root / src / Mat_util.f90 @ 8
Historique | Voir | Annoter | Télécharger (8,19 ko)
1 |
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|---|
2 |
! |
3 |
SUBROUTINE GenInv(N,A,InvA,NReal) |
4 |
!!!!!!!!!!!!!!!! |
5 |
! |
6 |
! This subroutines calculates the generalized inverse of a matrix |
7 |
! It first diagonalize the matrix A, then inverse all non-zero |
8 |
! eigenvalues, and forms the InvA matrix using these new eigenvalues |
9 |
! |
10 |
! Input: |
11 |
! N : dimension of A |
12 |
! NReal :Actual dimension of A |
13 |
! A(N,N) : Initial Matrix, stored in A(Nreal,Nreal) |
14 |
! |
15 |
! Output: |
16 |
! InvA(N,N) : Inversed Matrix, stored in a (Nreal,NReal) matrix |
17 |
! |
18 |
!!!!!!!!!!!!!!!!!!!!!!! |
19 |
|
20 |
Use Vartypes |
21 |
IMPLICIT NONE |
22 |
|
23 |
INTEGER(KINT), INTENT(IN) :: N,Nreal |
24 |
REAL(KREAL), INTENT(IN) :: A(NReal,NReal) |
25 |
REAL(KREAL), INTENT(OUT) :: InvA(NReal,NReal) |
26 |
! |
27 |
|
28 |
INTEGER(KINT) :: I,J,K |
29 |
REAL(KREAL), ALLOCATABLE :: EigVec(:,:) ! (Nreal,Nreal) |
30 |
REAL(KREAL), ALLOCATABLE :: EigVal(:) ! (Nreal) |
31 |
REAL(KREAL), ALLOCATABLE :: ATmp(:,:) ! (NReal,Nreal) |
32 |
REAL(KREAL) :: ss |
33 |
! |
34 |
REAL(KREAL), PARAMETER :: eps=1e-12 |
35 |
|
36 |
ALLOCATE(EigVec(Nreal,Nreal), EigVal(Nreal),ATmp(NReal,NReal)) |
37 |
! A will be destroyed in Jacobi so we save it |
38 |
ATmp=A |
39 |
CALL JAcobi(ATmp,N,EigVal,EigVec,NReal) |
40 |
|
41 |
DO I=1,N |
42 |
IF (abs(EigVal(I)).GT.eps) EigVal(I)=1.d0/EigVal(I) |
43 |
END DO |
44 |
|
45 |
InvA=0.d0 |
46 |
do k = 1, n |
47 |
do j = 1, n |
48 |
ss = eigval(k) * eigvec(j,k) |
49 |
do i = 1, j |
50 |
InvA(i,j) = InvA(i,j) + ss * eigvec(i,k) |
51 |
end do |
52 |
end do |
53 |
end do |
54 |
do j = 1, n |
55 |
do i = 1, j-1 |
56 |
InvA(j,i) = InvA(i,j) |
57 |
end do |
58 |
end do |
59 |
|
60 |
|
61 |
DEALLOCATE(EigVec, EigVal,ATmp) |
62 |
END SUBROUTINE GenInv |
63 |
|
64 |
!============================================================ |
65 |
! |
66 |
! ++ Matrix diagonalization Using jacobi |
67 |
! Works only for symmetric matrices |
68 |
! EigvenVectors : V(i,i) |
69 |
! Eigenvalues : D(i) |
70 |
! PFL 30/05/03 |
71 |
! This versioin uses packed matrices. |
72 |
! it unpacks them before calling Jacobi ! |
73 |
! we have AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; |
