root / src / blas / chbmv.f @ 8
Historique | Voir | Annoter | Télécharger (9,49 ko)
1 |
SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
COMPLEX ALPHA,BETA |
4 |
INTEGER INCX,INCY,K,LDA,N |
5 |
CHARACTER UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
COMPLEX A(LDA,*),X(*),Y(*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* CHBMV performs the matrix-vector operation |
15 |
* |
16 |
* y := alpha*A*x + beta*y, |
17 |
* |
18 |
* where alpha and beta are scalars, x and y are n element vectors and |
19 |
* A is an n by n hermitian band matrix, with k super-diagonals. |
20 |
* |
21 |
* Arguments |
22 |
* ========== |
23 |
* |
24 |
* UPLO - CHARACTER*1. |
25 |
* On entry, UPLO specifies whether the upper or lower |
26 |
* triangular part of the band matrix A is being supplied as |
27 |
* follows: |
28 |
* |
29 |
* UPLO = 'U' or 'u' The upper triangular part of A is |
30 |
* being supplied. |
31 |
* |
32 |
* UPLO = 'L' or 'l' The lower triangular part of A is |
33 |
* being supplied. |
34 |
* |
35 |
* Unchanged on exit. |
36 |
* |
37 |
* N - INTEGER. |
38 |
* On entry, N specifies the order of the matrix A. |
39 |
* N must be at least zero. |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* K - INTEGER. |
43 |
* On entry, K specifies the number of super-diagonals of the |
44 |
* matrix A. K must satisfy 0 .le. K. |
45 |
* Unchanged on exit. |
46 |
* |
47 |
* ALPHA - COMPLEX . |
48 |
* On entry, ALPHA specifies the scalar alpha. |
49 |
* Unchanged on exit. |
50 |
* |
51 |
* A - COMPLEX array of DIMENSION ( LDA, n ). |
52 |
* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) |
53 |
* by n part of the array A must contain the upper triangular |
54 |
* band part of the hermitian matrix, supplied column by |
55 |
* column, with the leading diagonal of the matrix in row |
56 |
* ( k + 1 ) of the array, the first super-diagonal starting at |
57 |
* position 2 in row k, and so on. The top left k by k triangle |
58 |
* of the array A is not referenced. |
59 |
* The following program segment will transfer the upper |
60 |
* triangular part of a hermitian band matrix from conventional |
61 |
* full matrix storage to band storage: |
62 |
* |
63 |
* DO 20, J = 1, N |
64 |
* M = K + 1 - J |
65 |
* DO 10, I = MAX( 1, J - K ), J |
66 |
* A( M + I, J ) = matrix( I, J ) |
67 |
* 10 CONTINUE |
68 |
* 20 CONTINUE |
69 |
* |
70 |
* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) |
71 |
* by n part of the array A must contain the lower triangular |
72 |
* band part of the hermitian matrix, supplied column by |
73 |
* column, with the leading diagonal of the matrix in row 1 of |
74 |
* the array, the first sub-diagonal starting at position 1 in |
75 |
* row 2, and so on. The bottom right k by k triangle of the |
76 |
* array A is not referenced. |
77 |
* The following program segment will transfer the lower |
78 |
* triangular part of a hermitian band matrix from conventional |
79 |
* full matrix storage to band storage: |
80 |
* |
81 |
* DO 20, J = 1, N |
82 |
* M = 1 - J |
83 |
* DO 10, I = J, MIN( N, J + K ) |
84 |
