Statistiques
| Révision :

root / src / lapack / double / dlanst.f @ 7

Historique | Voir | Annoter | Télécharger (3,51 ko)

1 1 pfleura2
      DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
2 1 pfleura2
*
3 1 pfleura2
*  -- LAPACK auxiliary routine (version 3.2) --
4 1 pfleura2
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
5 1 pfleura2
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6 1 pfleura2
*     November 2006
7 1 pfleura2
*
8 1 pfleura2
*     .. Scalar Arguments ..
9 1 pfleura2
      CHARACTER          NORM
10 1 pfleura2
      INTEGER            N
11 1 pfleura2
*     ..
12 1 pfleura2
*     .. Array Arguments ..
13 1 pfleura2
      DOUBLE PRECISION   D( * ), E( * )
14 1 pfleura2
*     ..
15 1 pfleura2
*
16 1 pfleura2
*  Purpose
17 1 pfleura2
*  =======
18 1 pfleura2
*
19 1 pfleura2
*  DLANST  returns the value of the one norm,  or the Frobenius norm, or
20 1 pfleura2
*  the  infinity norm,  or the  element of  largest absolute value  of a
21 1 pfleura2
*  real symmetric tridiagonal matrix A.
22 1 pfleura2
*
23 1 pfleura2
*  Description
24 1 pfleura2
*  ===========
25 1 pfleura2
*
26 1 pfleura2
*  DLANST returns the value
27 1 pfleura2
*
28 1 pfleura2
*     DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
29 1 pfleura2
*              (
30 1 pfleura2
*              ( norm1(A),         NORM = '1', 'O' or 'o'
31 1 pfleura2
*              (
32 1 pfleura2
*              ( normI(A),         NORM = 'I' or 'i'
33 1 pfleura2
*              (
34 1 pfleura2
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
35 1 pfleura2
*
36 1 pfleura2
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
37 1 pfleura2
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
38 1 pfleura2
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
39 1 pfleura2
*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
40 1 pfleura2
*
41 1 pfleura2
*  Arguments
42 1 pfleura2
*  =========
43 1 pfleura2
*
44 1 pfleura2
*  NORM    (input) CHARACTER*1
45 1 pfleura2
*          Specifies the value to be returned in DLANST as described
46 1 pfleura2
*          above.
47 1 pfleura2
*
48 1 pfleura2
*  N       (input) INTEGER
49 1 pfleura2
*          The order of the matrix A.  N >= 0.  When N = 0, DLANST is
50 1 pfleura2
*          set to zero.
51 1 pfleura2
*
52 1 pfleura2
*  D       (input) DOUBLE PRECISION array, dimension (N)
53 1 pfleura2
*          The diagonal elements of A.
54 1 pfleura2
*
55 1 pfleura2
*  E       (input) DOUBLE PRECISION array, dimension (N-1)
56 1 pfleura2
*          The (n-1) sub-diagonal or super-diagonal elements of A.
57 1 pfleura2
*
58 1 pfleura2
*  =====================================================================
59 1 pfleura2
*
60 1 pfleura2
*     .. Parameters ..
61 1 pfleura2
      DOUBLE PRECISION   ONE, ZERO
62 1 pfleura2
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
63 1 pfleura2
*     ..
64 1 pfleura2
*     .. Local Scalars ..
65 1 pfleura2
      INTEGER            I
66 1 pfleura2
      DOUBLE PRECISION   ANORM, SCALE, SUM
67 1 pfleura2
*     ..
68 1 pfleura2
*     .. External Functions ..
69 1 pfleura2
      LOGICAL            LSAME
70 1 pfleura2
      EXTERNAL           LSAME
71 1 pfleura2
*     ..
72 1 pfleura2
*     .. External Subroutines ..
73 1 pfleura2
      EXTERNAL           DLASSQ
74 1 pfleura2
*     ..
75 1 pfleura2
*     .. Intrinsic Functions ..
76 1 pfleura2
      INTRINSIC          ABS, MAX, SQRT
77 1 pfleura2
*     ..
78 1 pfleura2
*     .. Executable Statements ..
79 1 pfleura2
*
80 1 pfleura2
      IF( N.LE.0 ) THEN
81 1 pfleura2
         ANORM = ZERO
82 1 pfleura2
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
83 1 pfleura2
*
84 1 pfleura2
*        Find max(abs(A(i,j))).
85 1 pfleura2
*
86 1 pfleura2
         ANORM = ABS( D( N ) )
87 1 pfleura2
         DO 10 I = 1, N - 1
88 1 pfleura2
            ANORM = MAX( ANORM, ABS( D( I ) ) )
89 1 pfleura2
            ANORM = MAX( ANORM, ABS( E( I ) ) )
90 1 pfleura2
   10    CONTINUE
91 1 pfleura2
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
92 1 pfleura2
     $         LSAME( NORM, 'I' ) ) THEN
93 1 pfleura2
*
94 1 pfleura2
*        Find norm1(A).
95 1 pfleura2
*
96 1 pfleura2
         IF( N.EQ.1 ) THEN
97 1 pfleura2
            ANORM = ABS( D( 1 ) )
98 1 pfleura2
         ELSE
99 1 pfleura2
            ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ),
100 1 pfleura2
     $              ABS( E( N-1 ) )+ABS( D( N ) ) )
101 1 pfleura2
            DO 20 I = 2, N - 1
102 1 pfleura2
               ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+
103 1 pfleura2
     $                 ABS( E( I-1 ) ) )
104 1 pfleura2
   20       CONTINUE
105 1 pfleura2
         END IF
106 1 pfleura2
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
107 1 pfleura2
*
108 1 pfleura2
*        Find normF(A).
109 1 pfleura2
*
110 1 pfleura2
         SCALE = ZERO
111 1 pfleura2
         SUM = ONE
112 1 pfleura2
         IF( N.GT.1 ) THEN
113 1 pfleura2
            CALL DLASSQ( N-1, E, 1, SCALE, SUM )
114 1 pfleura2
            SUM = 2*SUM
115 1 pfleura2
         END IF
116 1 pfleura2
         CALL DLASSQ( N, D, 1, SCALE, SUM )
117 1 pfleura2
         ANORM = SCALE*SQRT( SUM )
118 1 pfleura2
      END IF
119 1 pfleura2
*
120 1 pfleura2
      DLANST = ANORM
121 1 pfleura2
      RETURN
122 1 pfleura2
*
123 1 pfleura2
*     End of DLANST
124 1 pfleura2
*
125 1 pfleura2
      END