Statistiques
| Révision :

root / src / blas / zsyrk.f @ 5

Historique | Voir | Annoter | Télécharger (8,97 ko)

1
      SUBROUTINE ZSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
2
*     .. Scalar Arguments ..
3
      DOUBLE COMPLEX ALPHA,BETA
4
      INTEGER K,LDA,LDC,N
5
      CHARACTER TRANS,UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      DOUBLE COMPLEX A(LDA,*),C(LDC,*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  ZSYRK  performs one of the symmetric rank k operations
15
*
16
*     C := alpha*A*A' + beta*C,
17
*
18
*  or
19
*
20
*     C := alpha*A'*A + beta*C,
21
*
22
*  where  alpha and beta  are scalars,  C is an  n by n symmetric matrix
23
*  and  A  is an  n by k  matrix in the first case and a  k by n  matrix
24
*  in the second case.
25
*
26
*  Arguments
27
*  ==========
28
*
29
*  UPLO   - CHARACTER*1.
30
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
31
*           triangular  part  of the  array  C  is to be  referenced  as
32
*           follows:
33
*
34
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
35
*                                  is to be referenced.
36
*
37
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
38
*                                  is to be referenced.
39
*
40
*           Unchanged on exit.
41
*
42
*  TRANS  - CHARACTER*1.
43
*           On entry,  TRANS  specifies the operation to be performed as
44
*           follows:
45
*
46
*              TRANS = 'N' or 'n'   C := alpha*A*A' + beta*C.
47
*
48
*              TRANS = 'T' or 't'   C := alpha*A'*A + beta*C.
49
*
50
*           Unchanged on exit.
51
*
52
*  N      - INTEGER.
53
*           On entry,  N specifies the order of the matrix C.  N must be
54
*           at least zero.
55
*           Unchanged on exit.
56
*
57
*  K      - INTEGER.
58
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
59
*           of  columns   of  the   matrix   A,   and  on   entry   with
60
*           TRANS = 'T' or 't',  K  specifies  the number of rows of the
61
*           matrix A.  K must be at least zero.
62
*           Unchanged on exit.
63
*
64
*  ALPHA  - COMPLEX*16      .
65
*           On entry, ALPHA specifies the scalar alpha.
66
*           Unchanged on exit.
67
*
68
*  A      - COMPLEX*16       array of DIMENSION ( LDA, ka ), where ka is
69
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
70
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
71
*           part of the array  A  must contain the matrix  A,  otherwise
72
*           the leading  k by n  part of the array  A  must contain  the
73
*           matrix A.
74
*           Unchanged on exit.
75
*
76
*  LDA    - INTEGER.
77
*           On entry, LDA specifies the first dimension of A as declared
78
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
79
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
80
*           be at least  max( 1, k ).
81
*           Unchanged on exit.
82
*
83
*  BETA   - COMPLEX*16      .
84
*           On entry, BETA specifies the scalar beta.
85
*           Unchanged on exit.
86
*
87
*  C      - COMPLEX*16       array of DIMENSION ( LDC, n ).
88
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
89
*           upper triangular part of the array C must contain the upper
90
*           triangular part  of the  symmetric matrix  and the strictly
91
*           lower triangular part of C is not referenced.  On exit, the
92
*           upper triangular part of the array  C is overwritten by the
93
*           upper triangular part of the updated matrix.
94
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
95
*           lower triangular part of the array C must contain the lower
96
*           triangular part  of the  symmetric matrix  and the strictly
97
*           upper triangular part of C is not referenced.  On exit, the
98
*           lower triangular part of the array  C is overwritten by the
99
*           lower triangular part of the updated matrix.
100
*
101
*  LDC    - INTEGER.
102
*           On entry, LDC specifies the first dimension of C as declared
103
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
104
*           max( 1, n ).
105
*           Unchanged on exit.
106
*
107
*
108
*  Level 3 Blas routine.
109
*
110
*  -- Written on 8-February-1989.
111
*     Jack Dongarra, Argonne National Laboratory.
112
*     Iain Duff, AERE Harwell.
113
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
114
*     Sven Hammarling, Numerical Algorithms Group Ltd.
115
*
116
*
117
*     .. External Functions ..
118
      LOGICAL LSAME
119
      EXTERNAL LSAME
120
*     ..
121
*     .. External Subroutines ..
122
      EXTERNAL XERBLA
123
*     ..
124
*     .. Intrinsic Functions ..
125
      INTRINSIC MAX
126
*     ..
127
*     .. Local Scalars ..
128
      DOUBLE COMPLEX TEMP
129
      INTEGER I,INFO,J,L,NROWA
130
      LOGICAL UPPER
131
*     ..
132
*     .. Parameters ..
133
      DOUBLE COMPLEX ONE
134
      PARAMETER (ONE= (1.0D+0,0.0D+0))
135
      DOUBLE COMPLEX ZERO
136
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
137
*     ..
138
*
139
*     Test the input parameters.
140
*
141