* A( M + I, J ) = matrix( I, J ) |
85 |
* 10 CONTINUE |
86 |
* 20 CONTINUE |
87 |
* |
88 |
* Note that the imaginary parts of the diagonal elements need |
89 |
* not be set and are assumed to be zero. |
90 |
* Unchanged on exit. |
91 |
* |
92 |
* LDA - INTEGER. |
93 |
* On entry, LDA specifies the first dimension of A as declared |
94 |
* in the calling (sub) program. LDA must be at least |
95 |
* ( k + 1 ). |
96 |
* Unchanged on exit. |
97 |
* |
98 |
* X - COMPLEX array of DIMENSION at least |
99 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
100 |
* Before entry, the incremented array X must contain the |
101 |
* vector x. |
102 |
* Unchanged on exit. |
103 |
* |
104 |
* INCX - INTEGER. |
105 |
* On entry, INCX specifies the increment for the elements of |
106 |
* X. INCX must not be zero. |
107 |
* Unchanged on exit. |
108 |
* |
109 |
* BETA - COMPLEX . |
110 |
* On entry, BETA specifies the scalar beta. |
111 |
* Unchanged on exit. |
112 |
* |
113 |
* Y - COMPLEX array of DIMENSION at least |
114 |
* ( 1 + ( n - 1 )*abs( INCY ) ). |
115 |
* Before entry, the incremented array Y must contain the |
116 |
* vector y. On exit, Y is overwritten by the updated vector y. |
117 |
* |
118 |
* INCY - INTEGER. |
119 |
* On entry, INCY specifies the increment for the elements of |
120 |
* Y. INCY must not be zero. |
121 |
* Unchanged on exit. |
122 |
* |
123 |
* |
124 |
* Level 2 Blas routine. |
125 |
* |
126 |
* -- Written on 22-October-1986. |
127 |
* Jack Dongarra, Argonne National Lab. |
128 |
* Jeremy Du Croz, Nag Central Office. |
129 |
* Sven Hammarling, Nag Central Office. |
130 |
* Richard Hanson, Sandia National Labs. |
131 |
* |
132 |
* |
133 |
* .. Parameters .. |
134 |
COMPLEX ONE |
135 |
PARAMETER (ONE= (1.0E+0,0.0E+0)) |
136 |
COMPLEX ZERO |
137 |
PARAMETER (ZERO= (0.0E+0,0.0E+0)) |
138 |
* .. |
139 |
* .. Local Scalars .. |
140 |
COMPLEX TEMP1,TEMP2 |
141 |
INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L |
142 |
* .. |
143 |
* .. External Functions .. |
144 |
LOGICAL LSAME |
145 |
EXTERNAL LSAME |
146 |
* .. |
147 |
* .. External Subroutines .. |
148 |
EXTERNAL XERBLA |
149 |
* .. |
150 |
* .. Intrinsic Functions .. |
151 |
INTRINSIC CONJG,MAX,MIN,REAL |
152 |
* .. |
153 |
* |
154 |
* Test the input parameters. |
155 |
* |
156 |
INFO = 0 |
157 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
158 |
INFO = 1 |
159 |
ELSE IF (N.LT.0) THEN |
160 |
INFO = 2 |
161 |
ELSE IF (K.LT.0) THEN |
162 |
INFO = 3 |
163 |
ELSE IF (LDA.LT. (K+1)) THEN |
164 |
INFO = 6 |
165 |
ELSE IF (INCX.EQ.0) THEN |
166 |
INFO = 8 |
167 |
ELSE IF (INCY.EQ.0) THEN |
168 |
INFO = 11 |
169 |
END IF |
170 |
IF (INFO.NE.0) THEN |
171 |
CALL XERBLA('CHBMV ',INFO) |
172 |
RETURN |
173 |
END IF |
174 |
* |
175 |
* Quick return if possible. |
176 |
* |
177 |
IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN |
178 |
* |
179 |
* Set up the start points in X and Y. |
180 |
* |
181 |
IF (INCX.GT.0) THEN |
182 |
KX = 1 |
183 |
ELSE |
184 |
KX = 1 - (N-1)*INCX |
185 |
END IF |
186 |
IF (INCY.GT.0) THEN |
187 |
KY = 1 |
188 |
ELSE |
189 |