74 |
! |
75 |
!============================================================ |
76 |
! |
77 |
SUBROUTINE JacPacked(N,AP,D,V,nreal) |
78 |
|
79 |
Use Vartypes |
80 |
IMPLICIT NONE |
81 |
|
82 |
INTEGER(KINT), INTENT(IN) :: N,NREAL |
83 |
REAL(KREAL) :: AP(N*(N+1)/2) |
84 |
REAL(KREAL), ALLOCATABLE :: A(:,:) |
85 |
REAL(KREAL) :: V(Nreal,Nreal),D(Nreal) |
86 |
INTEGER(KINT) :: i,j,nn |
87 |
|
88 |
allocate(A(nreal,nreal)) |
89 |
nn=n*(n+1)/2 |
90 |
! WRITE(*,*) 'Jacpa 0' |
91 |
! WRITE(*,'(I3,10(1X,F15.6))') n,(AP(i),i=1,min(nn,5)) |
92 |
! WRITE(*,*) 'Jacpa 0' |
93 |
do j=1,n |
94 |
do i=1,j |
95 |
! WRITE(*,*) i,j |
96 |
A(i,J)=AP(i + (j-1)*j/2) |
97 |
A(j,I)=A(i,J) |
98 |
end do |
99 |
end do |
100 |
! do j=1,n |
101 |
! WRITE(*,'(10(1X,F15.6))') (A(i,J),i=1,min(n,5)) |
102 |
! end do |
103 |
|
104 |
! WRITE(*,*) 'Jacpa 1' |
105 |
call Jacobi(A,n,D,V,Nreal) |
106 |
! WRITE(*,*) 'Jacpa 2' |
107 |
! DO i=1,n |
108 |
! WRITE(*,'(1X,I3,10(1X,F15.6))') i,D(i),(V(j,i),j=1,min(n,5)) |
109 |
! end do |
110 |
deallocate(a) |
111 |
|
112 |
end SUBROUTINE JacPacked |
113 |
|
114 |
|
115 |
|
116 |
! |
117 |
!============================================================ |
118 |
! |
119 |
! ++ Matrix diagonalization Using jacobi |
120 |
! Works only for symmetric matrices |
121 |
! EigvenVectors : V |
122 |
! Eigenvalues : D |
123 |
! |
124 |
!============================================================ |
125 |
! |
126 |
SUBROUTINE JACOBI(A,N,D,V,Nreal) |
127 |
|
128 |
!!!!!!!!!!!!!!!! |
129 |
! |
130 |
! Input: |
131 |
! N : Dimension of A |
132 |
! NReal : Actual dimensions of A, D and V. |
133 |
! |
134 |
! Input/output: |
135 |
! A(N,N) : Matrix to be diagonalized, store in a (Nreal,Nreal) matrix |
136 |
! Destroyed in output. |
137 |
! Output: |
138 |
! V(N,N) : Eigenvectors, stored in V(NReal, NReal) |
139 |
! D(N) : Eigenvalues, stored in D(NReal) |
140 |
! |
141 |
|
142 |
Use Vartypes |
143 |
|
144 |
IMPLICIT NONE |
145 |
INTEGER(KINT), parameter :: max_it=500 |
146 |
REAL(KREAL), ALLOCATABLE :: B(:),Z(:) |
147 |
|
148 |
INTEGER(KINT) :: N,NReal |
149 |
REAL(KREAL) :: A(NReal,NReal) |
150 |
REAL(KREAL) :: V(Nreal,Nreal),D(Nreal) |
151 |
|
152 |
INTEGER(KINT) :: I, J,IP, IQ, NROT |
153 |
REAL(KREAL) :: SM, H, Tresh, G, T, Theta, C, S, Tau |
154 |
|
155 |
allocate(B(N),Z(N)) |
156 |
|