      IF (LSAME(TRANS,'N')) THEN
142
          NROWA = N
143
      ELSE
144
          NROWA = K
145
      END IF
146
      UPPER = LSAME(UPLO,'U')
147
*
148
      INFO = 0
149
      IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
150
          INFO = 1
151
      ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
152
     +         (.NOT.LSAME(TRANS,'T'))) THEN
153
          INFO = 2
154
      ELSE IF (N.LT.0) THEN
155
          INFO = 3
156
      ELSE IF (K.LT.0) THEN
157
          INFO = 4
158
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
159
          INFO = 7
160
      ELSE IF (LDC.LT.MAX(1,N)) THEN
161
          INFO = 10
162
      END IF
163
      IF (INFO.NE.0) THEN
164
          CALL XERBLA('ZSYRK ',INFO)
165
          RETURN
166
      END IF
167
*
168
*     Quick return if possible.
169
*
170
      IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
171
     +    (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
172
*
173
*     And when  alpha.eq.zero.
174
*
175
      IF (ALPHA.EQ.ZERO) THEN
176
          IF (UPPER) THEN
177
              IF (BETA.EQ.ZERO) THEN
178
                  DO 20 J = 1,N
179
                      DO 10 I = 1,J
180
                          C(I,J) = ZERO
181
   10                 CONTINUE
182
   20             CONTINUE
183
              ELSE
184
                  DO 40 J = 1,N
185
                      DO 30 I = 1,J
186
                          C(I,J) = BETA*C(I,J)
187
   30                 CONTINUE
188
   40             CONTINUE
189
              END IF
190
          ELSE
191
              IF (BETA.EQ.ZERO) THEN
192
                  DO 60 J = 1,N
193
                      DO 50 I = J,N
194
                          C(I,J) = ZERO
195
   50                 CONTINUE
196
   60             CONTINUE
197
              ELSE
198
                  DO 80 J = 1,N
199
                      DO 70 I = J,N
200
                          C(I,J) = BETA*C(I,J)
201
   70                 CONTINUE
202
   80             CONTINUE
203
              END IF
204
          END IF
205
          RETURN
206
      END IF
207
*
208
*     Start the operations.
209
*
210
      IF (LSAME(TRANS,'N')) THEN
211
*
212
*        Form  C := alpha*A*A' + beta*C.
213
*
214
          IF (UPPER) THEN
215
              DO 130 J = 1,N
216
                  IF (BETA.EQ.ZERO) THEN
217
                      DO 90 I = 1,J
218
                          C(I,J) = ZERO
219
   90                 CONTINUE
220
                  ELSE IF (BETA.NE.ONE) THEN
221
                      DO 100 I = 1,J
222
                          C(I,J) = BETA*C(I,J)
223
  100                 CONTINUE
224
                  END IF
225
                  DO 120 L = 1,K
226
                      IF (A(J,L).NE.ZERO) THEN
227
                          TEMP = ALPHA*A(J,L)
228
                          DO 110 I = 1,J
229
                              C(I,J) = C(I,J) + TEMP*A(I,L)
230
  110                     CONTINUE
231
                      END IF
232
  120             CONTINUE
233
  130         CONTINUE
234
          ELSE
235
              DO 180 J = 1,N
236
                  IF (BETA.EQ.ZERO) THEN
237
                      DO 140 I = J,N
238
                          C(I,J) = ZERO
239
  140                 CONTINUE
240
                  ELSE IF (BETA.NE.ONE) THEN
241
                      DO 150 I = J,N
242
                          C(I,J) = BETA*C(I,J)
243
  150                 CONTINUE
244
                  END IF
245
                  DO 170 L = 1,K
246
                      IF (A(J,L).NE.ZERO) THEN
247
                          TEMP = ALPHA*A(J,L)
248
                          DO 160 I = J,N
249
                              C(I,J) = C(I,J) + TEMP*A(I,L)
250
  160                     CONTINUE
251
                      END IF
252
  170             CONTINUE
253
  180         CONTINUE
254
          END IF
255
      ELSE
256
*
257
*        Form  C := alpha*A'*A + beta*C.
258
*
259
          IF (UPPER) THEN
260
              DO 210 J = 1,N
261
                  DO 200 I = 1,J
262
                      TEMP = ZERO
263
                      DO 190 L = 1,K
264
                          TEMP = TEMP + A(L,I)*A(L,J)
265
  190                 CONTINUE
266
                      IF (BETA.EQ.ZERO) THEN
267
                          C(I,J) = ALPHA*TEMP
268
                      ELSE
269
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
270
                      END IF
271
  200             CONTINUE
272
  210         CONTINUE
273
          ELSE
274
              DO 240 J = 1,N
275
                  DO 230 I = J,N
276
                      TEMP = ZERO
277
                      DO 220 L = 1,K
278
                          TEMP = TEMP + A(L,I)*A(L,J)
279
  220                 CONTINUE
280
                      IF (BETA.EQ.ZERO) THEN
281
                          C(I,J) = ALPHA*TEMP
282
                      ELSE
283
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
284
                      END IF
285
  230             CONTINUE
286
  240         CONTINUE
287
          END IF
288
      END IF
289
*
290
      RETURN
291
*
292
*     End of ZSYRK .
293
*
294
      END