KY = 1 - (N-1)*INCY |
190 |
END IF |
191 |
* |
192 |
* Start the operations. In this version the elements of the array A |
193 |
* are accessed sequentially with one pass through A. |
194 |
* |
195 |
* First form y := beta*y. |
196 |
* |
197 |
IF (BETA.NE.ONE) THEN |
198 |
IF (INCY.EQ.1) THEN |
199 |
IF (BETA.EQ.ZERO) THEN |
200 |
DO 10 I = 1,N |
201 |
Y(I) = ZERO |
202 |
10 CONTINUE |
203 |
ELSE |
204 |
DO 20 I = 1,N |
205 |
Y(I) = BETA*Y(I) |
206 |
20 CONTINUE |
207 |
END IF |
208 |
ELSE |
209 |
IY = KY |
210 |
IF (BETA.EQ.ZERO) THEN |
211 |
DO 30 I = 1,N |
212 |
Y(IY) = ZERO |
213 |
IY = IY + INCY |
214 |
30 CONTINUE |
215 |
ELSE |
216 |
DO 40 I = 1,N |
217 |
Y(IY) = BETA*Y(IY) |
218 |
IY = IY + INCY |
219 |
40 CONTINUE |
220 |
END IF |
221 |
END IF |
222 |
END IF |
223 |
IF (ALPHA.EQ.ZERO) RETURN |
224 |
IF (LSAME(UPLO,'U')) THEN |
225 |
* |
226 |
* Form y when upper triangle of A is stored. |
227 |
* |
228 |
KPLUS1 = K + 1 |
229 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
230 |
DO 60 J = 1,N |
231 |
TEMP1 = ALPHA*X(J) |
232 |
TEMP2 = ZERO |
233 |
L = KPLUS1 - J |
234 |
DO 50 I = MAX(1,J-K),J - 1 |
235 |
Y(I) = Y(I) + TEMP1*A(L+I,J) |
236 |
TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I) |
237 |
50 CONTINUE |
238 |
Y(J) = Y(J) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2 |
239 |
60 CONTINUE |
240 |
ELSE |
241 |
JX = KX |
242 |
JY = KY |
243 |
DO 80 J = 1,N |
244 |
TEMP1 = ALPHA*X(JX) |
245 |
TEMP2 = ZERO |
246 |
IX = KX |
247 |
IY = KY |
248 |
L = KPLUS1 - J |
249 |
DO 70 I = MAX(1,J-K),J - 1 |
250 |
Y(IY) = Y(IY) + TEMP1*A(L+I,J) |
251 |
TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX) |
252 |
IX = IX + INCX |
253 |
IY = IY + INCY |
254 |
70 CONTINUE |
255 |
Y(JY) = Y(JY) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2 |
256 |
JX = JX + INCX |
257 |
JY = JY + INCY |
258 |
IF (J.GT.K) THEN |
259 |
KX = KX + INCX |
260 |
KY = KY + INCY |
261 |
END IF |
262 |
80 CONTINUE |
263 |
END IF |
264 |
ELSE |
265 |
* |
266 |
* Form y when lower triangle of A is stored. |
267 |
* |
268 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
269 |
DO 100 J = 1,N |
270 |
TEMP1 = ALPHA*X(J) |
271 |
TEMP2 = ZERO |
272 |
Y(J) = Y(J) + TEMP1*REAL(A(1,J)) |
273 |
L = 1 - J |
274 |
DO 90 I = J + 1,MIN(N,J+K) |
275 |
Y(I) = Y(I) + TEMP1*A(L+I,J) |
276 |
TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I) |
277 |
90 CONTINUE |
278 |
Y(J) = Y(J) + ALPHA*TEMP2 |
279 |
100 CONTINUE |
280 |
ELSE |
281 |
JX = KX |
282 |
JY = KY |
283 |
DO 120 J = 1,N |
284 |
TEMP1 = ALPHA*X(JX) |
285 |
TEMP2 = ZERO |
286 |
Y(JY) = Y(JY) + TEMP1*REAL(A(1,J)) |
287 |
L = 1 - J |
288 |
IX = JX |
289 |
IY = JY |
290 |
DO 110 I = J + 1,MIN(N,J+K) |
291 |
IX = IX + INCX |
292 |
IY = IY + INCY |
293 |
Y(IY) = Y(IY) + TEMP1*A(L+I,J) |
294 |
TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX) |
295 |
110 CONTINUE |
296 |
Y(JY) = Y(JY) + ALPHA*TEMP2 |
297 |
JX = JX + INCX |
298 |
JY = JY + INCY |
299 |
120 CONTINUE |
300 |
END IF |
301 |
END IF |
302 |
* |
303 |
RETURN |
304 |
* |
305 |
* End of CHBMV . |
306 |
* |
307 |
END |