Statistiques
| Révision :

root / src / blas / ztbmv.f @ 5

Historique | Voir | Annoter | Télécharger (12,26 ko)

1
      SUBROUTINE ZTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
2
*     .. Scalar Arguments ..
3
      INTEGER INCX,K,LDA,N
4
      CHARACTER DIAG,TRANS,UPLO
5
*     ..
6
*     .. Array Arguments ..
7
      DOUBLE COMPLEX A(LDA,*),X(*)
8
*     ..
9
*
10
*  Purpose
11
*  =======
12
*
13
*  ZTBMV  performs one of the matrix-vector operations
14
*
15
*     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x,
16
*
17
*  where x is an n element vector and  A is an n by n unit, or non-unit,
18
*  upper or lower triangular band matrix, with ( k + 1 ) diagonals.
19
*
20
*  Arguments
21
*  ==========
22
*
23
*  UPLO   - CHARACTER*1.
24
*           On entry, UPLO specifies whether the matrix is an upper or
25
*           lower triangular matrix as follows:
26
*
27
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
28
*
29
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
30
*
31
*           Unchanged on exit.
32
*
33
*  TRANS  - CHARACTER*1.
34
*           On entry, TRANS specifies the operation to be performed as
35
*           follows:
36
*
37
*              TRANS = 'N' or 'n'   x := A*x.
38
*
39
*              TRANS = 'T' or 't'   x := A'*x.
40
*
41
*              TRANS = 'C' or 'c'   x := conjg( A' )*x.
42
*
43
*           Unchanged on exit.
44
*
45
*  DIAG   - CHARACTER*1.
46
*           On entry, DIAG specifies whether or not A is unit
47
*           triangular as follows:
48
*
49
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
50
*
51
*              DIAG = 'N' or 'n'   A is not assumed to be unit
52
*                                  triangular.
53
*
54
*           Unchanged on exit.
55
*
56
*  N      - INTEGER.
57
*           On entry, N specifies the order of the matrix A.
58
*           N must be at least zero.
59
*           Unchanged on exit.
60
*
61
*  K      - INTEGER.
62
*           On entry with UPLO = 'U' or 'u', K specifies the number of
63
*           super-diagonals of the matrix A.
64
*           On entry with UPLO = 'L' or 'l', K specifies the number of
65
*           sub-diagonals of the matrix A.
66
*           K must satisfy  0 .le. K.
67
*           Unchanged on exit.
68
*
69
*  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
70
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
71
*           by n part of the array A must contain the upper triangular
72
*           band part of the matrix of coefficients, supplied column by
73
*           column, with the leading diagonal of the matrix in row
74
*           ( k + 1 ) of the array, the first super-diagonal starting at
75
*           position 2 in row k, and so on. The top left k by k triangle
76
*           of the array A is not referenced.
77
*           The following program segment will transfer an upper
78
*           triangular band matrix from conventional full matrix storage
79
*           to band storage:
80
*
81
*                 DO 20, J = 1, N
82
*                    M = K + 1 - J
83
*                    DO 10, I = MAX( 1, J - K ), J
84
*                       A( M + I, J ) = matrix( I, J )
85
*              10    CONTINUE
86
*              20 CONTINUE
87
*
88
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
89
*           by n part of the array A must contain the lower triangular
90
*           band part of the matrix of coefficients, supplied column by
91
*           column, with the leading diagonal of the matrix in row 1 of
92
*           the array, the first sub-diagonal starting at position 1 in
93
*           row 2, and so on. The bottom right k by k triangle of the
94
*           array A is not referenced.
95
*           The following program segment will transfer a lower
96
*           triangular band matrix from conventional full matrix storage
97
*           to band storage:
98
*
99
*                 DO 20, J = 1, N
100
*                    M = 1 - J
101
*                    DO 10, I = J, MIN( N, J + K )
102
*                       A( M + I, J ) = matrix( I, J )
103
*              10    CONTINUE
104
*              20 CONTINUE
105
*
106
*           Note that when DIAG = 'U' or 'u' the elements of the array A
107
*           corresponding to the diagonal elements of the matrix are not
108
*           referenced, but are assumed to be unity.
109
*           Unchanged on exit.
110
*
111
*  LDA    - INTEGER.
112
*           On entry, LDA specifies the first dimension of A as declared
113
*           in the calling (sub) program. LDA must be at least
114
*           ( k + 1 ).
115
*           Unchanged on exit.
116
*
117
*  X      - COMPLEX*16       array of dimension at least
118
*           ( 1 + ( n - 1 )*abs( INCX ) ).