157 |
DO IP=1,N |
158 |
DO IQ=1,N |
159 |
V(IP,IQ)=0. |
160 |
END DO |
161 |
V(IP,IP)=1. |
162 |
END DO |
163 |
DO IP=1,N |
164 |
B(IP)=A(IP,IP) |
165 |
D(IP)=B(IP) |
166 |
Z(IP)=0. |
167 |
END DO |
168 |
NROT=0 |
169 |
DO I=1,max_it |
170 |
SM=0. |
171 |
DO IP=1,N-1 |
172 |
DO IQ=IP+1,N |
173 |
SM=SM+ABS(A(IP,IQ)) |
174 |
END DO |
175 |
END DO |
176 |
IF(SM.EQ.0.) GOTO 100 |
177 |
IF(I.LT.4)THEN |
178 |
TRESH=0.2*SM/N**2 |
179 |
ELSE |
180 |
TRESH=0. |
181 |
ENDIF |
182 |
DO IP=1,N-1 |
183 |
DO IQ=IP+1,N |
184 |
G=100.*ABS(A(IP,IQ)) |
185 |
IF((I.GT.4).AND.(ABS(D(IP))+G.EQ.ABS(D(IP))) & |
186 |
.AND.(ABS(D(IQ))+G.EQ.ABS(D(IQ))))THEN |
187 |
A(IP,IQ)=0. |
188 |
ELSE IF(ABS(A(IP,IQ)).GT.TRESH)THEN |
189 |
H=D(IQ)-D(IP) |
190 |
IF(ABS(H)+G.EQ.ABS(H))THEN |
191 |
T=A(IP,IQ)/H |
192 |
ELSE |
193 |
THETA=0.5*H/A(IP,IQ) |
194 |
T=1./(ABS(THETA)+SQRT(1.+THETA**2)) |
195 |
IF(THETA.LT.0.)T=-T |
196 |
ENDIF |
197 |
C=1./SQRT(1+T**2) |
198 |
S=T*C |
199 |
TAU=S/(1.+C) |
200 |
H=T*A(IP,IQ) |
201 |
Z(IP)=Z(IP)-H |
202 |
Z(IQ)=Z(IQ)+H |
203 |
D(IP)=D(IP)-H |
204 |
D(IQ)=D(IQ)+H |
205 |
A(IP,IQ)=0. |
206 |
DO J=1,IP-1 |
207 |
G=A(J,IP) |
208 |
H=A(J,IQ) |
209 |
A(J,IP)=G-S*(H+G*TAU) |
210 |
A(J,IQ)=H+S*(G-H*TAU) |
211 |
END DO |
212 |
DO J=IP+1,IQ-1 |
213 |
G=A(IP,J) |
214 |
H=A(J,IQ) |
215 |
A(IP,J)=G-S*(H+G*TAU) |
216 |
A(J,IQ)=H+S*(G-H*TAU) |
217 |
END DO |
218 |
DO J=IQ+1,N |
219 |
G=A(IP,J) |
220 |
H=A(IQ,J) |
221 |
A(IP,J)=G-S*(H+G*TAU) |
222 |
A(IQ,J)=H+S*(G-H*TAU) |
223 |
END DO |
224 |
DO J=1,N |
225 |
G=V(J,IP) |
226 |
H=V(J,IQ) |
227 |
V(J,IP)=G-S*(H+G*TAU) |
228 |
V(J,IQ)=H+S*(G-H*TAU) |
229 |
END DO |
230 |
NROT=NROT+1 |
231 |
ENDIF |
232 |
END DO |
233 |
END DO |
234 |
DO IP=1,N |
235 |
B(IP)=B(IP)+Z(IP) |
236 |
D(IP)=B(IP) |
237 |
Z(IP)=0. |
238 |
END DO |
239 |
END DO |
240 |
write(6,*) max_it,' iterations should never happen' |
241 |
STOP |
242 |
100 DEALLOCATE(B,Z) |
243 |
RETURN |
244 |
END SUBROUTINE JACOBI |
245 |
! |
246 |
!============================================================ |
247 |
!c |
248 |
!c ++ Sort Eigenvectors in ascending eigenvalues order |
249 |
!c |
250 |
!c============================================================ |
251 |
!c |
252 |
SUBROUTINE trie(nb_niv,ene,psi,nreal) |
253 |
|
254 |
! |
255 |
! Input: |
256 |
! Nb_niv : Dimension of Psi |
257 |
