Statistiques
| Révision :

root / src / lapack / double / dlange.f @ 7

Historique | Voir | Annoter | Télécharger (3,95 ko)

1
      DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
2
*
3
*  -- LAPACK auxiliary routine (version 3.2) --
4
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
5
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6
*     November 2006
7
*
8
*     .. Scalar Arguments ..
9
      CHARACTER          NORM
10
      INTEGER            LDA, M, N
11
*     ..
12
*     .. Array Arguments ..
13
      DOUBLE PRECISION   A( LDA, * ), WORK( * )
14
*     ..
15
*
16
*  Purpose
17
*  =======
18
*
19
*  DLANGE  returns the value of the one norm,  or the Frobenius norm, or
20
*  the  infinity norm,  or the  element of  largest absolute value  of a
21
*  real matrix A.
22
*
23
*  Description
24
*  ===========
25
*
26
*  DLANGE returns the value
27
*
28
*     DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
29
*              (
30
*              ( norm1(A),         NORM = '1', 'O' or 'o'
31
*              (
32
*              ( normI(A),         NORM = 'I' or 'i'
33
*              (
34
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
35
*
36
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
37
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
38
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
39
*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
40
*
41
*  Arguments
42
*  =========
43
*
44
*  NORM    (input) CHARACTER*1
45
*          Specifies the value to be returned in DLANGE as described
46
*          above.
47
*
48
*  M       (input) INTEGER
49
*          The number of rows of the matrix A.  M >= 0.  When M = 0,
50
*          DLANGE is set to zero.
51
*
52
*  N       (input) INTEGER
53
*          The number of columns of the matrix A.  N >= 0.  When N = 0,
54
*          DLANGE is set to zero.
55
*
56
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
57
*          The m by n matrix A.
58
*
59
*  LDA     (input) INTEGER
60
*          The leading dimension of the array A.  LDA >= max(M,1).
61
*
62
*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
63
*          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
64
*          referenced.
65
*
66
* =====================================================================
67
*
68
*     .. Parameters ..
69
      DOUBLE PRECISION   ONE, ZERO
70
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
71
*     ..
72
*     .. Local Scalars ..
73
      INTEGER            I, J
74
      DOUBLE PRECISION   SCALE, SUM, VALUE
75
*     ..
76
*     .. External Subroutines ..
77
      EXTERNAL           DLASSQ
78
*     ..
79
*     .. External Functions ..
80
      LOGICAL            LSAME
81
      EXTERNAL           LSAME
82
*     ..
83
*     .. Intrinsic Functions ..
84
      INTRINSIC          ABS, MAX, MIN, SQRT
85
*     ..
86
*     .. Executable Statements ..
87
*
88
      IF( MIN( M, N ).EQ.0 ) THEN
89
         VALUE = ZERO
90
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
91
*
92
*        Find max(abs(A(i,j))).
93
*
94
         VALUE = ZERO
95
         DO 20 J = 1, N
96
            DO 10 I = 1, M
97
               VALUE = MAX( VALUE, ABS( A( I, J ) ) )
98
   10       CONTINUE
99
   20    CONTINUE
100
      ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
101
*
102
*        Find norm1(A).
103
*
104
         VALUE = ZERO
105
         DO 40 J = 1, N
106
            SUM = ZERO
107
            DO 30 I = 1, M
108
               SUM = SUM + ABS( A( I, J ) )
109
   30       CONTINUE
110
            VALUE = MAX( VALUE, SUM )
111
   40    CONTINUE
112
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
113
*
114
*        Find normI(A).
115
*
116
         DO 50 I = 1, M
117
            WORK( I ) = ZERO
118
   50    CONTINUE
119
         DO 70 J = 1, N
120
            DO 60 I = 1, M
121
               WORK( I ) = WORK( I ) + ABS( A( I, J ) )
122
   60       CONTINUE
123
   70    CONTINUE
124
         VALUE = ZERO
125
         DO 80 I = 1, M
126
            VALUE = MAX( VALUE, WORK( I ) )
127
   80    CONTINUE
128
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
129
*
130
*        Find normF(A).
131
*
132
         SCALE = ZERO
133
         SUM = ONE
134
         DO 90 J = 1, N
135
            CALL DLASSQ( M, A( 1, J ), 1, SCALE, SUM )
136
   90    CONTINUE
137
         VALUE = SCALE*SQRT( SUM )
138
      END IF
139
*
140
      DLANGE = VALUE
141
      RETURN
142
*
143
*     End of DLANGE
144
*
145
      END