119
*           Before entry, the incremented array X must contain the n
120
*           element vector x. On exit, X is overwritten with the
121
*           tranformed vector x.
122
*
123
*  INCX   - INTEGER.
124
*           On entry, INCX specifies the increment for the elements of
125
*           X. INCX must not be zero.
126
*           Unchanged on exit.
127
*
128
*
129
*  Level 2 Blas routine.
130
*
131
*  -- Written on 22-October-1986.
132
*     Jack Dongarra, Argonne National Lab.
133
*     Jeremy Du Croz, Nag Central Office.
134
*     Sven Hammarling, Nag Central Office.
135
*     Richard Hanson, Sandia National Labs.
136
*
137
*
138
*     .. Parameters ..
139
      DOUBLE COMPLEX ZERO
140
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
141
*     ..
142
*     .. Local Scalars ..
143
      DOUBLE COMPLEX TEMP
144
      INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
145
      LOGICAL NOCONJ,NOUNIT
146
*     ..
147
*     .. External Functions ..
148
      LOGICAL LSAME
149
      EXTERNAL LSAME
150
*     ..
151
*     .. External Subroutines ..
152
      EXTERNAL XERBLA
153
*     ..
154
*     .. Intrinsic Functions ..
155
      INTRINSIC DCONJG,MAX,MIN
156
*     ..
157
*
158
*     Test the input parameters.
159
*
160
      INFO = 0
161
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
162
          INFO = 1
163
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
164
     +         .NOT.LSAME(TRANS,'C')) THEN
165
          INFO = 2
166
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
167
          INFO = 3
168
      ELSE IF (N.LT.0) THEN
169
          INFO = 4
170
      ELSE IF (K.LT.0) THEN
171
          INFO = 5
172
      ELSE IF (LDA.LT. (K+1)) THEN
173
          INFO = 7
174
      ELSE IF (INCX.EQ.0) THEN
175
          INFO = 9
176
      END IF
177
      IF (INFO.NE.0) THEN
178
          CALL XERBLA('ZTBMV ',INFO)
179
          RETURN
180
      END IF
181
*
182
*     Quick return if possible.
183
*
184
      IF (N.EQ.0) RETURN
185
*
186
      NOCONJ = LSAME(TRANS,'T')
187
      NOUNIT = LSAME(DIAG,'N')
188
*
189
*     Set up the start point in X if the increment is not unity. This
190
*     will be  ( N - 1 )*INCX   too small for descending loops.
191
*
192
      IF (INCX.LE.0) THEN
193
          KX = 1 - (N-1)*INCX
194
      ELSE IF (INCX.NE.1) THEN
195
          KX = 1
196
      END IF
197
*
198
*     Start the operations. In this version the elements of A are
199
*     accessed sequentially with one pass through A.
200
*
201
      IF (LSAME(TRANS,'N')) THEN
202
*
203
*         Form  x := A*x.
204
*
205
          IF (LSAME(UPLO,'U')) THEN
206
              KPLUS1 = K + 1
207
              IF (INCX.EQ.1) THEN
208
                  DO 20 J = 1,N
209
                      IF (X(J).NE.ZERO) THEN
210
                          TEMP = X(J)
211
                          L = KPLUS1 - J
212
                          DO 10 I = MAX(1,J-K),J - 1
213
                              X(I) = X(I) + TEMP*A(L+I,J)
214
   10                     CONTINUE
215
                          IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
216
                      END IF
217
   20             CONTINUE
218
              ELSE
219
                  JX = KX
220
                  DO 40 J = 1,N
221
                      IF (X(JX).NE.ZERO) THEN
222
                          TEMP = X(JX)
223
                          IX = KX
224
                          L = KPLUS1 - J
225
                          DO 30 I = MAX(1,J-K),J - 1
226
                              X(IX) = X(IX) + TEMP*A(L+I,J)
227
                              IX = IX + INCX
228
   30                     CONTINUE
229
                          IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
230
                      END IF
231
                      JX = JX + INCX
232
                      IF (J.GT.K) KX = KX + INCX
233
   40             CONTINUE
234
              END IF
235
          ELSE
236
              IF (INCX.EQ.1) THEN
237
                  DO 60 J = N,1,-1
238
                      IF (X(J).NE.ZERO) THEN
239
                          TEMP = X(J)
240
                          L = 1 - J
241
                          DO 50 I = MIN(N,J+K),J + 1,-1
242
                              X(I) = X(I) + TEMP*A(L+I,J)
243
   50                     CONTINUE
244
                          IF (NOUNIT) X(J) = X(J)*A(1,J)
245
                      END IF
246
   60             CONTINUE
247
              ELSE
248
                  KX = KX + (N-1)*INCX
249
                  JX = KX
250
                  DO 80 J = N,1,-1
251
                      IF (X(JX).NE.ZERO) THEN
252
                          TEMP = X(JX)
253
                          IX = KX
254
                          L = 1 - J
255
                          DO 70 I = MIN(N,J+K),J + 1,-1
256
                              X(IX) = X(IX) + TEMP*A(L+I,J)
257
                              IX = IX - INCX
258
   70                     CONTINUE
259
                          IF (NOUNIT) X(JX) = X(JX)*A(1,J)
260
                      END IF
261
                      JX = JX - INCX
262
                      IF ((N-J).GE.K) KX = KX - INCX
263
   80             CONTINUE
264
              END IF
265
          END IF
266
      ELSE
267
*
268
*        Form  x := A'*x  or  x := conjg( A' )*x.
