX + INCX |
246 |
IY = IY + INCY |
247 |
Y(IY) = Y(IY) + TEMP1*AP(K) |
248 |
TEMP2 = TEMP2 + AP(K)*X(IX) |
249 |
110 CONTINUE |
250 |
Y(JY) = Y(JY) + ALPHA*TEMP2 |
251 |
JX = JX + INCX |
252 |
JY = JY + INCY |
253 |
KK = KK + (N-J+1) |
254 |
120 CONTINUE |
255 |
END IF |
256 |
END IF |
257 |
* |
258 |
RETURN |
259 |
* |
260 |
* End of DSPMV . |
261 |
* |
262 |
END |