! NReal : Actual dimensions of Psi, Ene |
258 |
! Input/output: |
259 |
! Psi(N,N) : Eigvenvectors, changed in output. Stored in a (Nreal,Nreal) matrix |
260 |
! Ene(N) : Eigenvalues, changed in output. Stored in Ene(NReal) |
261 |
! |
262 |
!!!!!!!!!!!!!!!! |
263 |
|
264 |
Use VarTypes |
265 |
IMPLICIT NONE |
266 |
|
267 |
integer(KINT) :: i, j, k, nb_niv, nreal |
268 |
real(KREAL) :: ene(nreal),psi(nreal,nreal) |
269 |
real(KREAL) :: a |
270 |
|
271 |
|
272 |
!!!!!!!!!!!!!!!! |
273 |
|
274 |
|
275 |
DO i=1,nb_niv |
276 |
DO j=i+1,nb_niv |
277 |
IF (ene(i) .GT. ene(j)) THEN |
278 |
! permutation |
279 |
a=ene(i) |
280 |
ene(i)=ene(j) |
281 |
ene(j)=a |
282 |
|
283 |
DO k=1,nb_niv |
284 |
a=psi(k,i) |
285 |
psi(k,i)=psi(k,j) |
286 |
psi(k,j)=a |
287 |
END DO |
288 |
END IF |
289 |
END DO |
290 |
END DO |
291 |
|
292 |
END SUBROUTINE trie |
293 |
|
294 |
!============================================================ |
295 |
!c |
296 |
!c ++ Sort Eigenvectors in ascending eigenvalues order |
297 |
!c |
298 |
!c============================================================ |
299 |
!c |
300 |
SUBROUTINE SortEigenSys(N,Eigval,Eigvec) |
301 |
|
302 |
|
303 |
! |
304 |
! Input/output: |
305 |
! N : dimension of the system |
306 |
! EigVec(N,N) : Eigvenvectors, changed in output. Stored in a (N,N) matrix |
307 |
! EigVal(N) : Eigenvalues, changed in output. Stored in a (n) vector |
308 |
! |
309 |
! Process: |
310 |
! We use first a ranking, then a working array to reorder the eigenvalues and eigenvectors |
311 |
|
312 |
!!!!!!!!!!!!!!!! |
313 |
|
314 |
Use VarTypes |
315 |
use m_mrgrnk |
316 |
IMPLICIT NONE |
317 |
|
318 |
|
319 |
INTEGER(KINT), INTENT(IN) :: N |
320 |
REAL(KREAL), INTENT(OUT) :: EigVal(N), Eigvec(N,N) |
321 |
|
322 |
integer(KINT) :: i |
323 |
|
324 |
INTEGER(KINT), ALLOCATABLE :: Rank(:) !N |
325 |
REAL(KREAL), ALLOCATABLE :: EigValT(:) !n |
326 |
REAL(KREAL), ALLOCATABLE :: EigVecT(:,:) !n,n |
327 |
|
328 |
!!!!!!!!!!!!!!!! |
329 |
ALLOCATE(Rank(n),EigValT(n),EigVecT(n,n)) |
330 |
CALL MrgRnk(EigVal,Rank) |
331 |
|
332 |
DO I=1,N |
333 |
EigValT(I)=EigVal(Rank(I)) |
334 |
EigVecT(I,1:N)=EigVec(Rank(I),1:N) |
335 |
END DO |
336 |
EigVal=EigValT |
337 |
EigVec=EigVecT |
338 |
|
339 |
DEALLOCATE(Rank,EigValT,EigVecT) |
340 |
|
341 |
|
342 |
END SUBROUTINE SortEigenSys |
343 |
|