269
*
270
          IF (LSAME(UPLO,'U')) THEN
271
              KPLUS1 = K + 1
272
              IF (INCX.EQ.1) THEN
273
                  DO 110 J = N,1,-1
274
                      TEMP = X(J)
275
                      L = KPLUS1 - J
276
                      IF (NOCONJ) THEN
277
                          IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
278
                          DO 90 I = J - 1,MAX(1,J-K),-1
279
                              TEMP = TEMP + A(L+I,J)*X(I)
280
   90                     CONTINUE
281
                      ELSE
282
                          IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J))
283
                          DO 100 I = J - 1,MAX(1,J-K),-1
284
                              TEMP = TEMP + DCONJG(A(L+I,J))*X(I)
285
  100                     CONTINUE
286
                      END IF
287
                      X(J) = TEMP
288
  110             CONTINUE
289
              ELSE
290
                  KX = KX + (N-1)*INCX
291
                  JX = KX
292
                  DO 140 J = N,1,-1
293
                      TEMP = X(JX)
294
                      KX = KX - INCX
295
                      IX = KX
296
                      L = KPLUS1 - J
297
                      IF (NOCONJ) THEN
298
                          IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
299
                          DO 120 I = J - 1,MAX(1,J-K),-1
300
                              TEMP = TEMP + A(L+I,J)*X(IX)
301
                              IX = IX - INCX
302
  120                     CONTINUE
303
                      ELSE
304
                          IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J))
305
                          DO 130 I = J - 1,MAX(1,J-K),-1
306
                              TEMP = TEMP + DCONJG(A(L+I,J))*X(IX)
307
                              IX = IX - INCX
308
  130                     CONTINUE
309
                      END IF
310
                      X(JX) = TEMP
311
                      JX = JX - INCX
312
  140             CONTINUE
313
              END IF
314
          ELSE
315
              IF (INCX.EQ.1) THEN
316
                  DO 170 J = 1,N
317
                      TEMP = X(J)
318
                      L = 1 - J
319
                      IF (NOCONJ) THEN
320
                          IF (NOUNIT) TEMP = TEMP*A(1,J)
321
                          DO 150 I = J + 1,MIN(N,J+K)
322
                              TEMP = TEMP + A(L+I,J)*X(I)
323
  150                     CONTINUE
324
                      ELSE
325
                          IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J))
326
                          DO 160 I = J + 1,MIN(N,J+K)
327
                              TEMP = TEMP + DCONJG(A(L+I,J))*X(I)
328
  160                     CONTINUE
329
                      END IF
330
                      X(J) = TEMP
331
  170             CONTINUE
332
              ELSE
333
                  JX = KX
334
                  DO 200 J = 1,N
335
                      TEMP = X(JX)
336
                      KX = KX + INCX
337
                      IX = KX
338
                      L = 1 - J
339
                      IF (NOCONJ) THEN
340
                          IF (NOUNIT) TEMP = TEMP*A(1,J)
341
                          DO 180 I = J + 1,MIN(N,J+K)
342
                              TEMP = TEMP + A(L+I,J)*X(IX)
343
                              IX = IX + INCX
344
  180                     CONTINUE
345
                      ELSE
346
                          IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J))
347
                          DO 190 I = J + 1,MIN(N,J+K)
348
                              TEMP = TEMP + DCONJG(A(L+I,J))*X(IX)
349
                              IX = IX + INCX
350
  190                     CONTINUE
351
                      END IF
352
                      X(JX) = TEMP
353
                      JX = JX + INCX
354
  200             CONTINUE
355
              END IF
356
          END IF
357
      END IF
358
*
359
      RETURN
360
*
361
*     End of ZTBMV .
362
*
363
      END